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ABSTRACT

A preliminary investigation, and extension of the
power, of timed Petri nets to describe, model, and ana-
lyze production processes 1s reported. In particular,
ingights into real-time control aspects as well as the
performance of flexible manufacturing systems are
sought. Comparisons with previous investigative models
are made. New and general modeling conventions are
provided, which extend the realm of Petri net modeling
capabilities. Various realistic aspects of manufactur-
ing processes are modeled. Efficient algebraic tools
to analyze a certain class of Petri neta are described
[L]. We show that, under some structural assumptiens,
timed Petri net models of manufacturing processes
translate into linear equations in a (max,+)~ based
algebra. Efficient algorithms can solve these equa-
tions for the purposes of both performance evaluation
and real-time control.

INTRODUCTION

Petri nets are ugseful to model systems whoge be—~
havior can be described as Interferences between
asynchronous and concurrent orocesses. To date, Petri
nets have mainly been used to describe computer operat-—
ing system behavior. Particular applications include
the descriptions of computer hardware and software
[9], communication protocols [3], and queueing net-
works [4], [6]. In addition, production systems,
such as job shops and flexible manufacturing systems,
exhibit such interference during the manufacture of
part types with different processing sequences. How=
ever, to our knowledge, Petri nets have not been used
to analyze control problems of production systems.
Perhaps the main reason for this is that there is very
little literature available on timed Petri nets.

The bulk of the literature focuses on the analysis
of qualitative properties of complex, concurrent com~
puter systems, such as the non-existenca or detaction
of deadlocks, the safeness, boundedness, conservationm,
liveness, and, in particular, reachability of the
states of a Petri net. These properties are described
in §l.

Ramchandanil [8] first Introduced timed Petri nets
and provided methods to calculate throughput for cer-
tain classes of Petri nets. Ramamoorthy and Ho (7]
specify an enumeration procedure to find the maximum
system performance. Sifakis [10] generalizes the
results of (8].

Cur motivation to investigate the usefulness of
timed Petri nets is the study of planning and control
problems of flexible manufacturing systems (FMSs). The
main models used to date to analyze performance have
been queueing networks {11], [13], perturbation analy-
sis [5], and sigulation [12]. ®Queueing networks pro-
vide information about the average syatem behavior
observed over a long time pertod (steady state). They
are useful for qualitative answers to design and plan-—
ning problems of FMSs [13], but not very useful to

KATHRYN E. STECKE

Graduate School of Business Administration
The University of Michigan
Ann Arbor, Michigan USA

-

study control issues. Perturbation analysis "views a
queueing network as a stochastic dynamical system
evolving in time and observes the sample realization of
its trajectory,”{5] similar to simulation. However, by
perturbing one event, and following through an analy-
sis, many useful questions can be answered without
repeating a simulation run. Perturbation analysis has
been used to answer questions that product form queue-
ing networks can't address. Most often, real-time
igsues are analyzed using simulation, which is flex—
ible, but timeconsuming and expensive.

Our aim is to demonstrate the usefulness of Petri
net models to efficiently analyze problems of real-time
control as well as the performance evaluation of pro-
duction systems. Our main motivation is to use such
analyses to gain Insight into the real-time behavior
of deterministic processes, MMSs in particular. For
example, given a finite number of various resources
(machines, pallets, fixtures, carts, tools,...), after
an initial transient period, we conjecture that a
deterministic production system will eventually reach a
periodical steady state. Petri net representation can
help to capture such behavior, under certain modeling
conditions which are provided subsequently. We have
found new tools that are available to efficiently
analyze a special class of timed Petri nets. These are
shown to be equivalent to certain linear, dynamical,
discrete—event systems.

In §1, the notation and definitions that are re-
quired to represent manufacturing processes by Petri
nets are reviewed. New modeling conventions are sug-
gested in §2, which extend the realm of Petri net
modeling capabilities. §3 contains examples of Petri
nets that model various realistic aspects and compo-
nents of production processes, such as flowshops,
blocked machines, assembly processes, and the FIFO
control rule. We model finite buffer situations as
well as carts, pallets, and different fixture types.
Processing, transportation, set-up, and walting times
can be included. Cur examples demnnstrate the new
modeling capabilities. The algebraic tools that are
available to analyze certain types of Petri nets are
described in §4. The advantages and limftations of
Petri net representations are outlined in §5. A sup-
mary of existing results and future research is pro-
vided in §6.

