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Abstract In this paper we introduce and analyse Langevin samplers that consist of pertur-
bations of the standard underdamped Langevin dynamics. The perturbed dynamics is such
that its invariant measure is the same as that of the unperturbed dynamics. We show that
appropriate choices of the perturbations can lead to samplers that have improved properties,
at least in terms of reducing the asymptotic variance. We present a detailed analysis of the
new Langevin sampler for Gaussian target distributions. Our theoretical results are supported
by numerical experiments with non-Gaussian target measures.

1 Introduction and Motivation

Sampling from probability measures in high-dimensional spaces is a problem that appears
frequently in applications, e.g. in computational statistical mechanics and in Bayesian statis-
tics. In particular, we are faced with the problem of computing expectations with respect to
a probability measure π on R

d , i.e. we wish to evaluate integrals of the form:

π( f ) :=
∫
Rd

f (x)π(dx). (1)

As is typical in many applications, particularly in molecular dynamics and Bayesian infer-
ence, the density (for convenience denoted by the same symbol π) is known only up to a
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normalization constant; furthermore, the dimension of the underlying space is quite often
large enough to render deterministic quadrature schemes computationally infeasible.

A standard approach to approximating such integrals is Markov Chain Monte Carlo
(MCMC) techniques [19,32,52], where a Markov process (Xt )t≥0 is constructed which
is ergodic with respect to the probability measure π . Then, defining the long-time average

πT ( f ) := 1

T

∫ T

0
f (Xs)ds (2)

for f ∈ L1(π), the ergodic theorem guarantees almost sure convergence of the long-time
average πT ( f ) to π( f ).

There are infinitely many Markov, and, for the purposes of this paper diffusion, processes
that can be constructed in such a way that they are ergodic with respect to the target dis-
tribution. A natural question is then how to choose the ergodic diffusion process (Xt )t≥0.
Naturally the choice should be dictated by the requirement that the computational cost of
(approximately) calculating (1) is minimized. A standard example is given by the over-
dampedLangevin dynamicsdefined to be the unique (strong) solution (Xt )t≥0 of the following
stochastic differential equation (SDE):

dXt = −∇V (Xt )dt + √
2dWt , (3)

where V = − logπ is the potential associated with the smooth positive density π . Under
appropriate assumptions on V , i.e. on the measure π(dx), the process (Xt )t≥0 is ergodic and
in fact reversible with respect to the target distribution.

Another well-known example is the underdamped Langevin dynamics given by (Xt )t≥0 =
(qt , pt )t≥0 defined on the extended space (phase space) Rd × R

d by the following pair of
coupled SDEs:

dqt = M−1 ptdt, dpt = −∇V (qt )dt − Γ M−1 ptdt + √
2Γ dWt , (4)

where the mass and friction tensors M and Γ are assumed to be symmetric positive definite
matrices. It is well-known [36,46] that (qt , pt )t≥0 is ergodic with respect to the measure
π̂ := π ⊗ N (0, M), having density with respect to the Lebesgue measure on R2d given by

π̂(q, p) = 1

Ẑ
exp

(
−V (q) − 1

2
p · M−1 p

)
, (5)

where Ẑ is a normalization constant. Note that π̂ has marginal π with respect to p and thus
for functions f ∈ L1(π), we have that 1

t

∫ t
0 f (qt ) dt → π( f ) almost surely. Notice also

that the dynamics restricted to the q-variables is no longer Markovian. The p-variables can
thus be interpreted as giving some instantaneous memory to the system, facilitating efficient
exploration of the state space. Higher order Markovian models, based on a finite dimensional
(Markovian) approximation of the generalized Langevin equation can also be used [12].

As there is a lot of freedom in choosing the dynamics in (2), see the discussion in Sect. 2,
it is desirable to choose the diffusion process (Xt )t≥0 in such a way that πT ( f ) can provide
a good estimation of π( f ). The performance of the estimator (2) can be quantified in various
manners. The ultimate goal, of course, is to choose the dynamics as well as the numerical
discretization in such a way that the computational cost of the longtime-average estimator
is minimized, for a given tolerance. The minimization of the computational cost consists of
three steps: bias correction, variance reduction and choice of an appropriate discretization
scheme. For the latter step see Sect. 5 and [14, Sect. 6].
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Under appropriate conditions on the potential V it can be shown that both (3) and (4) con-
verge to equilibrium exponentially fast, e.g. in relative entropy. One performance objective
would then be to choose the process (Xt )t≥0 so that this rate of convergence is maximised.
Conditions on the potential V which guarantee exponential convergence to equilibrium,
both in L2(π) and in relative entropy can be found in [7,39,54]. In the case when the tar-
get measure π is Gaussian, both the overdamped (3) and the underdamped (4) dynamics
become generalized Ornstein–Uhlenbeck processes. For such processes the entire spectrum
of the generator—or, equivalently, the Fokker–Planck operator—can be computed analyti-
cally and, in particular, an explicit formula for the L2-spectral gap can be obtained [38,43,44].
A detailed analysis of the convergence to equilibrium in relative entropy for stochastic dif-
ferential equations with linear drift, i.e. generalized Ornstein–Uhlenbeck processes, has been
carried out in [1,2].

In addition to speeding up convergence to equilibrium, i.e. reducing the bias of the estima-
tor (2), one is naturally also interested in reducing the asymptotic variance. Under appropriate
conditions on the target measure π and the observable f , the estimator πT ( f ) satisfies a cen-
tral limit theorem (CLT) [31], that is,

1√
T

(πT ( f ) − π( f ))
d−−−→

T→∞ N
(
0, 2 σ 2

f

)
,

where σ 2
f < ∞ is the asymptotic variance of the estimator πT ( f ). The asymptotic variance

characterises the magnitude of fluctuations of πT ( f ) around π( f ). Consequently, another
natural objective is to choose the process (Xt )t≥0 such that σ 2

f is as small as possible. It
is well known that the asymptotic variance can be expressed in terms of the solution to an
appropriate Poisson equation for the generator of the dynamics [31]

− Lφ = f − π( f ), σ 2
f =

∫
Rd

φ(−Lφ) π(dx). (6)

Techniques from the theory of partial differential equations can then be used in order to
study the problem of minimizing the asymptotic variance. This is the approach that was
taken in [14], see also [23], and it will also be used in this paper.

Other measures of performance have also been considered. For example, in [50,51],
performance of the estimator is quantified in terms of the rate functional of the ensemble
measure 1

t

∫ t
0 δX (t)(dx). See also [28] for a study of the nonasymptotic behaviour of MCMC

techniques, including the case of overdamped Langevin dynamics.
Similar analyses have been carried out for various modifications of (3). Of particular

interest to us are the Riemannian manifold MCMC [18] (see the discussion in Sect. 2)
and the nonreversible Langevin samplers [20,21]. As a particular example of the gen-
eral framework that was introduced in [18], we mention the preconditioned overdamped
Langevin dynamics dXt = −P∇V (Xt ) dt + √

2P dWt , that was presented in [4]. There,
the long-time behaviour of as well as the asymptotic variance of the corresponding esti-
mator πT ( f ) are studied and applied to equilibrium sampling in molecular dynamics. A
variant of the standard underdamped Langevin dynamics that can be thought of as a form
of preconditioning and that has been used by practitioners is the mass-tensor molecular
dynamics [6].

The nonreversible overdamped Langevin dynamics

dXt = − (∇V (Xt ) − γ (Xt )) dt + √
2 dWt , (7)
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where the vector field γ satisfies ∇ · (πγ ) = 0 is ergodic (but not reversible) with respect
to the target measure π for all choices of the divergence-free vector field γ . The asymptotic
behaviour of this process was considered for Gaussian diffusions in [20], where the rate of
convergence of the covariance to equilibrium was quantified in terms of the choice of γ .
This work was extended to the case of non-Gaussian target densities, and consequently for
nonlinear SDEs of the form (7) in [21]. The problemof constructing the optimal nonreversible
perturbation, in terms of the L2(π) spectral gap for Gaussian target densities was studied
in [34] see also [55]. Optimal nonreversible perturbations with respect to miniziming the
asymptotic variancewere studied in [14,23]. In all theseworks itwas shown that, in theory [i.e.
without taking into account the computational cost of the discretization of the dynamics (7)],
the nonreversible Langevin sampler (7) is never worse that its reversible counterpart (3), both
in terms of converging faster to the target distribution as well as in terms of having a lower
asymptotic variance. It should be emphasized that the two optimality criteria, maximizing
the spectral gap and minimizing the asymptotic variance, lead to different choices for the
nonreversible drift γ (x).

The goal of this paper is to extend the analysis presented in [14,34] by introducing the
following modification of the standard underdamped Langevin dynamics:

dqt = M−1 ptdt − μJ1∇V (qt )dt,

dpt = −∇V (qt )dt − ν J2M
−1 ptdt − Γ M−1 ptdt + √

2Γ dWt , (8)

where M, Γ ∈ R
d×d are constant strictly positive definite matrices, μ and ν are scalar

constants and J1, J2 ∈ R
d×d are constant skew-symmetric matrices. As demonstrated in

Sect. 2, the process defined by (8) will be ergodic with respect to the Gibbs measure π̂

defined in (5).
Our objective is to investigate the use of these dynamics for computing ergodic averages of

the form (2). To this end, we study the long time behaviour of (8) and, using hypocoercivity
techniques, prove that the process converges exponentially fast to equilibrium. This perturbed
underdamped Langevin process introduces a number of parameters in addition to the mass
and friction tensors which must be tuned to ensure that the process is an efficient sampler.
For Gaussian target densities, we derive estimates for the spectral gap and the asymptotic
variance, valid in certain parameter regimes. Moreover, for certain classes of observables,
we are able to identify the choices of parameters which lead to the optimal performance
in terms of asymptotic variance. While these results are valid for Gaussian target densities,
we advocate these particular parameter choices also for more complex target densities. To
demonstrate their efficacy, we perform a number of numerical experiments onmore complex,
multimodal distributions. In particular, we use the Langevin sampler (8) in order to study the
problem of diffusion bridge sampling.

The rest of the paper is organized as follows. In Sect. 2 we present some background
material on Langevin dynamics, we construct general classes of Langevin samplers and we
introduce criteria for assessing the performance of the samplers. In Sect. 3we study qualitative
properties of the perturbed underdamped Langevin dynamics (8) including exponentially
fast convergence to equilibrium and the overdamped limit. In Sect. 4 we study in detail the
performance of the Langevin sampler (8) for the case of Gaussian target distributions. In
Sect. 5 we introduce a numerical scheme for simulating the perturbed dynamics (8) and
we present numerical experiments on the implementation of the proposed samplers for the
problem of diffusion bridge sampling. Section 6 is reserved for conclusions and suggestions
for further work.
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2 Construction of General Langevin Samplers

2.1 Background and Preliminaries

In this section we consider estimators of the form (2) where (Xt )t≥0 is a diffusion process
given by the solution of the following Itô SDE:

dXt = a(Xt ) dt + √
2b(Xt ) dWt , (9)

with drift coefficient a : Rd → R
d and diffusion coefficient b : Rd → R

d×m both hav-
ing smooth components, and where (Wt )t≥0 is a standard R

m–valued Brownian motion.
Associated with (9) is the infinitesimal generator L formally given by

L f = a · ∇ f + Σ : ∇∇ f, f ∈ C2
c (R

d) (10)

where Σ = bb	, ∇∇ f denotes the Hessian of the function f and : denotes the Frobenius
inner product. In general, Σ is nonnegative definite, and could possibly be degenerate. In
particular, the infinitesimal generator (10) need not be uniformly elliptic. To ensure that the
corresponding semigroup exhibits sufficient smoothing behaviour, we shall require that the
process (9) is hypoelliptic in the sense of Hörmander. If this condition holds, then irreducibil-
ity of the process (Xt )t≥0 will be an immediate consequence of the existence of a strictly
positive invariant distribution π(x)dx , see [30].

