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ABSTRACT

We propose a gradient updating procedure for using both
“present” and "past” data to improve the convergence properties
of a stochastic approximation algorithm . This procedure
utilizes second derivatives estimated by perturbation analysis
techniques. Experimental evidence provided by simulation runs
appear to confirm the improvement in convergence rate gained by
this modified algorithm.

1. INTRODUCTION AND OVERVIEW

In the optimization of a performance measure in a
discrete-event system, major difficulties often arise due to the
stochastic nature of the system, to the point that modelling via
simulation is necessary. Perturbation analysis provides a means
by which to estimate gradients of performance measures with
respect to system parameters from a single simulation run, a
valuable toolin simulation optimization. In an extensive
experimental study, Suri & Leung [1988] demonstrated
experimentally the feasibility of utilizing perturbation analysis in a
stochastic approximation algorithm for the optimization of a very
simple stochastic system, the M/M/1 queue.

In applying stochastic approximation algorithms to the
optimjzation of a performance measure of a stochastic system,
there is often a basic tradeoff between the accuracy of an
individual gradient estimate and the number of iterations taken.
For example, in optimizing a performance measure of a queueing
system, one can observe large numbers of customers between
occasional changes of the control parameter or observe small
numbers of customers with frequent changes of the control
parameter . The accuracy of an estimate (e.g., its variance) in
general increases with the number of observations or
measurements taken, so that given a fixed measurement budget, it
is usually not obvious whether it is preferable to have more
iterations with less accurate estimates or vice versa. This tradeoff
occurs in stochastic approximation algorithms because each
estimate of the gradient is taken at a different value of the control
parameter. In the original formulation of stochastic
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approximation, only measurements at the current value of the
control parameter are used; those taken at previous values of the
control parameter are discarded. The Suri & Zazanis and Suri &
Leung algorithms follow this route, making no use of "past”
data.

To improve their algorithm, we wished to combine both
"past” and "present" observation data to form a better estimation
of the gradient. We propose a type of gradient averaging found
in more recent modified versions of stochastic approximation
algorithms [Ruszynski & Syski, 1983; Fogel, 1981], and a
gradient updating through the use of higher derivative estimates -
a new addition made practical by the nature of perturbation
analysis. The gradient averaging method can be viewed as a
crude means of using previous measurements in improving the
present estimate of the gradient. The addition of updating is a
more refined means of utilizing "past" data, in which, intuitively,
we ask how measurements taken at previous values of the control
parameter can be extrapolated to the current value of the control
parameter. The use of higher derivatives is 2 natural answer, and
in theory, perturbation analysis can be used not only to generate
gradient estimates needed for optimization but also higher
derivatives which can be used in the extrapolation process. In
our updating/averaging algorithm, the gradient estimate is
updated each time the parameter is changed by combining the
(updated) gradient estimate used at the previous parameter value
with the gradient estimate observed at the present parameter
value. The G/G/1 queue, where second derivative estimates of
system time are readily available, was used as a means for
comparison with the original Suri and Leung algorithm.

2. STOCHASTIC APPROXIMATION (SA)

A thorough discussion and rigorous theoretical analysis of
SA can be found in Nevelson & Zalmanovich [1976] and
Kushner & Clark [1978], and a good overview of its use in
simulation optimization are contained in Glynn [1986] and
Meketon [1987]. Here, we summarize briefly classical and more
recent results.



The problem under consideration is the following:

min J(x) = E[f(x,m)], :Rxx Q ->R,
xeRk

where 0e€2 represents the stochastic effects and J(x) represents
the performance measure of the stochastic system. There are
usually additional constraints on the parameter.

Under certain smoothness and convexity conditions on
J(x), we can find the minimum by solving instead
dJ(x)/dx=dE[{(x,0)]/dx=0. If g(x,0) is an estimate of dJ/dx s.t.
Efg(x,0)] = dJ/dx = g*(x),i.e., an unbiased estimate, we
equivalently solve the problem g*(x)=0. Stochastic
approximation was originally formulated to address this
level-crossing problem.