1. NOTATION AND DEFINITIONS

A Petri net structure is a four-tuple, C=(?,T,I,0),
where P={py,p3,+++,pn} 1s a finite set of places and
T’{tlp'°'rtm} 13 a finite set of transitions. PNT=§.
I1:7+2" is the input function, which defines for any
transition, its set of input places. A Petri net graph
is a representation of a Petri net structure as a bi-
partite directed multigraph. 1In the graph, a circle
represents a place and a bar represents a transition.

A marking u of a Petri net 1s a function from P
to the nonnegative integers N; u:P»N. u(py)=ui= number
of tokens in place py. Tokens reside in the places and



control the firing of transitions. A traunsition may
fire when it {s enabled. A transition is enabled when
there 1s at least one token 1in each of its input
places. A transition fires by removing one token from
each of its input places and distributing these tokens
anong its output places. If XI(tj) and xO(tj) are

characteristic functions of sets I(tj) and O(Cj), re-
spectively, then the firing of ty changes the marking u
into p' such that

W'(pg) * upe) = Xi(ey)(pe) + Xocey)(pe)s ¥ Lo (L

The state of a Petri net is defined by its marking.

The next state function § of a Petri net with marking
u, denoted (C,u), is defined for any enabled tramnsition
tis by G(u,tj)=u', where p' satisfiles (1). S(u,tj)

i3 not defined if t; is not enabled. y' is said Eto be
immediately reachabie from p. The execution of a Petri
net results in a sequence of markings (u“,u sene,ul,
...) and a sequence of transitions (Lj,,C4y,0es, L ,
...) such that ¥k > 0, a(uk,rjk)=uk+i9 h dn

The following properties are those that are ad-
dressed in the Patri net literature. A marking p' is
reachable from y if there are sequences of markings
WY -, u®) and transitions (tj,,..+,t4 ) such that
u =Y u'=yl, and u1+1 is immegiately geachable from
ul, 1=0, ...,n~1. The reachability set of a Petri net
(C,u) is the set of all reachable markings from u and
denoted R(C,u). It includes yu itself.

A place py is said to be safe if ¥ u'eR(C,n),
p'(pg)<l, L.e., pg contains at most one token. A
Petri net (C,u) is safe when all of irs places are
safe. When the upper bound on the number of tokens
which can be in a place simultaneously exists (but is
not necessarily one), the place 1s said to be bounded.
A bounded Petri net (C,u) contains only bounded
places.

A Petrd net (C,u) is strictly conservative if
and only if ¥ ueR(C,y),

Tutlpy) = I wlpg), (2)
pief pie?

{.e., the number of tokens in the Petrl net remains a
constant. As a consequence, for any transition, the
nunber of input places equals the number of output
places. A tranmsition tj in a Patri net (C,u) 1is
potentially firable if there exists a y'eR(C,p) such
that tj is enabled in u'. ty is live if it is poten-
tially firable for any p'eR(C,u). A Petri net having
only live transitions is live. DPatri nets which are
not live have deadlocks.

A decision-free Petri net structure 1s character-—
ized by the existence of a single input arc and a
single output arc for each place, i.e.,

¥y, 11(Ey,te) 3 pee0(ty) NICty). 3
A directed circuit in a Petri net is a sequence of

transitions and places: tjl’Pil""'Pin_l.tj , such
n

that til =ty and ¥k=1,...,n-1, py eO(tjk)r]I(tj
A Petripet is strongly counected if every pair o
places is contained in a directed circuit.

1)

For the subclass of strongly connected, decision~
free Petri nets, the following results are known [6]:

1. The number of tokens on a circult does not change
after a transition fires;

2. Iliveness is equivalent to the existence of at
least one token on each circuit;

3. Safeness is equivalent to the situation where

every place 13 {n a circuit containing
exactly one token;

4. A marking p' i3 reachable from a live marking
u Lf and only if the number of tokens in each
circuit 1s the same for y and u'.

A timed Petri net 1s a Petri net C with an asso-
clated mapping 1:T + [0,4»). Each transition tj has a
firing time Tj-r(tj). Tokens are moved from the input
to the output places of ty only after time T; has
alapsed since firing began. In a timed Petr{ net, each
firing seqyence (tjl,...,tjn) has a minimal duration,

which is z Tjk' Also, availability times may be

associates’%ith tokens, as part of the initial
conditions.