Suppose that (Xt )t≥0 is nonexplosive. It follows from the hypoellipticity assumption that
the process (Xt )t≥0 possesses a smooth transition density p(t, x, y) which is defined for all
t ≥ 0 and x, y ∈ R

d , [5, Theorem VII.5.6]. The associated strongly continuous Markov
semigroup (Pt )t≥0 is defined by Pt f (x) = ∫

R
d p(t, x, y) f (y) dy. Suppose that (Pt )t≥0 is

invariant with respect to the target measure π , i.e.
∫
Rd Pt f (x)π(dx) = ∫

Rd f (x)π(dx) for
t ≥ 0 and all bounded continuous functions f . Then (Pt )t≥0 can be extended to a positivity
preserving contraction semigroup on L2(π) which is strongly continuous. Moreover, the
infinitesimal generator corresponding to (Pt )t≥0 is given by an extension of (L,C2

c (R
d)),

also denoted by L.
Due to hypoellipticity and invariance with respect to (Pt )t≥0, the probability measure π

on R
d has a smooth density with respect to the Lebesgue measure. If this density is strictly

positive, it follows that π is necessarily the unique invariant distribution. Slightly abusing the
notation, we will denote both the measure and its density by π . Furthermore, we will denote
by L2(π) be the Hilbert space of π -square integrable functions equipped with inner product
〈·, ·〉L2(π) and norm ‖·‖L2(π).

2.2 A General Characterisation of Ergodic Diffusions

A natural question is what conditions on the coefficients a and b of (9) are required to ensure
that (Xt )t≥0 is invariantwith respect to the distributionπ(x) dx . The following result provides
a necessary and sufficient condition for a diffusion process to be invariant with respect to a
given target distribution.

Theorem 1 Consider a diffusion process (Xt )t≥0 on R
d defined by the unique, non-

explosive solution to the Itô SDE (9) with drift a ∈ C1(Rd ;Rd) and diffusion coefficient
b ∈ C1(Rd ;Rd×m). Then (Xt )t≥0 is invariant with respect to π if and only if

a = Σ∇ logπ + ∇ · Σ + γ, (11)
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where Σ = bb	 and γ : RD → R
D is a continuously differentiable vector field satisfying

∇ · (πγ ) = 0. (12)

If additionally γ ∈ L1(π), then there exists a skew-symmetric matrix function C : Rd →
R
d×d such that γ = 1

π
∇ · (πC) . In this case the infinitesimal generator can be written as

an L2(π)-extension of

L f = 1

π
∇ · ((Σ + C)π∇ f ) , f ∈ C2

c (R
d).

The proof of the first part of this result can be found in [46, Chap. 4]; similar versions of
this characterisation can be found in [54] and [21]. For the existence of the skew-symmetric
matrix C see, e.g., [16, Sec.4, Prop. 1]. See also [37].

Remark 1 If (11) holds and L is hypoelliptic it follows immediately that (Xt )t≥0 is ergodic
with unique invariant distribution π(x) dx (see [30]).

More generally, we can consider Itô diffusions in an extended phase space:

dZt = b(Zt ) dt + √
2σ(Zt ) dWt , (13)

where (Wt )t≥0 is a standard Brownian motion in RN , N ≥ d . This is a Markov process with
generator

L = b(z) · ∇z + Σ(z) : ∇z∇z, (14)

where Σ(z) = (σσ T
)
(z). We will consider dynamics (Zt )t≥0 that is ergodic with respect to

πz(z) dz such that
∫
R
m πz(x, y) dy = π(x), where z = (x, y), x ∈ R

d , y ∈ R
m, d +m =

N .
There are various well-known choices of dynamics which are invariant (and indeed

ergodic) with respect to the target distribution π(x)dx .

1. Choosing b = I and γ = 0we immediately recover the overdamped Langevin dynamics
(3).

2. Choosing b = I , and γ = 0 such that (12) holds gives rise to the nonreversible over-
damped equation defined by (7). As it satisfies the conditions of Theorem 1, it is ergodic
with respect toπ . In particular choosing γ (x) = J∇V (x) for a constant skew-symmetric
matrix J we obtain

dXt = −(I + J )∇V (Xt ) dt + √
2 dWt , (15)

which has been studied in previous works.
3. Given a target density π > 0 on R

d , if we consider the augmented target density π̂ on
R
2d given in (5), then choosing

γ ((q, p)) =
(

M−1 p
−∇V (q)

)
and b =

(
0√
Γ

)
∈ R

2d×d , (16)

where M and Γ are positive definite symmetric matrices, the conditions of Theorem 1
are satisfied for the target density π̂ . The resulting dynamics (qt , pt )t≥0 is determined by
the underdamped Langevin equation (4). It is straightforward to verify that the generator
is hypoelliptic, [35, Sec 2.2.3.1], and thus (qt , pt )t≥0 is ergodic.

4. More generally, consider the augmented target density π̂ on R2d as above, and choose

γ ((q, p)) =
(

M−1 p − μJ1∇V (q)

−∇V (q) − ν J2M−1 p

)
and b =

(
0√
Γ

)
∈ R

2d×d , (17)
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1104 A. B. Duncan et al.

where μ and ν are scalar constants and J1, J2 ∈ R
d×d are constant skew-symmetric

matrices.With this choice we recover the perturbed Langevin dynamics (8). It is straight-
forward to check that (17) satisfies the invariance condition (12), and thus Theorem 1
guarantees that (8) is invariant with respect to π̂ .

5. In a similar fashion, one can introduce an augmented target density on R(m+2)d , with

̂̂π(q, p, u1, . . . , um) ∝ e
−
(

|p|2
2 + |u1 |2+...+|um |2

2 +V (q)

)
,

where p, q, ui ∈ R
d , for i = 1, . . . ,m. Clearly

∫
Rd×Rmd ̂̂π(q, p, u1, . . . , um) dp du1 . . .

dum = π(q). We now define γ : R(m+2)d → R
(m+2)d by

γ (q, p, u1, . . . , um) =
⎛
⎝p − ∇qV (q) +

m∑
j=1

λ j u j − λ1 p · · · − λm p

⎞
⎠

T

and b : R(m+2)d → R
(m+2)d×(m+2)d by

b(q, p, u1, . . . , um) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0

√
α1 Id×d 0 . . . 0

0 0 0
√

α2 Id×d . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . .
√

αm Id×d

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where λi ∈ R and αi > 0, for i = 1, . . . ,m. The resulting process (9) is given by

dqt = pt dt, dpt = −∇qV (qt ) dt +
d∑
j=1

λ j u
j (t) dt,

du1t = −λ1 pt dt − α1u
1
t dt +√2α1 dW

1
t ,

...

dumt = −λm pt dt − αmu
m
t dt +√2αm dWm

t ,

(18)

where (W j
t )t≥0, j=1,...,m are independent Rd–valued Brownian motions. This process is

ergodic with unique invariant distribution ̂̂π , and under appropriate conditions on V ,
converges exponentially fast to equilibrium in relative entropy [42]. Equation (18) is a
Markovian representation of a generalised Langevin equation of the form

dqt = pt dt, dpt = −∇qV (qt ) dt −
∫ t

0
F(t − s)ps ds + N (t),

where N (t) is a mean-zero stationary Gaussian process with autocorrelation function
F(t), i.e. E [N (t) ⊗ N (s)] = F(t − s)Id×d and F(t) =∑m

i=1 λ2i e
−αi |t |.

6. Let π̃(z) ∝ exp(−�(z)) be a positive density on R
N where N > d such that π(x) =∫

RN−d π̃(x, z) dz, where (x, y) ∈ R
d ×R

N−d . Then choosing b = ID×D and γ = 0 we
obtain the dynamics

dXt = −∇x�(Xt , Yt ) dt + √
2 dW 1

t , dYt = −∇y�(Xt , Yt ) dt + √
2 dW 2

t ,

then (Xt , Yt )t≥0 is immediately ergodic with respect to π̃ .
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2.3 Comparison Criteria

For a fixed observable f , a natural measure of accuracy of the estimator πT ( f ) =
t−1
∫ t
0 f (Xs) ds is the mean square error (MSE) defined by

MSE( f, T ) := Ex |πT ( f ) − π( f )|2 , (19)

where Ex denotes the expectation conditioned on the process (Xt )t≥0 starting at x . It is
instructive to introduce the decomposition MSE( f, T ) = μ2( f, T ) + σ 2( f, T ), where

μ( f, T ) = |Ex [πT ( f )] − π( f )| and σ 2( f, T ) = Ex |πT ( f ) − ExπT ( f )|2
= Var[πT ( f )]. (20)

Here μ( f, T ) measures the bias of the estimator πT ( f ) and σ 2( f, T ) measures the variance
of fluctuations of πT ( f ) around the mean.

The speed of convergence to equilibrium of the process (Xt )t≥0 will control both the bias
term μ( f, T ) and the variance σ 2( f, T ). To make this claim more precise, suppose that the
semigroup (Pt )t≥0 associated with (Xt )t≥0 decays exponentially fast in L2(π), i.e. there
exist constants λ > 0 and C ≥ 1 such that

‖Pt g − π(g)‖L2(π) ≤ Ce−λt ‖g − π(g)‖L2(π) , g ∈ L2(π). (21)

Remark 2 If (21) holds with C = 1, this estimate is equivalent to −L having a spectral gap
in L2(π). Allowing for a constantC > 1 is essential for our purposes though in order to treat
nonreversible and degenerate diffusion processes by the theory of hypocoercivity as outlined
in [54].

The following lemma characterises the decay of the bias μ( f, T ) as T → ∞ in terms of λ

and C . The proof can be found in [41].

Lemma 1 Let (Xt )t≥0 be the unique, non-explosive solution of (9), such that X0 ∼ π0 � π

and dπ0
dπ

∈ L2(π), where dπ0
dπ

denotes the Radon-Nikodym derivative of π0 with respect to
π . Suppose that the process is ergodic with respect to π such that the Markov semigroup
(Pt )t≥0 satisfies (21). Then for f ∈ L∞(π),

μ( f, T ) ≤ C

λT

(
1 − e−λT

)
‖ f ‖L∞Varπ

[
dπ0

dπ

] 1
2

.