Two SA algorithms, RM [Robbins & Monro, 1951] and
KW [Kiefer & Wolfowitz, 1952], were adapted in Suri/Leung's
experimental study of the M/M/1 queue. Both algorithms are
basically of the same form

Xp,1=X, 2, 8(X ,0),

except that g(x_,w) is estimated by finite differences-in the latter
algorithm. In Suri and Leung, the superiority of RM using PA to
estimate the gradient over KW using finite difference estimates
was demonstrated experimentally for the M/M/1 queue. This is
not surprising, since RM yields convergence of order 1/n/2 if the
estimate g(x) is unbiased, while for KW (in all but very special
cases) the convergence is of order 1/n!? [Sacks, 1958). Also,
Zazanis & Suri [1984] showed that for the M/G/1 queue, the IPA
estimate of the gradient for the average system time with respect
to mean service time converges to the true gradient like 1/M,
whereas finite difference estimates converge like 1/M!2, where
M is the number of observed busy periods.

More recently, SA has been extended to multistep
methods, the main idea being "to provide the basic optimization
procedure with auxiliary filters averaging past observational
data.” [Ruszczynski & Syski, 1983] One such two-step
algorithm is the following: [Fogel, 19811

LIS SN R

d; = +b, (g(x,w)-d ).
Intuitively, d_ represents the "old" direction, g(x, ,®) represents
the "new" gradient estimate, b represents the averaging
coefficient, and d_,,is the resulting new direction. With b=1,
the two-step version reduces to-the regular SA algorithm. The
basic convergence requirement, in addition to requirements on the
coefficients, is that g*(x)=E[g(x,w)] be Lipschitz with respect to
x, i.e., there is a C such that lg*(y)-g*(z)l £ Cly-zl for all y,z.
Ruszczynski & Syski implemented a practical version of the
gradient averaging method to demonstrate numerically the
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superiority in convergence rate it had over the standard SA
algorithm,

The SA algorithm we propose is yet another extension of

the above, given in three-step general form as follows:

Xnt1 = Xg” andru-l’

dyy = 4+ b (2, 0)-d,),

4, =d +T(x,Ax),

where Ax =x_-x_,.

We call this our SA with gradient averaging and updating.
Conceptually, the first line is the usual SA, the second line is the
combining of the "new" gradient estimate and an updated version
of the "old" previous direction, and the third line is the updating
of the previous direction at the updated parameter value, with
T(x,,A%, ) representing the updating function via higher
derivatives. In Section IV, we apply a version of this algorithm
to four test cases.

3. PERTURBATION ANALYSIS (PA)

The basic motivation behind PA is to extract more
information out of a single sample path (corresponding, say, to a
single simulation) than has been generally thought possible [Ho,
1979]. Specifically, PA has been realized as a means by which
to compute derivatives of performance measures with respect to
system parameters, using a single sample path of the system
(either simulated or real) to "reconstruct” a perturbed path with
minimal additional effort. Because only a single sample path is
needed to compute the gradient, PA seems a logical choice for an
RM-type optimization algorithm.

PA is quite general for discrete event dynamic systems
(DEDS). Numerous papers have shown implementations for
various types of systems, including single-server quenes [Suri &
Zazanis, 1988; Zazanis & Suri, 1985] and queueing networks
[Ho & Cao, 1983; Cao, 1986]. Suri [1987] and Cao [1985]
provided theoretical foundations for infinitesimal perturbation
analysis (IPA), the earliest form of PA, e.g., in proving the
consistency of the sample gradient estimates for certain systems.
The applicability of IPA came down to a question of
interchangeability in the order of expectation and differentiation,
ie., does

2 BIf(9,0)] = B-2-£0,00] 7

(NB: henceforth, we adopt @ to represent the adjustable
parameter, replacing x used in the SA discussion.) Recently,
work by Ho & Li [1988] and by Gong & Ho [1987] has
overcome some of these difficulties. More detailed explanations
of the techniques and theory, which can be found in these and



other papers, will not be undertaken here.

IPA, as the earliest technique developed, is thus, in some
sense, the most well-developed. For the G/G/1 queue, the
theoretical work is very comprehensive, with most of these
results brought together in one work, Zazanis's Ph.D. thesis
[1986b]. To summarize, he does the following: proves strong
consistency and unbiasedness for the gradient of mean system
time w.r.t. a parameter 6; demonstrates how strongly consistent
second and higher order derivative estimates can be obtained
from a single sample path; proves the asymptotic superiority of
PA estimates over conventional finite difference estimates;
introduces the single-run optimization method utilizing PA in a
preliminary experimental study.