2. VARIOUS MODELING PRINCIPLES

New and more general uses of Petri nets to de-
scribe production processes are now provided in §2.1.
Following these is a comparison with previous modeling
conventions in §2.2. The advantages of our sugges-
tiona and some limitations of the conventional methods
are shown through examples. The power of these model-
ing conventions will be further displayed in §3.

2.1 Suggested Modeling Principles

The following modeling conventions are suggested
to allow both more general applications of Petri nets
as well as efficlent algorithms to analyze their per-
formance for certain classes of Petri nets.

i) The set of activities (tasks, operations) to be
performed in the production system is repre-
gented by the set of transitions. Each tran-
gition is assigned the corresponding activity

. duration.

11) An activity is defined by the simultaneous use
of one or more resources. In particular,
the number of input places of a particular
transition Indicate the number of resources
which the activity simultaneously requires.
Output places specify the activities that are
required uext and the release of certain re-
sources.

iii) Tokens of variocus types represent available
resources which flow through activities
according the system control rule.

2.2 Comparison with Conventional Modeling

Differences, advantages, and limitations of the
previous modeling conventiouns and those suggested in
§2.1 are now demonstrated through examples of PERT/CPM
charts and queueing networks.

PERT/CPM Charts. In conventionally modeling a
PERT chart with a Petri net, an activity is represen=-
ted by a place, precedence constraints are represented
by transitions, and time is not considered [6]. In our
Petrl net model, both activities and precedence are
represented by transitions. Places are reserved to
model multiple resources of limited amounts. In addi-
tion, our timed Petri nets are more powerful models
than PERT/CPM charts since: ‘

1) Circuits of activities are allowed. This gener-
alizes PERT modeling by enabling the activi-
ties to be performed repeatedly, if necessary.

11) Required resources for activities appear expli-
citly, as tokens, in the representation.

1ii1) Nondeterministic aspects can be dealt wlith. For
example, the order in which a particular re-
source performs some tasks may not be totally
specified. In this sense, Petri net models




subsume disjunctive graphs.

Queueing Networks. A manufacturing system can be
modeled as a queueing network, where machines and
transporters are the servers and the parts to be pro-
cessed are the customers. Suppose that the part route
is known and the ordering of customer service is fixed.

Then previous Petri net representations of queue-
ing networks, both untimed [6] and timed [4], have the
queues as places, servers as transitions, and customers
as tokens. Thegse specifications appear to be arbi—
trary: alternatively, one may view machines as flowing
through parts. More seriously, limited amounts of
multiple resources cannot be modeled. For example, a
server may require tools to service a customer. Also,
blocking effects due to limited queue capacity cannot
be modeled.

An alternative Petri net model, following the
suggestions provided in §2.1, would represent the
gservice activities as trangitions of some duration.
Each transition has two input places, for both server
and customer tokens. WNote that if additional resources
are required, such as a robot, buffer, transporter,
pallet, fixture, and/or one or more cutting tools,
these are modeled with additional places (or different
token types). In addition, finite bufferg, blocked
machines, FIFO queue discipline, and assembly processes
can be wodeled. Examples of these are provided in §3.

3. MODELING SOME COMPONENTS OF MANUFACTURING PROCESSES

In order to assess the descriptive power of Petri
net modeling as applied to production processes, ex-
amples of different features are now provided.

3.1 Fixed-Route Flexible Manufacturing System

Congider the FMS of Fligure 1, consisting of three
different machine tools that process three different
part types according to a specific part mix and the
specified part routes.

Pl
P2 T
ML M2 M3

w

P3

Figure 1. Three-Machine FMS.

Processing times of each operation of each part
type on each of the machine tools are given in the
following matrix:

Pl P2 P3
M1l 1 5
M2 1 3 2 3
M3 | 4 3

The characteristics of the system that are modeled
include the following:

L. The sequence of parts on the machine tools is
given in Figure 1;

2, Set-up times on a machine tool for part change-
over are negligible (the system s flexible,
having automated tool interchange);

3. Transportation times are neglected;

4. Por each part type, there is one pallet and one
fixture;

5. The product mix is balanced, and can be obtained
through a periodic input of parts. Here the
sequence 1-2-3 1is used.

The pallets ensure a proper positioning of parts on

machines. When a pallet leaves the last machine on
its processing sequence, it returns to the first

machine to carry a new part. (The use of carts to
transport parts is medeled in §3.3.)