The study of the long time behaviour of the variance σ 2( f, T ) involves deriving a central
limit theorem for the additive functional

∫ t
0 f (Xt )−π( f ) dt . As discussed in [13], we reduce

this problem to proving well-posedness of the Poisson equation

− Lχ = f − π( f ), π(χ) = 0. (22)

The only complications in this approach arise from the fact that the generator L need not be
symmetric in L2(π) nor uniformly elliptic. The following result summarises conditions for
the well-posedness of the Poisson equation and it also provides with us with a formula for
the asymptotic variance. Again, the proof can be found in [41].

Lemma 2 Let (Xt )t≥0 be the unique, non-explosive solution of (9) with smooth drift and
diffusion coefficients, such that the corresponding infinitesimal generator is hypoelliptic.
Syppose that (Xt )t≥0 is ergodic with respect to π andmoreover, (Pt )t≥0 decays exponentially
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1106 A. B. Duncan et al.

fast in L2(π) as in (21). Then for all f ∈ L2(π), there exists a unique mean zero solution χ

to the Poisson equation (22). If X0 ∼ π , then for all f ∈ C∞(Rd) ∩ L2(π)

√
T (πT ( f ) − π( f ))

d−−−→
T→∞ N (0, 2σ 2

f ), (23)

where σ 2
f is the asymptotic variance defined by

σ 2
f = 〈χ, (−L)χ〉L2(π) = 〈∇χ,Σ∇χ〉L2(π) . (24)

Moreover, if X0 ∼ π0 where π0 � π and dπ0
dπ

∈ L2(π) then (23) holds for all f ∈
C∞(Rd) ∩ L∞(Rd).1

Clearly, observables that only differ by a constant have the same asymptotic variance. In the
sequel, we will hence restrict our attention to observables f ∈ L2(π) satisfying π( f ) = 0,
simplifying expressions (22) and (23). The corresponding subspace of L2(π)will be denoted
by L2

0(π). If the exponential decay estimate (21) is satisfied, then Lemma 2 shows that −L
is invertible on L2

0(π), so we can express the asymptoptic variance as

σ 2
f = 〈 f, (−L)−1 f 〉L2(π), f ∈ L2

0(π). (25)

We note that the constants C and λ appearing in the exponential decay estimate (21) also
control the speed of convergence of σ 2( f, T ) to zero. Indeed, it is straightforward to show
that if (21) is satisfied, then the solution χ of (22) satisfies

σ 2
f = 〈χ, f − π( f )〉L2(π) ≤ C

λ
‖ f ‖2L2(π)

. (26)

Lemmas 1 and 2 would suggest that choosing the coefficients Σ and γ to optimize the
constants C and λ in (26) would be an effective means of improving the performance of
the estimator πT ( f ), especially since the improvement in performance would be uniform
over an entire class of observables. When this is possible, this is indeed the case. However,
as has been observed in [20,21,34], maximising the speed of convergence to equilibrium is
a delicate task. As the leading order term in MSE( f, T ), it is typically sufficient to focus
specifically on the asymptotic variance σ 2

f and study how the parameters of the SDE (9) can

be chosen to minimise σ 2
f . This study was undertaken in [14] for processes of the form (7).

3 Perturbation of Underdamped Langevin Dynamics

The primary objective of this work is to compare the performances of the perturbed under-
damped Langevin dynamics (8) and the unperturbed dynamics (4) according to the criteria
outlined in Sect. 2.3 and to find suitable choices for thematrices J1, J2,M andΓ that improve
the performance of the sampler. We begin our investigations of (8) by establishing ergodicity
and exponentially fast return to equilibrium, and by studying the overdamped limit of (8).
As the latter turns out to be nonreversible and therefore in principle superior to the usual
overdamped limit (3), e.g. [21], this calculation provides us with further motivation to study
the proposed dynamics.

For the bulk of this work, we focus on the particular case when the target measure is
Gaussian, i.e. when the potential is given by V (q) = 1

2q
T Sq with a symmetric and positive

1 In fact, using the results from [8], we could consider observables in L2(π). However, we will not extend
this point further in this paper.
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definite precision matrix S (i.e. the covariance matrix is given by S−1). In this case, we
advocate the following conditions for the choice of parameters:

M = S, Γ = γ S, SJ1S = J2, μ = ν. (27)

Under the above choices (27), we show that the large perturbation limit limμ→∞ σ 2
f exists and

is finite and we provide an explicit expression for it (see Corollary 4). From this expression,
we derive an algorithm for finding optimal choices for J1 in the case of quadratic observables
(see Algorithm 2).

If the friction coefficient is not too small (γ >
√
2), and under certain mild nondegeneracy

conditions, we prove that adding a small perturbation will always decrease the asymptotic
variance for observables of the form f (q) = q · Kq + l · q + C :

d

dμ
σ 2
f

∣∣∣∣
μ=0

= 0 and
d2

dμ2 σ 2
f

∣∣∣∣
μ=0

< 0,

see Theorem 3. In fact, we conjecture that this statement is true for arbitrary observables f ∈
L2(π), butwe have not been able to prove this. The dynamics (8) [used in conjunctionwith the
conditions (27)] proves to be especially effective when the observable is antisymmetric (i.e.
when it is invariant under the substitution q �→ −q) or when it has a significant antisymmetric
part. In particular, in Proposition 3 we show that under certain conditions on the spectrum of
J1, for any antisymmetric observable f ∈ L2(π) it holds that limμ→∞ σ 2

f = 0.
Numerical experiments and analysis show that departing significantly from (27) in fact

possibly decreases the performance of the sampler. This is in stark contrast to (7), where it
is not possible to increase the asymptotic variance by any perturbation. For that reason, until
now it seems practical to use (8) as a sampler only when a reasonable estimate of the global
covariance of the target distribution is available. In the case of Bayesian inverse problems and
diffusion bridge sampling, the target measure π is given with respect to a Gaussian prior. We
demonstrate the effectiveness of our approach in these applications, taking the prior Gaussian
covariance as S in (27).

Remark 3 In [34, Rem. 3] another modification of (4) was suggested (albeit with the simpli-
fications Γ = γ · I and M = I ):

dqt = (1 − J )M−1 ptdt, dpt = −(1 + J )∇V (qt )dt − Γ M−1 ptdt + √
2Γ dWt , (28)

J again denoting an antisymmetric matrix. However, under the change of variables p �→
(1 + J ) p̃ the above equations transform into

dqt = M̃−1 ptdt, d p̃t = −∇V (qt )dt − Γ̃ M̃−1 p̃tdt +
√
2Γ̃ dW̃t , (29)

where M̃ = (1+ J )−1M(1− J )−1 and Γ̃ = (1+ J )−1Γ (1− J )−1. Since any observable f
depends only on q (the p-variables are merely auxiliary), the estimator πT ( f ) as well as its
associated convergence characteristics (i.e. asymptotic variance and speed of convergence
to equilibrium) are invariant under this transformation. Therefore, (28) reduces to the under-
damped Langevin dynamics (4) and does not represent an independent approach to sampling.
Suitable choices of M and Γ will be discussed in Sect. 4.5.
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3.1 Properties of Perturbed Underdamped Langevin Dynamics

In this section we study some of the properties of the perturbed underdamped dynamics (8).
First, note that its generator is given by

L = M−1 p · ∇q − ∇qV · ∇p︸ ︷︷ ︸
Lham

−Γ M−1 p · ∇p + Γ : D2
p︸ ︷︷ ︸

Ltherm︸ ︷︷ ︸
L0

−μJ1∇V · ∇q − ν JM−1 p · ∇p︸ ︷︷ ︸
Lpert

,

(30)
decomposed into the perturbationLpert and the unperturbed operatorL0,which can be further
split into the Hamiltonian part Lham and the thermostat (Ornstein–Uhlenbeck) part Ltherm ,
see [35,36,46].

Lemma 3 The infinitesimal generator L (30) is hypoelliptic.

Proof The proof consists of verifying the conditions of Hörmander’s Theorem for the gen-
erator (30) and can be found in [41]. ��

An immediate corollary of this result and of Theorem 1 is that the perturbed underdamped
Langevin process (8) is ergodic with unique invariant distribution π̂ given by (5).

As explained in Sect. 2.3, the exponential decay estimate (21) is crucial for our approach,
as in particular it guarantees the well-posedness of the Poisson equation (22). From now
on, we will therefore make the following assumption on the potential V, required to prove
exponential decay in L2(π):

Assumption 1 Assume that theHessian ofV isbounded and that the targetmeasureπ(dq) =
1
Z e

−V dq satisfies a Poincare inequality, i.e. there exists a constant ρ > 0 such that
∫
Rd

φ2dπ ≤ ρ

∫
Rd

|∇φ|2dπ, φ ∈ L2
0(π) ∩ H1(π). (31)

Sufficient conditions on the potential so that Poincaré’s inequality holds, e.g. the Bakry-
Emery criterion, are presented in [7].

Theorem 2 Under Assumption 1 there exist constants C ≥ 1 and λ > 0 such that the
semigroup (Pt )t≥0 generated by L satisfies exponential decay in L2(π) as in (21).

Proof The proof uses the machinery of hypocoercivity developed in [54] and can be found
in [41]. Using the framework of [15], we conjecture that the assumption on the boundedness
of the Hessian of V can be substantially weakened and more quantitative decay estimates
(in particular with respect to μ and ν) can be obtained. This approach has recently been
successfully applied to equilibrium and nonequilibirum Langevin dynamics, see [27,53]. We
leave this work track for future study. ��
3.2 The Overdamped Limit

In this section we develop a connection between the perturbed underdamped Langevin
dynamics (8) and the nonreversible overdamped Langevin dynamics (7). The analysis is
very similar to the one presented in [35, Sect. 2.2.2] and we will be brief. For convenience in
this section we will perform the analysis on the d-dimensional torus Td ∼= (R/Z)d , i.e. we
will assume q ∈ T

d . Consider the following scaling of (8):
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dqε
t = 1

ε
M−1 pε

t , dt − μJ1∇qV (qt )dt, (32a)

dpε
t = −1

ε
∇qV (qε

t )dt − 1

ε2
ν J2M

−1 pε
t dt − 1

ε2
Γ M−1 pε

t dt + 1

ε

√
2Γ dWt , (32b)

valid for the small mass/small momentum regime M → ε2M, pt → εpt . Equivalently,
those modifications can be obtained from subsituting Γ → ε−1Γ and t �→ ε−1t , and so in
the limit as ε → 0 the dynamics (32) describes the limit of large friction with rescaled time.
It turns out that as ε → 0, the dynamics (32) converges to the limiting SDE

dqt = −(ν J2 + Γ )−1∇qV (qt )dt − μJ1∇qV (qt )dt + (ν J2 + Γ )−1
√
2Γ dWt . (33)

The following proposition makes this statement precise.

Proposition 1 Denote by (qε
t , p

ε
t ) the solution to (32) with (deterministic) initial conditions

(qε
0 , p

ε
0) = (qinit , pinit ) and by q0t the solution to (33) with initial condition q00 = qinit .

For any T > 0, (qε
t )0≤t≤T converges to (q0t )0≤t≤T in L2(�,C([0, T ]),Td) as ε → 0, i.e.

limε→0 E
(
sup0≤t≤T |qε

t − q0t |2
) = 0.