4. SINGLE-RUN OPTIMIZATION OF SYSTEM
TIME IN A SINGLE-SERVER QUEUE

4.1 The Problem

To test the algorithms, we applied them to the optimization
of a simple stochastic system. Specifically, we wished to
minimize the average system time of a customer in a single-server
queue subject to some penalty costs, i.e.,the cost function is of
the following form:

J(0) = E[L(6,w)] = E[T(8,w) + C(6)] = E[T] + C(©),

where T = system time of a customer in the system,

0 = controllable parameter (possibly vector),
® = sample path of the system,
C(6) = penalty cost, a function of 6 only.
The gradient is
dr _ 9E(T]

do 0
and as described in Section 11, infinitesimal perturbation analysis

can be used to estimate JE[T]/d8, while all the other quantities
are assumed known. We wish to find 0 such that dJ/d6=0,
subject to certain constraints on 6. In this section, we present the
results for four examples. We chose analytically tractable

+ C(9),

systems, because this makes it easier to evaluate the algorithms
by checking with the known theoretical optimum.

4.2 The Algorithms

In this section, let gp, (0,,0) be the PA estimate of
dE[T]/d6 taken over some fixed number of customers L (i.e.,
L=# customers/iteration). The algorithm used by Suri & Leung
[1987] in their empirical study, which we shall refer to as AQ, is
basically the original SA algorithm:
1 =6, -t [AQ]

9n+
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where I’ = g,,(8,,0) + C'(0),
and where 2, is the accelerated harmonic sequence [Kesten,1958]
defined by
Va = la, ifsgn T, =sgnl'
(L/a)+1 ifsgnl ., s#sgnl .

The simplest extension, in which we do straight averaging
of the gradient with no updating, we call Al, is the following:

em—l = en - anIln+1’ [Al]
where J' | = g+ C'(©),
81 = Bna T 0 (Epa(0,,0)-8, 1), (averaging)

and where b is the harmonic series (1/n) and a is the accelerated
harmonic sequence defined above. Note that no extra data
collection is needed in this scheme.

In the next extension, we add the updating aspect afforded
by second derivative PA estimates. This, which we call A2, is
the following:

en-f-l = en - an]'n+1’ [A2]
where T, = g+ C'(0),

81 = &+ b (gpa (0,008, ), (averaging)

B =8p + Epax 0,0 A8, (updating)

where A8, =0,-0_ ; and a_ and b are as defined in Al. g'p,4
(8,,m) represents an "averaged" PA estimate of 92E[T]/06? taken
over the entire optimization run up to that point. In
implementation terms, this means that the accumulations for
calculating the second derivative via PA [viz. Zazanis & Suri,
1985] are not reset after every iteration, as is the case for the
gradient estimate gp,(6,,0). The implicit assumption is that the
second derivative is "more constant” than the gradient over a
given range of 6, so that, heuristically speaking, a reduction in
the variance of the estimate would occur which would outweigh
any introduction of bias. Of course, the updating scheme means
that there is additional computation associated with calculating the
second derivative, but as in most PA implementations, itis a
relatively minor, and easy, addition.

In the implementation of Al and A2, a "reset” mechanism
was added to the updating/averaging of the gradient estimate,
occuring when 46, > 0.36, or when the constraints were
violated. The intention was to stabilize the algorithm in case of
"glitches" in the gradient estimates. Intuitively, the reset
mechanism is such that if the step size taken is "large" in some
sense, then the averaging/updating process is restarted from
scratch by means of setiing b, back to 1, so that g,=gp ,(6,,0).

For all algorithms, a projection scheme was used when the
constraints were violated.

4.3 Comparing the Algorithms



For comparison purposes, we fixed the total number of
customers observed in each run, eschewing the problem of
determining an appropriate stopping criterion. In this way, both
convergence to the correct value and convergence rate could be
compared.

Let 6% = optimized value of the parameter for replication i,

0% = true optimal value of the parameter,
J, = J(0!) = optimized value of the objective function
for replication i,
J# = J(0%) = true optimal (minimum) value of the
objective function.
We measure the "goodness” of the algorithms by comparing
these values. Error in J(6), the means by which Suri & Leung
used to evaluate their algorithm, is defined by

€=mean % errorin J =

G, =sd%erroriny=« f = = =

n-1 JE
. I -J*
whemei=%elrormli= T
=2
IRPYE
T 1 2_ 1
andJ—"n— s (SJ'— ] s

and n = # replications.
A normalized mean-squared error (MSE) combining the two
terms was calculated as the sum of the variance and the squared
bias:
2= BMSE=¢ +02.