The Petri net of Figure 2 is obtained. For
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Pigure 2. "Petri Net of a Three-Machine FMS
with Three Part Types.

clarity, the different token types in Figure 2 (machine
tools and pallets) have been alphabetically named.
Sometimes different token types are alternatively rep-
resented by colored tokens. However, they are unneces-—
sary in this instance since the different token types
appear in distinet places. Colored Petri nets are
sonetimes used to simplify large Petri net representa-
tions [3]. The Petri net of Figure 2 is decision-free,
safe, and live for any feasible initial marking, for
example, a marking consisting of three "machine” tokens
and three "pallet” tokens. A similar Petri net cam be
constructed for a more general job shop type of FMS.

In addition, adding another pallet for one of the part
types can easily be represented. Two ways are
suggested:

1) ' Expand the number of transitions;
i1) Add a token to the appropriate processing se-
quence cireuit.

In the first case, the safeness of the Petri net is
preserved, but not in the second case. Both proving
the equivalence of these representations, as well as
determining their pro's and con's, are matters for
further research.

Both set-up and transportation times can easily be
introduced as one-place~in, one~place-out transitions
that geparate processing transitions. These are demon-
strated in §3.2. To keep the Petri net of Figure 2
simple, we would value the arcs linking processing
transitions to their output places by the required
set-up or transportation times. An efficient analysis
technique is demonstrated using this example in §4.

3.2 Blocking Phenomena

In the example of §3.1,‘it is assumed that there
1s sufficient storage provided between machines so
that no machine is blocked when the downstream machine
is busy. We now model a three machine system similar
to that of Figure 1, but with no buffer storage avail-
able. For simplicity of exposition, there are two part
types, each having the same processing sequence: M1+
M2+M3, but possibly different operation times. There
is one pallet for each part type.

To capture the blocking effect, we distinguish
between two types of transitions: one type represents
the processing of a part on a machine for a fixed dur-
ation; the other represents the instantaneous departure
of a part from a machine when the next required machine
is free. Transportation follows the part release. Be-
tween processing and transportation, waiting may occur.

A Petri net model of this situation is displayed




in Figure 3.

Processing (Cij)» set-up (Sij), and
transportation (Tij) times are shown.

A decision-free

Figure 3.

Petri Net Model of Blocking.

Petri net is obtained.
tokens guarantees a

Any feasible marking
live and safe Petrl net.

of five

Notice that a particular machine set-up
when transportacion begins for the next part
cessed; both activities begin when a part is released
from the machine in question. Hence, both release
transitions and the corresponding successor processing
transitions can be combined into one transition, as
shown In Figure 4. Firing time for each combined
transition is set equal to the processing time plus
the maximum of the appropriate set-up and transporta-
tion times. Such reductions in the number of required
transitions appear to generalize for systems with
limited storage capacity.

can start
to be pro-

Max
(S5, Tp) * 1y

Max(s

e TJL) + €1 Hax(Slz, Ty, + €
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Lgure 4. Reduced Petri Net Model of Blocking.

3.3 Asgembly Processes

Consider the flexible assembly system of Figure
5, consisting of three different machining centers
and a load/unload station (L/UL). There are three
part types being machined. Cases (on machine 1) and
covers (on machine 2) meet and match on a one~to-one
basis at machine 3, for additional operations to be
performed on the assembled unit. There are two cart
types: Cl begins by loading a case at the L/UL station

Figure 5. Four-Machine Flexible Assembly System

with Two Cart Types.
and automatically trausporting the palletized case to

Ml in time TTy/gr,M1- Then it travels back to the
L/UL to pick up a cover and bring it to M2 in time

TT,/uLsM2- Then cart Cl travels to M3, in time
TTM2+M3, to unload the fianished, assembled unit,
transport it to the L/UL station, where it is taken off
and a new case is loaded to begin cart l's cycle again;
C2 begins at machine 1 to unload a case and bring it to
nachine 3 in time TTyj.m3. Then C2 travels (empty)

to machine 2 to unload a cover and bring it to machine
3 (TTM3+M2 + TIM24M3)» Flnally C2 returns to

the first machine to begin its cycle again.