Proof The proof follows standard arguments (see for instance [46]) and can be found in [41].
By a more refined analysis, it is also possible to get information on the rate of convergence;
see, e.g. [48,49]. ��
Remark 4 The overdamped limit (33) respects the invariant distribution, in the sense that it
is ergodic with respect to π(dq) = 1

Z e
−V dq .

The limiting SDE (33) is nonreversible due to the term−μJ1∇qV (qt )dt and also because
the matrix (ν J2 + Γ )−1 is in general neither symmetric nor antisymmetric. This result,
together with the fact that nonreversible perturbations of overdamped Langevin dynamics
of the form (7) are by now well-known to have improved performance properties, motivates
further investigation of the dynamics (8).

4 Sampling from a Gaussian Distribution

In this section we study in detail the performance of the Langevin sampler (8) for Gaussian
target densities, first considering the case of unit covariance. In particular, we study the
optimal choice for the parameters in the sampler, the exponential decay rate and the asymptotic
variance. We then extend our results to Gaussian target densities with arbitrary covariance
matrices.

4.1 Unit Covariance: Small Perturbations

In our study of the dynamics given by (8) we first consider the simple case when V (q) =
1
2 |q|2, i.e. the task of sampling from a Gaussian measure with unit covariance. We will
assume M = I , Γ = γ I and J1 = J2 =: J (so that the q− and p−dynamics are perturbed
in the same way, albeit posssibly with different strengths μ and ν). Our first result concerns
the asymptotic variance for linear and quadratic observables for small perturbations of equal
strength (μ = ν). For sufficiently strong damping (γ >

√
2) always leads to an improvement

in asymptotic variance under the nondegeneracy conditions [J, K ] = 0 and l /∈ ker J :
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Theorem 3 Consider the dynamics

dqt = ptdt − μJqtdt,

dpt = −qtdt − μJ ptdt − γ ptdt +√2γ dWt , (34)

with γ >
√
2 and an observable of the form f (q) = q · Kq + l · q + C, where K ∈ R

d×d
sym ,

l ∈ R
d and C ∈ R. If at least one of the conditions [J, K ] = 0 and l /∈ ker J is satisfied, then

the asymptotic variance of the unperturbed sampler is at a local maximum independently of
K and J (and γ , as long as γ >

√
2), i.e.

∂μσ 2
f

∣∣∣
μ=0

= 0 and ∂2μσ 2
f

∣∣∣
μ=0

< 0.

Proof The dynamics (34) are of Ornstein–Uhlenbeck type, i.e. we can write

dXt = −BXtdt +√2QdW̄t , B =
(

μJ −I
I γ I + μJ

)
, Q =

(
0 0
0 γ I

)
(35)

with X = (q, p)T , and (W̄t )t≥0 denoting a standard Wiener process on R
2d . The generator

of (35) is then given by
L = −Bx · ∇ + ∇T Q∇. (36)

According to Lemma 2, the asymptotic variance can be expressed as

σ 2
f = 〈χ, f 〉L2(π̂), where χ is the solution to − Lχ = f, π̂(χ) = 0. (37)

By calculations similar to those in [14, Sect. 4], χ is given by χ(x) = x ·Cx + D · x −TrC ,
where

BC + CBT = K̄ , BT D = l̄, (38)

using the notations

K̄ =
(
K 0
0 0

)
∈ R

2d×2d and l̄ =
(
l
0

)
∈ R

2d . (39)

The asymptotic variance is then given by

σ 2
f = 2 Tr(CK̄ ) + D · l̄. (40)

Taking derivatives of 38 and solving the ensuing matrix equations, it is possible to obtain
explicit expressions for ∂μC |μ=0, ∂2μC |μ=0, ∂μD|μ=0 and ∂2μC |μ=0 as detailed in [41]. We
obtain

∂μσ 2
f

∣∣∣
μ=0

= 0 and ∂2μσ 2
f

∣∣∣
μ=0

= (−2γ 3 + 4γ )|Jl|2

+
(

γ − 4

γ 3 − γ 3 − 1

γ

)
· (Tr(J K J K ) − Tr(J 2K 2)

)
.

Notice that Tr(J K J K )−Tr(J 2K 2) = 1
2 Tr([J, K ]2) and that [J, K ] is symmetric. It follows

that Tr(J K J K ) − Tr(J 2K 2) ≥ 0 with equality if and only if [J, K ] = 0. Together with
−2γ 3 + 4γ < 0 for γ >

√
2 and γ − 4

γ 3 − γ 3 − 1
γ

< 0 for γ > 0, the claim follows. ��

Remark 5 Aswewill see in Sect. 4.3, Example 1, if [J, K ] = 0 and l ∈ ker J , the asymptotic
variance is constant as a function of μ, i.e. the perturbation has no effect.
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Numerical examples show that the conditions γ >
√
2 and μ = ν are indeed necessary for

the conclusions of Theorem3 to hold (an explanation in terms of the spectrumof the generator
will be provided in Sect. 4.2). In particular, an unfortunate choice of the perturbations will
actually increase the asymptotic variance of the dynamics.

Let us illustrate this by plotting the asymptotic variance as a function of the perturbation
strength μ (see Fig. 1), making the choices d = 2, l = (1, 1)T ,

K =
(
2 0
0 1

)
and J =

(
0 1

−1 0

)
. (41)

The asymptotic variance has been computed according to (38) and (40). Going beyond the
results of this section, the graphs give an impression of the behaviour of the asymptotic
variace for large values of μ, discussed further in Sect. 4.3.

Figure 1a, b, c show the asymptotic variance associated with the quadratic observable
f (q) = q ·Kq . In accordancewith Theorem 3, the asymptotic variance is at a local maximum
at zero perturbation in the case μ = ν (see Fig. 1a). For increasing perturbation strength,
the graph shows monotone decay for μ → ∞ (this limiting behaviour will be explored
analytically in Sect. 4.3). If the condition μ = ν is only approximately satisfied (Fig. 1b),
our numerical examples still exhibits decaying asymptotic variance in the neighbourhood
of the critical point. In this case, however, the asymptotic variance diverges for growing
values of the perturbation μ. If the perturbations are opposed (μ = −ν), it is possible for
certain observables that the unperturbed dynamics represents a global minimum. Such a
case is observed in Fig. 1c. In Fig. 1d, e the observable f (q) = l · q is considered. If the
damping is sufficiently strong (γ >

√
2), the unperturbed dynamics is at a local maximum

of the asymptotic variance (Fig. 1d). Furthermore, the asymptotic variance approaches zero
as μ → ∞ (for a theoretical explanation see again Sect. 4.3). The graph in Fig. 1e shows
that the assumption of γ not being too small cannot be dropped from Theorem 3. Even in
this case though the example shows decay of the asymptotic variance for large values of μ.

4.2 Exponential Decay Rate

Let us denote by λ∗ the optimal exponential decay rate in (21), i.e.

λ∗ = sup{λ > 0 |There exists C ≥ 1 such that (21) holds}. (42)

Note that λ∗ is well-defined and positive by Theorem 2. We also define the spectral bound
of the generator L by

s(L) = inf(Re σ(−L) \ {0}). (43)

In [38] it is proven that the Ornstein–Uhlenbeck semigroup (Pt )t≥0 considered in this section
is differentiable (see Proposition 2.1). In this case (see Corollary 3.12 of [17]), it is known
that the exponential decay rate and the spectral bound coincide, i.e. λ∗ = s(L), whereas in
general only λ∗ ≤ s(L) holds. In this section we will therefore analyse the spectral properties
of the generator L in the Gaussian case. In particular, this leads to some intuition of why
choosing equal perturbations (μ = ν) is crucial for the performance of the sampler.

In [38] (see also [43]), it was proven that the spectrum of L as in (36) in L2(π̂) is given
by

σ(L) =
⎧⎨
⎩−

r∑
j=1

n jλ j : n j ∈ N, λ j ∈ σ(B)

⎫⎬
⎭ . (44)
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Fig. 1 Asymptotic variance for linear and quadratic observables, depending on relative perturbation and
friction strengths. a Equal perturbations: μ = ν. b Approximately equal perturbations: μ = 0.9ν. c Opposing
perturbations: μ = −ν. d Equal perturbations: μ = ν (sufficiently large friction γ ). e Equal perturbations:
μ = ν (small friction γ )
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Note that σ(L) only depends on the drift matrix B. In the case where μ = ν, the spectrum
of B can be computed explicitly.

Lemma 4 Assume μ = ν. Then the spectrum of B is given by2

σ(B) =
{
μλ +

√(γ
2

)2 − 1 + γ

2
|λ ∈ σ(J )

}
∪
{
μλ −

√(γ
2

)2 − 1 + γ

2
|λ ∈ σ(J )

}
. (45)

Proof We will compute σ
(
B − γ

2 I
)
and then use the identity σ(B) = {

λ + γ
2 |λ ∈ σ(

B − γ
2 I
)}

. We have

det
(
B − γ

2
I − λI

)
= det

((
μJ − γ

2
I − λI

) (
μJ + γ

2
I − λI

)
+ I
)

= det

(
μJ − λI+

√(γ

2

)2 − 1I

)
· det

(
μJ − λI−

√(γ

2

)2 − 1I

)
,

where I is understood to denote the identity matrix of appropriate dimension. The above
quantity is zero if and only if

λ −
√(γ

2

)2 − 1 ∈ σ(μJ ) or λ +
√(γ

2

)2 − 1 ∈ σ(μJ ).

Together with (4.2), the claim follows. ��
Using formula (45), in Fig. 2a we show a sketch of the spectrum σ(−L) for the case of
equal perturbations (μ = ν) with the convenient choices n = 1 and γ = 2. Of course, the
eigenvalue at 0 is associated to the invariant measure since L†π̂ = 0. The arrows indicate the
movement of the eigenvalues as the perturbation μ increases in accordance with Lemma 4.
Clearly, the spectral bound of L is not affected by the perturbation. Note that the eigenvalues
on the real axis stay invariant under the perturbation. The subspace of L2

0(π̂) associated to
those will turn out to be crucial for the characterisation of the limiting asymptotic variance
as μ → ∞ (see Remark 10).

To illustrate the suboptimal properties of the perturbed dynamics when the perturbations
are not equal, we plot the spectrum of the drift matrix σ(B) in the case when the dynamics
is only perturbed by the term ν J2 pdt (i.e. μ = 0) for n = 2, γ = 2 and

J2 =
(
0 −1
1 0

)
, (46)

(see Fig. 2b). Note that the full spectrum σ(−L) can be inferred from (44). For ν = 0 we
have that the spectrum σ(B) only consists of the (degenerate) eigenvalue 1. For increasing
ν, the figure shows that the degenerate eigenvalue splits up into four eigenvalues, two of
which get closer to the imaginary axis as ν increases, leading to a smaller spectral bound
and therefore to a decrease in the speed of convergence to equilibrium. Figure 2a, b give an
intuitive explanation of why the fine-tuning of the perturbation strengths is crucial.