In all the examples that follow, the results are taken over
40 independent replications, i.e., n=40. For comparison in the
one-dimensional parameter cases, both error in J(6) and in ©
were used, with the statistics for € (or its components in the
multi-dimensional examples) calculated in the same manner as for
J.

Background. The experimental study of Suri & Leung
was a comprehensive empirical "verification" of the promising
results of single-run optimization begun by Zazanis utilizing PA
gradient estimates of the G/G/1 queue. The objective was to find
0 to miminize the following cost function:

J(6) =E[T] +¢,/8, subject to 0<p<l and 6>0,

where 6 = parameter of the service time distribution,
¢, = cost per unit speed of the server (20),
p = utilization of the server.

Thus, we have
RIS
© - a0 -
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and hence I' = ¢,g - ¢,/0%, where g is the estimate of JE[T1/08.
In the Suri & Leung study, the M/M/1 queue was used because
of its analytic tractability., For comparison, this was thus a
natural first test case.

M/M/1 Test Case. For the M/M/1, with 0 the mean
service time and A the arrival rate, we have
E[T]=6/(1-26),
so the minimum of J is achieved at
0=—L—.
Again, we reiterate that in actual optimization, the analytical
formula for E[T] is assumed unknown, i.e., it is only estimated
through simulation, and its derivative is estimated through PA
techniques. The analytic optimum is used only a posteriori for
comparison with the final parameter value obtained from a
single-run optimization run,

As in Suri & Leung, we took 4=0.01, 6,=50.0 (starting
value), and studied the five cases ¢,=2000, 8000, 32000,
128000, 512000, corresponding to optimal operation at traffic
intensities of p,,, = 0.31, 0.47, 0.64, 0.78, and 0.87. Also as
in the Suri & Leung study, we ran each case at L=5, 10, 20, and
40 customers per iteration. To study the tradeoff between
number of iterations and accuracy of the gradient estimate, the
total number of customers observed for each case was the same.
This means, for example, that a 1000 total customer "budget”
would correspond to 200 iterations at L=5 customers/iteration but
only 25 iterations at L=40 customers/iteration. Because we
expected the runlength needed for convergence to increase with
increasing p,,,, (as reflected in the Suri & Leung study), we used
the following run lengths:

¢ 2000 8000 32000 128000 512000
Pont 031 047 064 078 087
rdhlength 10,000 20,000 30,000 50,000 100,000

The calculated mean and standard deviation % error for both 6
and J are given in Table 1, and the resulting root-%mean-squared
errors for e(J) are displayed graphically in the plots of Graph 1,
from which we observe the following (plots for £(6), though
omitted here, yield the same conclusions): (i) The accuracies of
A2 and A1 are more uniform than AQ over different L for a given
Poper ie., they are less dependent on the sample size per
iteration. (ii) A2 was clearly the most accurate in the three
highest p,,, cases, with approximately equally best accuracy
attained for A2 and Al in the low p,, case, and A2 and AQ in the
second lowest p,, case. Thus, (iii) A2 always did as well as or
mugch better than the other two algorithms in all cases.




Table 1: M/M/1 Test Case Simulation Results

o e

*

.« (18)