We close this subsection by providing autocorrelation plots (see Fig. 3) for the linear
observable considered in Fig. 1d (with a friction coefficient of γ = 2.5). It is well-known
that the asymptotic variance is given by the integrated autocorrelation function (see e.g.
Proposition IV 1.3 in [3]),

σ 2
f =

∫ ∞

0
Eπ [( f (q0) − π( f )) ( f (qt ) − π( f ))] dt. (47)

2 Notice that
√( γ

2
)2 − 1 is understood to be a complex number for γ < 2.
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Fig. 3 Autocorrelation plots for the perturbed and unperturbed dynamics. aUnperturbed Langevin dynamics.
b Perturbed Langevin dynamics

Comparing Fig. 3a, b yields additional insight into the mechanics of the variance reduction:
the increase of the imaginary part of the eigenvalues of L (as indicated in Fig. 2a) leads to
oscillations in the autocorrelation function and therefore to cancellations in (47). A similar
effect has already been observed in [50] for the nonreversible overdampedLangevin dynamics
(15).

4.3 Unit Covariance: Large Perturbations

In the previous subsection we observed that for the particular perturbation J1 = J2 and
μ = ν [see equation (34)] the perturbed Langevin dynamics demonstrated an improvement
in performance for μ in a neighbourhood of 0, when the observable is linear or quadratic.
Recall that this dynamics is ergodicwith respect to a standardGaussianmeasure π̂ onR2d with
marginal π with respect to the q-variable. As before, we shall consider only observables that

123



Using Perturbed Underdamped Langevin Dynamics… 1115

do not depend on p. Moreover, we assume without loss of generality that π( f ) = 0. For such
observableswewillwrite f ∈ L2

0(π) and consider the canonical embedding L2
0(π) ⊂ L2(π̂).

We emphasize that L2
0(π) consists of functions that only depend on q , whereas functions in

L2(π̂) may depend on both q and p.
In this subsection will analyse the asymptotic variance for large values ofμ. The infinites-

imal generator of (34) can be written as

L = p · ∇q − q · ∇p + γ (−p · ∇p + Δp)︸ ︷︷ ︸
L0

+μ (−Jq · ∇q − J p · ∇p)︸ ︷︷ ︸
A

=: L0 + μA, (48)

where we have introduced the notation Lpert = μA. In the sequel, the adjoint of an operator
B in L2(π̂) will be denoted by B∗. In the rest of this section we will make repeated use of
the Hermite polynomials

gα(x) = (−1)|α|e
|x |2
2 ∇αe− |x |2

2 , α ∈ N
2d , (49)

invoking the notation x = (q, p) ∈ R
2d . For m ∈ N0 define the Hilbert spaces

Hm = span{gα : |α| = m}, 〈 f, g〉m := 〈 f, g〉L2(π̂), f, g ∈ Hm .

The following result (Theorem4) holds for operators of the form (36) providing an orthogonal
decomposition of L2(π̂) into invariant subspaces. The drift and diffusion matrices B and Q
are assumed to be such that L is the generator of an ergodic stochastic process (see [2,
Definition 2.1] for precise conditions).

Theorem 4 [2, Sect. 5]. The following holds:

(a) The space L2(π̂) has a decomposition into mutually orthogonal subspaces:

L2(π̂) =
⊕
m∈N0

Hm .

(b) For all m ∈ N0, Hm is invariant under L as well as under the semigroup (etL)t≥0.
(c) The spectrum of L has the following decomposition:

σ(L) =
⋃
m∈N0

σ(L|Hm ), σ (L|Hm ) =
⎧⎨
⎩

2d∑
j=1

α jλ j : |α| = m, λ j ∈ σ(B)

⎫⎬
⎭ .

Remark 6 Note that by the ergodicity of the dynamics, kerL consists of constant functions
and so kerL = H0. Therefore, L2

0(π̂) has the decomposition

L2
0(π̂) = L2(π̂)/ kerL =

⊕
m≥1

Hm .

Our first main result of this section is an expression for the asymptotic variance in terms of
the unperturbed operator L0 and the perturbation A:

Proposition 2 Let f ∈ L2
0(π) (so in particular f = f (q)). Then the associated asymptotic

variance is given by
σ 2
f = 〈 f,−L0(L2

0 + μ2A∗A)−1 f 〉L2(π̂). (50)

Remark 7 The proof of the preceding Proposition will show that L2
0 + μ2A∗A is invertible

on L2
0(π̂) and that (L2

0 + μ2A∗A)−1 f ∈ D(L0) for all f ∈ L2
0(π̂).
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To prove Proposition 2 we will make use of the generator with reversed perturbation

L− = L0 − μA

and the momentum flip operator

P : L2
0(π̂) → L2

0(π̂), φ(q, p) �→ φ(q,−p). (51)

Clearly, P2 = I and P∗ = P . Further properties of L0, A and the auxiliary operators L−
and P are gathered in the following lemma:

Lemma 5 For all φ,ψ ∈ C∞(R2d) ∩ L2(π̂) the following holds:

(a) The generator L0 is symmetric in L2(π̂) with respect to P:

〈φ, PL0Pψ〉L2(π̂) = 〈L0φ,ψ〉L2(π̂).

(b) The perturbation A is skewadjoint in L2(π̂):

A∗ = −A.

(c) The operators L0 and A commute:

[L0,A]φ = 0.

(d) The perturbation A satisfies

PAPφ = Aφ.

(e) L and L− commute,
[L,L−]φ = 0,

and the following relation holds:

〈φ, PLPψ〉L2(π̂) = 〈L−φ,ψ〉L2(π̂). (52)

(f) The operators L, L0, L−, A and P leave the Hermite spaces Hm invariant.

Remark 8 The claim (c) in the above lemma is crucial for our approach, which itself rests
heavily on the fact that the q− and p−perturbations match (J1 = J2).

Proof of Lemma 5 The statement (a) is well-known and its proof can be found in [35, Sect.
2.2.3.1] for instance. The claim (b) follows by noting that the flow vector field b(q, p) =
(−Jq,−J p) associated toA is divergence-freewith respect to π̂ , i.e.∇·(π̂b) = 0. Therefore,
A is the generator of a strongly continuousunitary semigroupon L2(π̂) andhence skewadjoint
by Stone’s Theorem. The claims (c), (d) and (e) follow by direct computations which can be
found in [41]. To prove (f) first notice that L, L0 and L− are of the form (36) and therefore
leave the spaces Hm invariant by Theorem 4. It follows immediately that alsoA leaves those
spaces invariant. The fact that P leaves the spaces Hm invariant follows directly by inspection
of (49) and (51). ��

Now we proceed with the proof of Proposition 2:
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Proof of Proposition 2 Since the potential V is quadratic, Assumption 1 clearly holds and
thus Lemma 2 ensures that L and L− are invertible on L2

0(π̂) with

(−L)−1 =
∫ ∞

0
etLdt, (53)

and analogously for L−1− . In particular, the asymptotic variance can be written as σ 2
f =

〈 f, (−L)−1 f 〉L2(π̂). Due to the respresentation (53) and Theorem 4, the inverses of L and
L− leave the Hermite spaces Hm invariant. We will prove the claim from Proposition 2
under the assumption that P f = f which includes the case f = f (q). For the following
calculations we will assume f ∈ Hm for fixed m ≥ 1. Combining statement (f) with (a) and
(e) of Lemma 5 (and noting that Hm ⊂ C∞(R2d) ∩ L2(π̂)) we see that

PLP = L∗− and PL0P = L∗
0 (54)

when restricted to Hm . Therefore, the following calculations are justified:

〈 f, (−L)−1 f 〉L2(π̂) = 1

2
〈 f, (−L)−1 f 〉L2(π̂) + 〈 f, (−L∗)−1 f 〉L2(π̂)

= 1

2
〈 f, (−L)−1 f 〉L2(π̂) + 〈P f, (−L∗)−1P f 〉L2(π̂)

= 1

2
〈 f, (−L)−1 f 〉L2(π̂) + 〈 f, (−L−)−1 f 〉L2(π̂)

= 1

2
〈 f, ((−L)−1 + (−L−)−1) f 〉L2(π̂),

where in the second line we have used the assumption P f = f and in the third line the
properties P2 = I , P∗ = P and Eq. (54). Since L and L− commute on Hm according to
Lemma 5(e),(f) we can write

(−L)−1 + (−L−)−1 = L−(−LL−)−1 + L(−LL−)−1 = −2L0(LL−)−1

for the restrictions on Hm , usingL+L− = 2L0.We also haveLL− = (L0+μA)(L0−μA) =
L2
0 + μ2A∗A, since L0 and A commute. We thus arrive at the formula

σ 2
f = 〈 f,−L0(L2

0 + μ2A∗A)−1 f 〉L2(π̂), f ∈ Hm . (55)

Now since (L2
0 + μ2A∗A)−1 f = (LL−)−1 f ∈ D(L0) for all f ∈ L2(π̂), it follows that

the operator −L0(L2
0 + μ2A∗A)−1 is bounded. We can therefore extend formula (55) to the

whole of L2(π̂) by continuity, using the fact that L2
0(π̂) =⊕m≥1 Hm . ��

Applying Proposition 2 we can analyse the behaviour of σ 2
f in the limit of large perturbation

strength μ → ∞. To this end, we introduce the orthogonal decomposition

L2
0(π) = ker(Jq · ∇q) ⊕ ker(Jq · ∇q)

⊥, (56)

where Jq ·∇q is understood as an unbounded operator acting on L2
0(π), obtained as the small-

est closed extension of Jq · ∇q acting on C∞
c (Rd). In particular, ker(Jq · ∇q) is a closed

linear subspace of L2
0(π). Let Π denote the L2

0(π)-orthogonal projection onto ker(Jq · ∇q).
We will write σ 2

f (μ) to stress the dependence of the asymptotic variance on the perturbation
strength. The following result shows that for large perturbations, the limiting asymptotic vari-
ance is always smaller than the asymptotic variance in the unperturbed case. Furthermore, the
limit is given as the asymptotic variance of the projected observable Π f for the unperturbed
dynamics.
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Theorem 5 Let f ∈ L2
0(π) (so in particular f = f (q)). Then limμ→∞ σ 2

f (μ) = σ 2
Π f (0) ≤

σ 2
f (0).

Remark 9 Note that the fact that the limit exists and is finite is nontrivial. In particular, as
Fig. 1b, c demonstrate, it is often the case that limμ→∞ σ 2

f (μ) = ∞ if the condition μ = ν

is not satisfied.

Remark 10 The decomposition (56) can be interpreted in terms of the spectrum σ(L) as
follows: First observe that for functions f that only depend on q , f ∈ ker(Jq · ∇q) is
equivalent to f ∈ kerA. Let us denote by σ̄ =⋂μ∈R σ(L0 + μA) the part of σ(L0) that is
not affected by the perturbation and by

Ē = span{ f ∈ L2(π̂) : there exists λ ∈ σ̄ such that L0 f = λ f } ⊂ L2(π̂)

the corresponding subspace. Then it is straightforward to see that ker(A) = Ē .3 In Fig. 2a,
σ̄ has been highlighted by diamonds.