*

e AO
* A2

cl
2000 8000 32000 128000 512000
L | A0 | A1 | A2 A0 | Al | A2 A0 | Al | A2 AOD | Al | A2 A0 | Al | A2
5 42581009016 || 0.05{033]0.11]0.02}000[003]0.1610.24]007 (077002 ]0.15
10} 2.36 { 0.12 | 0.22 | 0.01 { 0.30 | 0.09 || 0.04 | 0.01 | 0.06 || 0.20 | 0.24 | 0.02 || 0.50 | 0.02 | 0.12
20 || 242 | 0.06 | 0.29 || 0.04 | 0.30 | 0.09 | 0.07 | 0.01 [ 0.06 {| 0.15 | 0.25 | 0.03 || 0.37 | 0.07 | 0.11
40 |1 1.84 1 0.04 | 0.35 || 0.10 ] 0.28 | 0.11 {{ 0.07 | 0.01 [ 0.06 [f 0.25 | 0.26 | 0.08 || 0.12 | 0.09 | 0.08
Absolute Mean %error in 6
cl
2000 8000 32000 128000 512000
L[| AO { A1 | A2 A0 | Al | A2 A0 | Al | A2 A0 | A1 | A2 A0 | A1 | A2
5 123910941091 (078112080 153] 145097 || 2902|157 (0.83 || 6.30 | 1.41 | 0.63
10 2721094 |1 097 | 0.83 | 1.12 | 0.80 | 1.39 [ 1.43 | 098 || 2.43 | 1.57 | 0.87 {| 5.60 | 1.41 | 0.64
20)243 (094|097 || 0.87 [ 1.10 { 0.78 {| 1.28 | 1.40 [ 0.95 || 2.16 | 1.56 | 0.86 || 4.65 | 1.42 0.62
40 [12.01 | 0.97 | 097 | 091 | 1.10 | 0.78 || 1.23 | 1.40 [ 0.97 || 2.03 { 1.56 | 0.88 || 3.82 | 1.55 0.66
Std Dev %error in ¢
cl
2000 - 8000 32000 128000 512000
L A0 | Al | A2 A0 | Al | A2 A0 | A1 | A2 A0 | Al | A2 A0 | Al | A2
5 | 0.10 ] 0.01 | 0.01 0.01/v "0.02 | 0.01 || 0.05 | 0.04 [ 0.02 || 0.31 | 0.09 | 0.03 || 8.40 0.15 | 0.03
10 0.11 1 0.01 | 0.01 || 0.01 [ 0.02 [ 0.01 || 0.04 | 0.04 [ 0.02 || 0.22 | 0.09 | 0.03 || 6.57 0.15 | 0.03
20| 0.10 [ 0.01 | 0.01 || 0.01 | 0.02 | 0.01 || 0.03 | 0.04 | 0.02 || 0.17 | 0.09 { 0.03 2.1910.15 { 0.03
40 4 0.06 [ 0.01 [ 0.01 || 0.01 | 0.02 | 0.01 || 0.03 | 0.04 | 0.02 || 0.15 | 0.09 | 0.03 || 1.13 0.18 | 0.03
Mean %error in J
cl
2000 8000 32000 128000 512000
L A0 Al A2 A0 | Al A2 A0 Al A2 AO0 | Al A2 A0 Al A2
5 ]/0.15)0.01]0.01 ] 0.01{0.02[0010.06|005] 003 048] 0.12 | 0.03 2479 1 0.24 | 0.05
10 {1 0.15 ] 0.01 | 0.01 (| 0.01 | 0.02 | 0.01 | 0.04 [ 0.04 | 0.03 || 0.31 [ 0.12 { 0.03 19.62 | 0.24 | 0.04
201013001001 001]0.02001|004]004]|003]| 0231013 0.03 i 4.10 | 0.24 | 0.05
40 1 0.09 ] 0.02 | 0.01 {| 0.01 ] 0.02 | 0.01 || 0.03 | 0.04 | 0.03 || 0.20 | 0.14 0.03 143 | 0.26 | 0.05
Std Dev %error in J
(J) *(262) €(J) * (20.7) e(J) o (4.6) ()
1.0+ 1.0+ 1.0¢ 1.0+
0.8t 0.8t O.ﬁ 0.8t
06 . 0.6t 0.6t 0.6}
0.4 0.4} . 0.4} 0.4}
© < * o
021 o 02 o 0 . o 0.2t .
¥ ¥ * 2 x x $ % =
0.310.470.640.780.87 Port

* T % g q Popt
0.310.470.640.780.87 F°P

L=5

L=10

L=20

Graph 1: M/M/1 Test Case
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M/D/1 Test Case. Qur second test case utilized the
M/D/1 quene. For the M/D/1, with 0 the service time and A the
arrival rate, the expected system time can be found using the P-K
formula [e.g., Kleinrock]:
A

HIl=0+ 29 "

The minimality condition ledds to the fourth-degree polynomial
equation

2

p*-2p% + 21-d)p? + 4dp - 24 =0 ,
where p =48 and d = ¢, A2,
Somewhat fortuitously, the solution to this quartic falls out rather
easily. Since pe(0,1), our desired minimum is achieved at

1-4102d + V 2(d-1)+2/1+2d
2

As before, we took A=0.01, 84=50.0, and studied the
following five cases:

€ 1250 5000 15000 75000 240000
Popt 0.29 0.47 0.62 0.79 0.87
tun length 10,000 20,000 30,000 50,000 100,000

Again, we ran each case at L=5, 10, 20, and 40 customers per
iteration. From the results displayed in Table 2 and Graphs 2a
through 2h, we see that basically the same conclusions can be
drawn here as in the M/M/1 test case.

popt =
Table 2: M/D/1 Test Case Simulation Results
cl
1250 5000 15000 75000 240000
L AO | Al | A2 A0 | Al | A2 A0 | A1 | A2 A0 | Al | A2 A0 | Al | A2
6 || 1.84 | 0.04 [ 0.15 [f 0.62 ] 0.05 | 0.05 || 0.08 | 0.11 [ 0.11 I 0.0 0.04 | 0.01 || 0.81 | 0.29 [ 0.14
10 [ 2.15 [ 0.01 | 0.18 || 0.58 | 0.02 | 0.05 || 0.08 | 0.12 | 0.12 || 0.04 0.05 (0,04 || 0.33 | 0.28 | 0.15
20 191|016 ) 0.82 [ 0.66 | 0.00 [ 0.02 || 0.08 | 0.16 | 0.11 || 0.03 0.06 | 0.09 (| 0.02 1 0.29 | 0.19
40 ) 1.94 | 064 | 046 [ 0.86 | 0.02 | 0.02 [| 0.01 { 0.14 | 0.12 || 0.01 0.09 | 0.07 || 0.09 | 0.31 | 0.20
Absolute Mean %error in
cl
1250 5000 15000 75000 240000
L || AD | A1 | A2 A0 | Al | A2 AD | Al | A2 A0 | Al | A2 A0 | A1 | A2
6 |1 1.35 [0.48 [ 062 || 0.92 | 0.45 | 0.38 || 0.63 | 0.84 061 [ 1.33 | 094 | 059 || 4.25 | 0.82 | 0.42
10 1.52 [ 0.562 | 0.48 || 0.90 | 0.45 | 0.38 || 0.60 | 0.83 | 0.60 || 1.08 091|059 |.8.18 | 0.82 | 0.44
20 J[ 1.21 | 0.48 | 0.48 || 0.83 | 0.43 | 0.41 || 0.57 | 0.81 | 0.58 || 0.97 0.90 | 0.62 || 2.19 | 0.80 | 0.44
40 /'1.00 | 0.52 | 0.52 | 0.81 | 0.45 | 0.41 | 0.57 | 0.78 | 0.58 0.90 | 0.88 ] 0.56 || 1.75 | 0.79 | 0.44
Std Dev %error in 6
cl
1250 5000 15000 75000 240000
L] AO | Al | A2 A0 | Al | A2 A0 | Al | A2 A0 [ A1 | A2 A0 [ Al | A2
6 |[ 0.08 | 0.01 | 0.01 || 0.01]0.00.|0.00 [0.01 | 0.01 [ 0.01 0.07 | 0.03 | 0.01 || 1.05 [ 0.05 | 0.01
10 [ 0.04 [ 0.01 | 0.01 || 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 0.04 | 0.03 | 0.01 || 0.60 | 0.05 | 0.02
20 {1 0.03 | 0.01 | 0.01 [| 0.01 0.00 | 0.00 || 0.01 { 0.01 | 0.01 0.04 [ 0.03 [ 0.01 || 0.31 | 0.05 | 0.02
40 | 0.03 | 0.01 | 0,01 || 0,02 | 0.00 | 0.00 || 0.01 | 0.01 | G.01 0.03 { 0.03 | 0,01 [| 0.21 | 0.05 | 0.02
Mean %error in J
cl
1250 5000 15000 75000 240000
L{ A0 | A1 | A2 A0 | A1 | A2 A0 [ A1 | A2 A0 | Al | A2 A0 | A1 | A2
6 [[0.04 | 0.00] 000 [[0.02]0.01 | 0.00 [ 0.01 | 0.02 0.01 | 0.09 | 0.04 [ 0.02 ][ 1.60 | 0.05 | 0.02
10 J{ 0.04 | 0.00 | 0.00 || 0.02 | 0.00 { 0.00 || 0.01 | 0.02 0.01 || 0.05 | 0.04 [ 0.02 |} 0.79 | 0.05 | 0.02
20 || 0.03 | 0.00 | 0.00 || 0.02'| 0.01 | 0.01 || 0.01 | 0.02 0.01 || 0.04 | 0.04 | 0.02 || 0.38 { 0.05 0.02
401/ 0.03 ] 0.00 | 0.00 [ 0.02 | 0.01 { 0.01 {| 0.01 | 0.02 | 0.01 0.04 ) 0.05 | 0.01 || 0.24 | 0,05 | 0.02