Proof of Theorem 5 Note that L0 and A∗A leave the Hermite spaces Hm invariant and their
restrictions to those spaces commute (see Lemma 5, (b), (c) and (f)). Furthermore, as the
Hermite spaces Hm are finite-dimensional, those operators have discrete spectrum. As A∗A
is nonnegative self-adjoint, there exists an orthogonal decomposition L2

0(π) = ⊕
i Wi into

eigenspaces of the operator −L0(L2
0 + μ2A∗A)−1, the decomposition

⊕
Wi being finer

then
⊕

Hm in the sense that every Wi is a subspace of some Hm . Moreover, −L0(L2
0 +

μ2A∗A)−1|Wi = −L0(L2
0 +μ2λi )

−1|Wi , where λi ≥ 0 is the eigenvalue ofA∗A associated
to the subspace Wi . Consequently, formula (50) can be written as

σ 2
f =

∑
i

〈 fi ,−L0(L2
0 + μ2λi )

−1 fi 〉L2(π̂), (57)

where f = ∑
i fi and fi ∈ Wi . Let us assume now without loss of generality that W0 =

kerA∗A, so in particular λ0 = 0. Then clearly

lim
μ→∞ σ 2

f = 2〈 f0,−L0(L2
0)

−1 f0〉L2(π̂) = 2〈 f0, (−L0)
−1 f0〉L2(π̂) = σ 2

f0(0).

Now notice that W0 = kerA∗A = kerA, showing the equality in the claim. It remains to
show that σ 2

Π f (0) ≤ σ 2
f (0). To see this, we write

σ 2
f (0) = 2

〈
f, (−L0)

−1 f 〉L2(π̂) = 2〈Π f + (1 − Π) f, (−L0)
−1(Π f + (1 − Π) f

)〉
L2(π̂)

= σ 2
Π f (0) + σ 2

(1−Π) f (0) + R,

where

R = 2〈Π f, (−L0)
−1(1 − Π) f 〉L2(π̂) + 2〈(1 − Π) f, (−L0)

−1Π f 〉L2(π̂).

Note that since we only consider observables that do not depend on p, Π f ∈ ker(Jq · ∇q)

and (1− Π) f ∈⊕i≥1 Wi . Since L0 commutes withA, it follows that (−L0)
−1 leaves both

W0 and
⊕

i≥1 Wi invariant. Therefore, as the latter spaces are orthogonal to each other, it
follows that R = 0, from which the result follows. ��
3 Indeed, the fact that f ∈ kerA is equivalent to f ∈ Ē is easy to check if f is an eigenvector of L0 (recall
that f is then an eigenvector of L0 + μA as well, using Lemma 5(c) The claim then follows by extending
linearly.
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From Theorem 5 it follows that in the limit as μ → ∞, the asymptotic variance σ 2
f (μ)

is not decreased by the perturbation if f ∈ ker(Jq · ∇q). In fact, this result also holds true
non-asymptotically, i.e. observables in ker(Jq ·∇q) are not affected at all by the perturbation:

Lemma 6 Let f ∈ ker(Jq · ∇q). Then σ 2
f (μ) = σ 2

f (0) for all μ ∈ R.

Proof From f ∈ ker(Jq · ∇q) it follows immediately that f ∈ kerA∗A. Then the claim
follows from the expression (57). ��
Example 1 Recall the case of observables of the form f (q) = q · Kq + l · q + C with K ∈
R
d×d
sym , l ∈ R

d and C ∈ R from Sect. 4.1. If [J, K ] = 0 and l ∈ ker J , then f ∈ ker(Jq · ∇q)

as

Jq · ∇q(q · Kq + l · q + C) = 2Jq · Kq + Jq · l = q · (K J − J K )q − q · Jl = 0.

From the preceding lemma it follows that σ 2
f (μ) = σ 2

f (0) for all μ ∈ R, showing that the
assumption in Theorem 3 does not exclude nontrivial cases.

The following result shows that the dynamics (34) is particularly effective for antisymmetric
observables (at least in the limit of large perturbations):

Proposition 3 Let f ∈ L2
0(π) satisfy f (−q) = − f (q) and assume that ker J = {0}.

Furthermore, assume that the eigenvalues of J are rationally independent, i.e.

σ(J ) = {±iλ1,±iλ2, . . . ,±iλd} (58)

with λi ∈ R>0 and
∑

i kiλi = 0 for all (k1, . . . , kd) ∈ Z
d \ (0, . . . , 0). Then

limμ→∞ σ 2
f (μ) = 0.

Proof of Proposition 3 The claimwould immediately follow from f ∈ ker(Jq ·∇)⊥ accord-
ing to Theorem 5, but that does not seem to be so easy to prove directly. Instead, we again
make use of the Hermite polynomials.

Recall from the proof of Proposition 2 that L is invertible on L2
0(π̂) and its inverse leaves

the Hermite spaces Hm invariant. Consequently, the asymptotic variance of an observable
f ∈ L2

0(π̂) can be written as

σ 2
f = 〈 f, (−L)−1 f 〉L2(π̂) =

∞∑
m=1

〈Πm f, (−L|Hm )−1Πm f 〉L2(π̂), (59)

where Πm : L2
0(π̂) → Hm denotes the orthogonal projection onto Hm . From (49) it is

clear that ga is symmetric for |α| even and antisymmetric for |α| odd. Therefore, from f
being antisymmetric it follows that f ∈ ⊕m≥1,m odd Hm . In view of (45), ((c)) and (58) the
spectrum of L|Hm can be written as

σ(L|Hm ) =
⎧⎨
⎩μ

2d∑
j=1

α jβ j + Cα,γ : |α| = m, β j ∈ σ(J )

⎫⎬
⎭

=
⎧⎨
⎩iμ

d∑
j=1

(α j − α j+d)λ j + Cα,γ : |α| = m

⎫⎬
⎭ (60)
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with appropriate real constants Cα,γ ∈ R that depend on α and γ , but not on μ. For |α| =∑2d
j=1 α j = m odd, we have that

d∑
j=1

(α j − α j+d)λ j = 0. (61)

Indeed, assume to the contrary that the above expression is zero. Then it would follow that
α j = α j+d for all j = 1, . . . , d by rational independence of λ1, . . . , λd and |m| would have
to be even. From (60) and (61) it is clear that

sup
{
r > 0 : B(0, r) ∩ σ(L|Hm ) = ∅} μ→∞−−−→ ∞,

where B(0, r) denotes the ball of radius r centered at the origin in C. Consequently, the
spectral radius of (−L|Hm )−1 and hence (−L|Hm )−1 itself converges to zero as μ → ∞.
The result then follows from (59). ��
Remark 11 The idea of the preceding proof can be explained using Fig. 2a and Remark 10.
The eigenvalues in the fixed spectrum Ē (on the real axis, highlighted by diamonds) corre-
spond to Hermite polynomials of even order. The independence condition on the eigenvalues
of J prevents cancellations that would lead to fixed eigenvalues associated to Hermite poly-
nomials of odd order. Therefore, antisymmetric observables are orthogonal to Ē = kerA.

The following corollary gives a version of the converse of Proposition 3 and provides further
intuition into the mechanics of the variance reduction achieved by the perturbation.

Corollary 1 Let f ∈ L2
0(π) and assume that limμ→∞σ 2

f (μ) = 0. Then
∫
B(0,r)

f dq = 0

for all r ∈ (0,∞), where B(0, r) denotes the ball centered at 0 with radius r .

Proof According to Theorem 5, limμ→∞ σ 2
f (μ) = 0 implies σ 2

Π f (0) = 0. We can write

σ 2
Π f (0) = 〈Π f, (−L0)

−1Π f 〉L2(π̂) = 1

2
〈Π f,

(
(−L0)

−1 + (−L∗
0)

−1)Π f 〉L2(π̂) (62)

and recall from the proof of Proposition 2 that (−L0)
−1 and (−L∗

0)
−1 leave the Hermite

spaces Hm invariant. Therefore ker
(
(−L0)

−1 + (−L∗
0)

−1
) = 0 in L2

0(π̂), and in particular
σ 2

Π f (0) = 0 impliesΠ f = 0, which in turn shows that f ∈ ker(Jq ·∇)⊥. From (Jq ·∇)∗ =
−Jq · ∇, it follows that

ker(Jq · ∇)⊥ = im(Jq · ∇)∗ = im(Jq · ∇). (63)

Hence, there exists a sequence (φn)n ∈ C∞
c (Rd) such that Jq · ∇φn → f in L2(π). Taking

a subsequence if necessary, we can assume that the convergence is pointwise π-almost
everywhere and that the sequence is pointwise bounded by a function in L1(π). Since J is
antisymmetric, we have that Jq · ∇φn = ∇ · (φn Jq). Now Gauss’s theorem yields∫

B(0,r)
f dq =

∫
B(0,r)

∇ · (φ Jq)dq =
∫

∂B(0,r)
φ Jq · dn,

where n denotes the outward normal to the sphere ∂B(0, r). This quantity is zero due to the
orthogonality of Jq and n, and so the result follows from Lebesgue’s dominated convergence
theorem. ��
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4.4 Optimal Choices of J for Quadratic Observables

Assume f ∈ L2
0(π) is given by f (q) = q · Kq + l · q − Tr K , with K ∈ R

d×d
sym and l ∈ R

d

(note that the constant term is chosen such that π( f ) = 0). Our objective is to choose J
in such a way that limμ→∞ σ 2

f (μ) becomes as small as possible. To stress the dependence

on the choice of J , we introduce the notation σ 2
f (μ, J ). Also, we denote the orthogonal

projection onto (ker J )⊥ by Π⊥
ker J .

Lemma 7 (Zero variance limit for linear observables). Assume K = 0 and Π⊥
ker J l = 0.

Then
lim

μ→∞ σ 2
f (μ, J ) = 0.

Proof According to Theorem 5, we have to show that Π f = 0, where Π is the L2(π)-
orthogonal projection onto ker(Jq · ∇). Let us thus use (63) and prove that f ∈ im(Jq · ∇).

Indeed, since Π⊥
ker J l = 0, by Fredholm’s alternative there exists u ∈ R

d such that Ju = l.
Now define φ ∈ L2

0(π) by φ(q) = −u · q, leading to f = Jq · ∇φ, so the result follows. ��
Lemma 8 (Zero variance limit for purely quadratic observables.) Let l = 0 and consider the
decomposition K = K0 + K1 into the traceless part K0 = K − Tr K

d · I and the trace-part

K1 = Tr K
d · I. For the corresponding decomposition of the observable

f (q) = f0(q) + f1(q) = q · K0q + q · K1q − Tr K

the following holds:

(a) There exists an antisymmetric matrix J such that limμ→∞ σ 2
f0
(μ, J ) = 0, and there is

an algorithmic way (see Algorithm 1) to compute an appropriate J in terms of K .
(b) The trace-part is not effected by the perturbation, i.e. σ 2

f1
(μ, J ) = σ 2

f1
(0) for all μ ∈ R.

Proof To prove the first claim, according to Theorem 5 it is sufficient to show that f0 ∈
ker(Jq · ∇)⊥ = im(Jq · ∇). Let us consider the function φ(q) = q · Aq , with A ∈ R

d×d
sym .