Std Dev %error in J
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Graph 2: M/D/1 Test Case

M/M/1 2-D Test Case. To test the algorithm in higher
dimensions,we used the M/M/1 queue with the following
objective function having two controllable parameters:

J(8) = J(x,A) = E[L((X,A),0)] = E[T + c,/p + ¢,AlL,

where T = system time,
p = utilization of the server,
X = mean service time,
A = arrival rate,
0 = (X,A)is the controliable (vector) parameter.

We wish to find 0=(x,\) to minimize J, subject to x>0 and
0<Ax<1. Using p=Ax, T(6,0) is again the only stochastic
quantity in the performance measure. Thus, we have

I, &) = E[T] + ¢ /(A + cyM .
Again, we wish to find 8=(x,A) to minimize J subject to x>0 and
0<Ax<1. The algorithms are extended to multi-dimensions in
the natural way, with 6 and g now vectors. (NB: the
coefficients are still scalars in our implementation; more
generally, they can be extended to matrices.) The only other
change in the algorithms is reflected in the new objective function
J, i.e., the gradient becomes

JE[T] _12_
ar | & | MO
00 EM | Y |
oA 7&2x
and the Hessian matrix d2J/d62, necessary for A2 and A3, is
2 _1
3 29
& _FEm | P Ax
W | 2
A Ax

As before in the scalar optimization, IPA is used to estimate the
9E[T] and 92E[T] quantites (now vectors and matrices,
respecively) using the procedure outlined in Section I, yielding
the derivative estimates gp,(0_,0) and g'p, (0,,0). Note that
the advantages of PA over finite difference estimates become
even more evident in higher dimensions, because to calculate the
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gradient vector and Hessian matrix in k dimensions still requires
only one sample path in PA, whereas the finite difference method
requires 2k sample paths for the gradient and up to 2k?+1 sample
paths for the Hessian matrix.

Using the analytic formula for E[T] as before, we find the
true minimum occurs at

" \/E R
cg Aoy
!
For these set of runs we fixed the number of

customers/iteration at L=5, took as starting values A;=0.5,
%=1.0, and studied the following five cases:

¢ 1/4 1 8 27 125
c, 12 1 8 27 125
Keopt 1 1 12 1/3 1/5

Xon 1/3 12 43 9/4 25/6
Pone 033 050 067 075 083
raflength 10,000 20,000 30,000 50,000 100,000

The calculated mean and standard deviation % error for x, A and
J are given in Table 3, and e(J) is displayed graphically in Graph
3. A2 did substantially better than Al, which did substantially
better than AQ, in all cases for all "goodness" measures except sd
% sd error in x.

e(J) * (36.8)

5.0
e AO

4.0+ o Al
* A2

3.0+ . *

2.0+ .

Lo+ R

*
$ 2 ¢ % %

33 B30 .67 .15 .83 Port

Graph 3: M/M/1 2-D Test Case



Table 3: M/M/1 2-D Test Case Simulation Results: %error (mean/sd)

01/02

0.25/0.50 1/1

8/3

77/21 125/1%

A0 | A1 | A2 || AO | Al | A2 | AO

Al

A0 | Al A0 | Al | A2

9.60
4.20

5.40
1.60

0.20
1.00

6.60
1.80

0.50
1.50

x || 28.0
9.00

3.48
1.68

2.35
1.80

1.47
2.36

31.6
0.70

20.1
3.41

110
4.61

0.17
1.20

12.3
1.02

8.91
2.27

10.8
4.20

6.70
1.60

0.60
1.00

7.80
1.80

0.70
1.80

Al 286
6.70

2.60
5.60

2.80
1.60

27.6
6.00

13.0
6.50

15.2
9.90

12,2
2.40

1.40
2.70

50.5
20.0

0.20
0.80

0.01
0.01

0.01
0.01

0.31
0.16

0.11
0.05

0.16
0.08

J | 2.60
1.09

0.61
1.62

0.07
0.06

0.68
0.30

0.22
0.16

0.03
0.03

19.0
31.6

2.04
2.31

0.24
0.12

0.02
0.02

M/U/1 Test Case. Our fourth test case, also a
two-dimensional optimization problem, utilized the M/U/1 queue
with the following objective function:

J(0) = J(8,,8,) = E[L((6,,8,),m)]

=E[T - ¢,0; - ¢,8,] = E[T] - ¢,0; - c,8,,
where 0;= mean service time,

0,= "half-width" of the distribution,

¢, = penalty cost on server speed (>0),

¢, = penalty cost on "uniformity" of the server (=0),

i.e., the service time is distributed uniformly on [0,- 0,,0,+6,].
We wish to find =(8;, 8,) to minimize J, subject to 0 < 8, <0,
and 0 <A8, < 1. The gradient and the Hessian are given by

oE[T]
&

o |l -

= -c,| |-e , —em—=
aErmy ol Al g ge?

%, |
For the M/U/1, the P-X formula yields
A@2 + 0373)

21-08)

'With our objective function and the given constraints, it turns out
that for some values of ¢;and ¢, the theoretical optimal solution
lies on one of the constraint boundaries, i.e., dJ/d0:0 for these
cases. We avoided these cases in our experiments, because the
algorithms will not find these points at which dJ/d6 is non-zero.
A solution at which dJ/d0=0 exists if
cl>6c§+3c2+ 1,

dy

de

E{T]=el+

and is given by

=L (1. L =
w5} o

For these set of runs we fixed the number of
customers/iteration at L=5 again, took as starting values 0,=50,
0,=20, and studied the following five cases:

¢ 15 25 50 140 350
¢, 007 02 04 08 L5

O o 290 492 657 800 873
Opo 149 305 4Ll 479 570
P 029 049 066 080 087
rifilength 10,000 20,000 30,000 50,000 100,000

The calculated mean and standard deviation % error for 8;, ©,,
and J are given in Table 4, and e() is displayed graphically in
Graph 4, from which we observe the following: (i) A2 was the
most accurate in all cases, but surprisingly (i) A1l did very
poorly in the high Pop: Cases. We conjecture that in these cases
Al is averaging gradient estimates very different from the true
gradient, i.e., in some sense using old data which is "bad." A2
apparently does not suffer this fate, because it uses the second
derivative to update this "bad" data into useful data.

) e o3 o (82
(5.6)
5.04
(<3
Il A0
40 ° ;AI
* A2
3.0+
.
2.0+
104 .
* L 3 .

R S 2
33 B0 .67 75 da Port
Graph 4: M/U/1 Test Case

Table 4: M/U/1 Test Case Simulation Results: Y%error (mean/sd)

Cl/cz

0.25/0.50 i1

8/8

77727 125/125

A0 [ A1 | A2 || AO | Al | A2

AD

Al

A2 || AO | A1 | A2 || A0 | A1l | A2

1.68
6.69

1.87
14.8

0.568
10.3

x | 40.6
8.29

4.00
21.6

2.09
20.3

0.90
7.06

4.20
15.1

0.63
9.27

0.16
10.9

4.27
10.6

0.26
10.7

0.59
9.63

4.05
14.6

0.38
6.24

28.1
8.59

3.08
14.8

9.38
10.3

Al 203
8.29

114
21.6

0.24
20.3

34.7
7.06

3.78
16.1

256.3
9.27

5.97
14.6

13.0
6.24

10.8
10.6

047
10.7

6.71
9.53

5.99
10.9

0.87
0.35

0.14
0.14

2.64
2.60

0.37
0.36

2.60
3.69

J | 279
8.26

0.60
0.21

3.14
4.69

6.71
14.1

0.34
0.256

0.07
0.07

1.82
1.92

8.66
10.0

0.06
0.06

0.09
0.08
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5. SUMMARY AND FUTURE WORK

The idea of averaging and updating the gradient estimate
used in optimizing system time in a G/G/1 queue has been
investigated experimentally. The framework of SA is used as the
basic optimization technique, and PA plays the prominent role as
the means by which to estimate. the gradient and to update it.
Experimental convergence was obtained in all the cases studied --
using both single- and multi-dimensional objective functions --
with a convergence rate superior to the original algorithm studied
by Suri & Leung. Further improvements in the algorithm include
step-size control, expansion to matrices for a; and b coefficients
in the multi-dimensional version,and the determination of an
appropriate stopping criterion for the algorithm, Also, analytical
study of the convergence properties of the algorithm is desirable.
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