It holds that Jq · ∇φ = 2q · (J T Aq) = q · [A, J ]q. The task of finding an antisymmetric
matrix J such that limμ→∞ σ 2

f0
(μ, J ) = 0 can therefore be accomplished by constructing an

antisymmetric matrix J such that there exists a symmetric matrix A with the property K0 =
[A, J ]. Given any traceless matrix K0 there exists an orthogonal matrix U ∈ O(Rd) such
that UK0UT has zero entries on the diagonal, and that U can be obtained in an algorithmic
manner (see for example [29] or [22, Chap. 2, Sect. 2, Problem 3]) Assume thus that such
a matrix U ∈ O(Rd) has been found and choose real numbers a1, . . . , ad ∈ R such that
ai = a j if i = j . We now set Ā = diag(a1, . . . , an), and

J̄i j =
{

(UK0UT )i j
ai−a j

if i = j,

0 if i = j.
(64)

Observe that sinceUK0UT is symmetric, J̄ is antisymmetric. A short calculation shows that
[ Ā, J̄ ] = UK0UT . We can thus define A = UT ĀU and J = UT J̄U to obtain [A, J ] = K0.
Therefore, the J constructed in this way indeed satisfies (4.4). For the second claim, note
that f1 ∈ ker(Jq · ∇), since Jq · ∇ (q · Tr K

d q
) = 2Tr K

d q · Jq = 0 due to the antisymmetry
of J . The result then follows from Lemma 6. ��
We would like to stress that the perturbation J constructed in the previous lemma is far from
unique due to the freedom of choice of U and a1, . . . , ad ∈ R in its proof. However, it is
asymptotically optimal:
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Corollary 2 In the setting of Lemma 8 the following holds:

min
J T =−J

(
lim

μ→∞ σ 2
f (μ, J )

)
= σ 2

f1(0).

Proof The claim follows immediately since f1 ∈ ker(Jq · ∇) for arbitrary antisymmetric
J as shown in (4.4), and therefore the contribution of the trace part f1 to the asymptotic
variance cannot be reduced by any choice of J according to Lemma 6. ��

As the proof of Lemma 8 is constructive, we obtain the following algorithm for determining
optimal perturbations for quadratic observables:

Algorithm 1 Given K ∈ R
d×d
sym , determine an optimal antisymmetric perturbation J as

follows:

1. Set K0 = K − Tr K
d · I.

2. Find U ∈ O(Rd) such that UK0UT has zero entries on the diagonal.
3. Choose ai ∈ R, i = 1, . . . d such that ai = a j for i = j and set

J̄i j = (UK0UT )i j

ai − a j

for i = j and J̄ii = 0 otherwise.
4. Set J = UT J̄U.

Remark 12 In [14], the authors consider the task of finding optimal perturbations J for
the nonreversible overdamped Langevin dynamics given in (15). In the Gaussian case this
optimization problem turns out be equivalent to the one considered in this section. Indeed,
equation (39) of [14] can be rephrased as f ∈ ker(Jq · ∇)⊥. Therefore, Algorithm 1 and its
generalization Algorithm 2 (described in Sect. 4.5) can be used without modifications to find
optimal perturbations of overdamped Langevin dynamics.

4.5 Gaussians with Arbitrary Covariance and Preconditioning

In this section we extend the results of the preceding sections to the case when the target
measure π is given by a Gaussian with arbitrary covariance, i.e. V (q) = 1

2q · Sq with
S ∈ R

d×d
sym symmetric and positive definite. The dynamics (8) then takes the form

dqt = M−1 ptdt − μJ1Sqtdt, dpt = −Sqtdt − ν J2M
−1 ptdt − Γ M−1 ptdt + √

2Γ dWt .

(65)

The key observation is now that the choices M = S and Γ = γ S together with the transfor-
mation q̃ = S1/2q and p̃ = S−1/2 p lead to the dynamics

dq̃t = p̃tdt − μS1/2 J1S
1/2q̃tdt,

d p̃t = −q̃tdt − μS−1/2 J2S
−1/2 p̃tdt − γ p̃tdt +√2γ dWt , (66)

which is of the form (34) if J1 and J2 obey the condition SJ1S = J2. Clearly the dynamics
(66) is ergodic with respect to a Gaussian measure with unit covariance, in the following
denoted by π̃ . The connection between the asymptotic variances associated to (65) and (66)
is as follows:
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For an observable f ∈ L2
0(π) we can write

√
T

(
1

T

∫ T

0
f (qs)ds − π( f )

)
= √

T

(
1

T

∫ T

0
f̃ (̃qs)ds − π̃( f̃ )

)
,

where f̃ (q) = f (S−1/2q). Therefore, the asymptotic variances satisfy σ 2
f = σ̃ 2

f̃
, where σ̃ 2

f̃
denotes the asymptotic variance of the process (̃qt )t≥0. Because of this, the results from the
previous sections generalise to (65), subject to the condition that the choicesM = S,Γ = γ S
and SJ1S = J2 are made. We formulate our results in this general setting as corollaries:

Corollary 3 Consider the dynamics

dqt = M−1 ptdt − μJ1∇V (qt )dt,

dpt = −∇V (qt )dt − μJ2M
−1 ptdt − Γ M−1 ptdt + √

2Γ dWt , (67)

with V (q) = 1
2q · Sq. Assume that M = S, Γ = γ S with γ >

√
2 and SJ1S = J2. Let

f ∈ L2(π) be an observable of the form

f (q) = q · Kq + l · q + C (68)

with K ∈ R
d×d
sym , l ∈ R

d and C ∈ R. If at least one of the conditions K J1S = SJ1K and
l /∈ ker J is satisfied, then the asymptotic variance is at a local maximum for the unperturbed
sampler, i.e.

∂μσ 2
f

∣∣∣
μ=0

= 0 and ∂2μσ 2
f

∣∣∣
μ=0

< 0.

Proof Note that

f̃ (q) = f (S−1/2q) = q · S−1/2K S−1/2q + S−1/2l · q + C = q · K̃ q + l̃ · q + C

is again of the form (68) (where in the last equality, K̃ = S−1/2K S−1/2 and l̃ = S−1/2l
have been defined). From (66), (4.5) and Theorem 3 the claim follows if at least one of
the conditions [K̃ , S1/2 J1S1/2] = 0 and l̃ /∈ ker(S1/2 J1S1/2) is satisfied. The first of those
can easily seen to be equivalent to S−1/2(K J S − SJ K )S−1/2 = 0, which is equivalent to
K J1S = SJ1K since S is nondegenerate. The second condition is equivalent to S1/2 J1l = 0,
which is equivalent to J1l = 0, again by nondegeneracy of S. ��
Corollary 4 Assume the setting from the previous corollary and denote byΠ the orthogonal
projection onto ker(J1Sq · ∇). For f ∈ L2(π) it holds that limμ→∞ σ 2

f (μ) = σ 2
Π f (0) ≤

σ 2
f (0).

Proof Theorem 5 implies limμ→∞ σ̃ 2
f̃
(μ) = σ̃ 2

Π̃ f̃
(0) ≤ σ̃ 2

f̃
(0) for the transformed system

(66). Here f̃ (q) = f (S−1/2q) is the transformed observable and Π̃ denotes L2(π)-
orthogonal projection onto ker(S1/2 J1S1/2q · ∇). According to (4.5), it is sufficient to show
that (Π f ) ◦ S−1/2 = Π̃ f̃ . This however follows directly from the fact that the linear trans-
formation φ �→ φ ◦ S1/2 maps ker(S1/2 J1S1/2q · ∇) bijectively onto ker(J1Sq · ∇). ��
Let us also reformulate Algorithm 1 for the case of a Gaussian with arbitrary covariance.

Algorithm 2 Given K , S ∈ R
d×d
sym with f (q) = q · Kq and V (q) = 1

2q · Sq (assuming S is
nondegenerate), determine optimal perturbations J1 and J2 as follows:

1. Set K̃ = S−1/2K S−1/2 and K̃0 = K̃ − Tr K̃
d · I .
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2. Find U ∈ O(Rd) such that U K̃0UT has zero entries on the diagonal.
3. Choose ai ∈ R, i = 1, . . . , d such that ai = a j for i = j and set

J̄i j = (U K̃0UT )i j

ai − a j
.

4. Set J̃ = UT J̄U.
5. Put J1 = S−1/2 J̃ S−1/2 and J2 = S1/2 J S1/2.

Finally, we obtain the following optimality result from Lemma 7 and Corollary 2.

Corollary 5 Let f (q) = q · Kq + l · q − Tr K and assume that Π⊥
ker J l = 0. Then

min
J T1 =−J1, J2=SJ1S

(
lim

μ→∞ σ 2
f (μ, J1, J2)

)
= σ 2

f1(0),

where f1(q) = q · K1q, K1 = Tr(S−1K )
d S. Optimal choices for J1 and J2 can be obtained

using Algorithm 2.

Remark 13 Since in Sect. 4.1 we analysed the case where J1 and J2 are proportional, we
are not able to drop the restriction J2 = SJ1S from the above optimality result. Analysis of
completely arbitrary perturbations will be the subject of future work.

Remark 14 The choicesM = S andΓ = γ S have been introduced tomake the perturbations
considered in this article lead to samplers that performwell in termsof reducing the asymptotic
variance. However, adjusting themass and frictionmatrices according to the target covariance
in this way (i.e. M = S and Γ = γ S) is a popular way of preconditioning the dynamics, see
for instance [18] and, in particular mass-tensor molecular dynamics [6]. Here we will present
an argument why such a preconditioning is indeed beneficial in terms of the convergence rate
of the dynamics. Let us first assume that S is diagonal, i.e. S = diag(s(1), . . . , s(d)) and that
M = diag(m(d), . . . ,m(d)) and Γ = diag(γ (d), . . . , γ (d)) are chosen diagonally as well.
Then (65) decouples into one-dimensional SDEs of the following form:

dq(i)
t = 1

m(i)
p(i)
t dt, dp(i)

t = −s(i)q(i)
t dt − γ (i)

m(i)
p(i)
t dt +

√
2γ (i)dWt , i = 1, . . . , d.

(69)
Let us write those Ornstein–Uhlenbeck processes as

dX (i)
t = −B(i)X (i)

t dt +
√
2Q(i)dW (i)

t , B(i) =
(

0 − 1
m(i)

s(i) γ (i)

m(i)

)
, Q(i) =

(
0 0
0 γ (i)

)
.

(70)
As in Sect. 4.2, the rate of the exponential decay of (70) is equal to min Re σ(B(i)). A short
calculation shows that the eigenvalues of B(i) are given by

λ
(i)
1,2 = γ (i)

2m(i)
±
√(

γ (i)

2m(i)

)2

− s(i)

m(i)
.

Therefore, the rate of exponential decay is maximal when

(
γ (i)

2m(i)

)2

− s(i)

m(i)
= 0, (71)
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in which case it is given by

(λ(i))∗ =
√

s(i)

m(i)
.

Naturally, it is reasonable to choose m(i) in such a way that the exponential rate (λ(i))∗ is the
same for all i , leading to the restriction M = cS with c > 0. Choosing c small will result
in fast convergence to equilibrium, but also make the dynamics (69) quite stiff, requiring
a very small timestep Δt in a discretisation scheme. The choice of c will therefore need
to strike a balance between those two competing effects. The constraint (71) then implies
Γ = 2cS. By a coordinate transformation, the preceding argument also applies if S, M
and Γ are diagonal in the same basis, and of course M and Γ can always be chosen that
way. Numerical experiments show that it is possible to increase the rate of convergence to
equilibrium even further by choosing M and Γ nondiagonally with respect to S (although
only by a small margin). A clearer understanding of this is a topic of further investigation.

5 Numerical Experiments: Diffusion Bridge Sampling

5.1 Numerical Scheme

In this section we introduce a splitting scheme for simulating the perturbed underdamped
Langevin dynamics given by Eq. (8). In the unpertubed case, i.e. when J1 = J2 = 0, the
BAOAB scheme (see [33] and references therein) has proven to be efficient for computing
long time ergodic averages with respect to q-dependent observables. Motivated by this, we
introduce the following perturbed scheme, introducing additional Runge-Kutta integration
steps:

pn+1/2 = pn − 1

2
Δt∇V (qn), (72a)

qn+1/2 = qn + 1

2
Δt · M−1 pn+1/2, (72b)

q ′
n+1/2 = RK4

(
1

2
Δt, qn+1/2

)
, (72c)

p̂ = exp(−Δt (Γ M−1 + ν J2M
−1))pn+1/2 +

√
I − e−2Γ ΔtN (0, 1), (72d)

q ′′
n+1/2 = RK4

(
1

2
Δt, q ′

n+1/2

)
, (72e)

qn+1 = q ′′
n+1/2 + 1

2
Δt · M−1 p̂, (72f)

pn+1 = p̂ − 1

2
Δt · ∇V (qn+1), (72g)

where RK4(Δt, q0) refers to fourth order Runge-Kutta integration of the ODE

q̇ = −J1∇V (q), q(0) = q0 (73)

up until time Δt . We remark that the J2-perturbation is linear and can therefore be included
in the O-part without much computational overhead. We emphasize the fact that many dif-
ferent splitting schemes could be investigated: although the BAOAB-scheme works well for
unperturbed Langevin dynamics, it is not clear whether this remains true for the perturbed
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dynamics. Moreover, the perturbations introduced by J1 and J2 can be added in various
places. Other discretisation schemes for the ODE (73) could be useful as well, for instance
one could use a symplectic integrator, using the Hamiltonian structure of (73). However,
since V as the Hamiltonian for (73) is not separable in general, such a symplectic integrator
would have to be implicit. Note that (72c) and (72e) could be merged since (72e) commutes
with (72d). In this paper, we content ourselves with the above scheme for our numerical
experiments. Investigation of optimal numerical schemes for perturbed Langevin dynamics
is an interesting problem for further research.

Remark 15 The aformentioned schemes lead to an error in the approximation forπ( f ), since
the invariant measure π is not preserved exactly by the numerical scheme. In practice, the
BAOAB-scheme can therefore be accompanied by an accept-reject Metropolis step as in
[40], leading to an unbiased estimate of π( f ), albeit with an inflated variance. In this case,
after every rejection the momentum variable has to be flipped (p �→ −p) in order to keep
the correct invariant measure. We note here that our perturbed scheme can be ’Metropolized’
in a similar way by ’flipping’ the matrices J1 and J2 after every rejection (J1 �→ −J1 and
J2 �→ −J2) and using an appropriate (volume-preserving and time-reversible) integrator for
the dynamics given by (73). Implementations of this idea are the subject of ongoing work.
See [47] for a similar approach to nonreversible overdamped Langevin dynamics.

5.2 Diffusion Bridge Sampling

To numerically test our analytical results, we will apply the dynamics (8) to sample ameasure
on path space associated to a diffusion bridge. Specifically, consider the SDE

dXs = −∇U (Xs)ds +
√
2β−1dWs,

with Xs ∈ R
n , β > 0 and the potential U : R

n → R obeying adequate growth and
smoothness conditions (see [24], Sect. 5 for precise statements). The law of the solution to
this SDE conditioned on the events X (0) = x− and X (s+) = x+ is a probability measure π

on L2([0, s+],Rn) which poses a challenging and important sampling problem, especially if
U is multimodal. This setting has been used as a test case for sampling probability measures
in high dimensions (see for example [9] and [45]). For amore detailed introduction (including
applications) see [11] and for a rigorous theoretical treatment the papers [11,24–26].

In the case U ≡ 0, it can be shown that the law of the conditioned process is given by
a Gaussian measure π0 with mean zero and precision operator S = −β

2 Δ on the Sobolev
space H1([0, s+],Rd) equipped with appropriate boundary conditions. The general case can
then be understood as a perturbation thereof: The measure π is absolutely continuous with
respect to π0 with Radon-Nikodym derivative

dπ

dπ0
∝ exp

(− Ψ
)
, (74)

where

Ψ (x) = β

2

∫ s+

0
G(x(s), β)ds and G(x, β) = 1

2
|∇U (x)|2 − 1

β
ΔU (x).

We will make the choice x− = x+ = 0, which is possible without loss of generality as
explained in [10, Remark 3.1], leading to Dirichlet boundary conditions on [0, s+] for the
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precision operator S. Furthermore, we choose s+ = 1 and discretise the ensuing s-interval
[0, 1] according to

[0, 1] = [0, s1) ∪ [s1, s2) ∪ . . . ∪ [sn−1, sn) ∪ [sn, 1]
in an equidistant way with stespize s j+1 − s j ≡ δ = 1

d+1 . Functions on this grid are
determined by the values x(s1) = x1, . . . , x(sn) = xn , recalling that x(0) = x(1) = 0 by
the Dirichlet boundary conditions. We discretise the functional Ψ as

Ψ̃ (x1, . . . , xn) = β

2
δ

d∑
i=1

G(xi , β) = β

2
δ

d∑
i=1

(1
2
(U ′(xi )2 − 1

β
U ′′(xi )

)
,

such that its gradient is given by

(∇Ψ̃ )i = β

2
δ
(
2U ′(xi )U ′′(xi ) − 1

β
U ′′′(xi )

)
, i = 1, . . . , d.

We denote by Aδ the discretised Dirichlet Laplacian on [0, 1]with stepsize δ. Following (74),
the discretised target measure π̂ has the form

π̂ = 1

Z
e−V dx with V (x) = Ψ̃ (x) − βδ

4
x · Aδx, x ∈ R

d .

In the following we will consider the case n = 1 with potential U : R → R given by
U (x) = 1

2 (x
2 − 1)2 and set β = 1. To test our algorithm we adjust the parameters M , Γ ,

J1 and J2 according to the recommended choice in the Gaussian case, (27), where we take
S = β

2 δ · Aδ as the precision operator of the Gaussian target. We will consider the linear
observable f1(x) = l · x with l = (1, . . . , 1) and the quadratic observable f2(x) = |x |2. In
a first experiment we adjust the perturbations J1 and J2 to the observable f2 according to
Algorithm 2. The dynamics (8) is integrated using the splitting scheme introduced in Sect.
5.1 with a stepsize of Δt = 10−4 over the time interval [0, T ] with T = 102. Furthermore,
we choose initial conditions q0 = (1, . . . , 1), p0 = (0, . . . , 0) and introduce a burn-in time
T0 = 1, i.e. we take the estimator to be π̂( f ) ≈ 1

T−T0

∫ T
T0

f (qt )dt. We compute the variance
of the above estimator from N = 500 realisations and compare the results for different
choices of the friction coefficient γ and of the perturbation strength μ.

The numerical experiments show that the perturbed dynamics generally outperform the
unperturbed dynamics independently of the choice of μ and γ , both for linear and quadratic
observables. One notable exception is the behaviour of the linear observable for small fric-
tion γ = 10−3 (see Fig. 4a), where the asymptotic variance initially increases for small
perturbation strengths μ. This does not contradict our analytical results, since the small per-
turbation results Theorem 3 and Corollary 3 are only valid if γ >

√
2. We remark here that

the condition γ >
√
2, while necessary for the theoretical results from Sect. 4.1, is not a

very advisable choice in practice (at least in this experiment), since Figs. 4b and 5b clearly
indicate that the optimal friction is around γ ≈ 10−1. Interestingly, the problem of choosing
a suitable value for the friction coefficient coefficient γ becomes mitigated by the introduc-
tion of the perturbation: While the performance of the unperturbed sampler depends quite
sensitively on γ , the asymptotic variance of the perturbed dynamics is a lot more stable with
respect to variations of γ . A somewhat surprising phenomenon is that the standard deviation
σ associated to the linear observable decays in the range γ ∈ [10, 100] for the unperturbed
sampler (see Fig. 4b). We confirmed this behaviour by further numerical experiments and
remark that as the target measure π̂ is fairly complicated, convexity of the function γ �→ σ

should not be expected.
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Fig. 4 Standard deviation of π̂( f ) for a linear observable as a function of friction γ and perturbation strength
μ
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Fig. 5 Standard deviation of π̂( f ) for a quadratic observable as a function of friction γ and perturbation
strength μ

In the regime of growing values of μ, the experiments confirm the results from Sect. 4.3,
i.e. the asymptotic variance approaches a limit that is smaller than the asymptotic variance
of the unperturbed dynamics.

As a final remark we report our finding that the performance of the sampler for the linear
observable is qualitatively independent of the choice of J1 [as long as J2 is adjusted according
to (27)]. This result is in alignment with Propostion 3 which predicts good properties of the
sampler for antisymmetric observables. In contrast to this, a judicious choice of J1 is critical
for quadratic observables. In particular, applying Algorithm 2 significantly improves the
performance of the perturbed sampler in comparison to choosing J1 arbitrarily.

6 Outlook and Future Work

A new family of Langevin samplers was introduced in this paper. These new SDE samplers
consist of perturbations of the underdamped Langevin dynamics (that is known to be ergodic
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with respect to the canonical measure), where auxiliary drift terms in the equations for both
the position and the momentum are added, in a way that the perturbed family of dynamics
is ergodic with respect to the same (canonical) distribution. These new Langevin samplers
were studied in detail for Gaussian target distributions where it was shown, using tools from
spectral theory for differential operators, that an appropriate choice of the perturbations in the
equations for the position and momentum can improve the performance of the Langvin sam-
pler, at least in terms of reducing the asymptotic variance. The performance of the perturbed
Langevin sampler to non-Gaussian target densities was tested numerically on the problem of
diffusion bridge sampling.

The work presented in this paper can be improved and extended in several directions.
First, a rigorous analysis of the new family of Langevin samplers for non-Gaussian target
densities is needed. The analytical tools developed in [14] can be used as a starting point.
Furthermore, the studyof the actual computational cost and itsminimization by an appropriate
choice of the numerical scheme and of the perturbations in position and momentum would
be of interest to practitioners. In addition, the analysis of our proposed samplers can be
facilitated by using tools from symplectic and differential geometry. Finally, combining the
new Langevin samplers with existing variance reduction techniques such as zero variance
MCMC, preconditioning/Riemannian manifold MCMC can lead to sampling schemes that
can be of interest to practitioners, in particular in molecular dynamics simulations. All these
topics are currently under investigation.
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