The Petri net model of this system is provided in
Figure 6. Notice that travel times, processing times,

2 PR LT Ty s

T, 1L

Petri Net of the Four-Machine Flexible
Asgembly System.

Figure 6.

and even loading and unloading times (set-up times, if
the set-up at a machine tool is not automated) are in-
cluded. In this model, the tokens are continuously
disappearing (into the assembled unit) and then re-~
appearing (as the raw castings for a case and a cover).
Hence this Petri net is not strictly conservative.
Non-couservative Petri nets seem to be specific to
assembly processes. However, for the obvious distri~
butions of 6 or 7 tokens in the Initial marking, the
Petri net is safe and live., We have comstructed this
model to be decision-free, also. Finally, notice that
we did not explicitly require places to model the L/UL
station.

3.4 FCFS Control Rule

All of the previous Petrl nets were decision-free:
all tagks were explicitly ordered a priori. In many
situations, however, the ordering of parts on machines
is specified by means of priority rules. The FCFS
rule Is often assumed (for example, in product form
queueing networks having exponentifal servers).

Consider a service station with a buffer consist-
ing of n-l consecutive places. To model the FCFS queue
discipline requires n transitions, where transitiom i
means “"enter place 1 in the buffer", for 1=1,...,n.

The last(a—-th) transition is the service. Time Ty is
required to reach place i, where i=1,...,n and k=l,...,
number of customers. The Petri net is given in Figure
7. There are n-l tokens required for the buffer
places, one token for the server, and tokens for the
customers. Customers are generated according to some
arrival process. Customer tokens can be input when-

-4 -



token of buffer i-l

=1
input of
CustOomers buffer 1 Service
output
Pigure 7. Petri Net of the FCFS Queue

Discipline for n-1 Buffers.
ever the first customer place is free. Traumsition i
(e{2,+..,n]) fires only when:

1) a customer is waiting in the (i-1)st buffer
(hence the tokens are in the {nput places of
transition i); and

2) the i-th buffer is free (hence its token is also
in the input place of transition 1).

Again, the Petri net i{s safe, conservative, live, and
decigion~free.

4. ARALYSIS OF PETRI NET MODELS

The fixed-route FMS presented in §3.1 has been
nodeled equivalently by a set of “linear" state equa-
tions in the sense of a (max,+) algebra in [1]. The
main appeal of the algebraic representation lies in the
existence of very efficlent algorithms to evaluate
system performance. Thls is a significant advauntage
over time-consuming and expensive simulation, which is
usually required to obtain the same informatiomn.

Petri nets have been used to plan a well-designed
simulation. The simulation run consists of letting
tokens flow through the Petri net structure and collec-
ting statistics on the results. For example, a simula-
tion of the FMS described in §3.1 that 1s starting with
an empty system, produces the Gantt chart of Figure 8.

Ml {|B2 P3 P2 P3
M2 Pl P2 [ | P3 el |[e2 p3
M3 Pl P2 Pl P2
1 2 3456 7 8 910 12 19
Figure 8. Schedule for the Fixed-Route FMS.

Notice that the system has a perlodical behavior, with
a period of 19 time units. The same result is obtained
analytically in Cohen et al. [1]. A set of critical
tasks and resources is also provided as determined by
the critical circuit. The results indicate that:

1) The critical resources ars the second machine
and pallet type 2;

2) The bottleneck machine is M2 and is underutil-
ized;

3) The utilization of the bottleneck machine can
be improved only by adding a pallet of type 2;

4) The period (minimum cycle time) i3 9.5, which
provides the paximum production rate as the
reciprocal.

In addition, all machine utilizations are provided.

As demonstrated by the simple example in Figure 8,
the simulation gave the periodicity result rapidly, in

fact immediately. However, 1n more realistic and more
complex situations, this will not be the case. The
duration of the transient period that precedes the
periodical behavior depends both on the initial state
and the lengths of the sub-critical circuits of tasks.
It may be very long.

As an alternative to simulation, the algebraic
approach presented in Cohen et al. [l] is independent
of the length of the transient period and, in addition,
directly calculates the periodical steady state minimum

cycle time.

The translation of a particular Petri net model
into algebraic equations is straight-forward when the
Petri net is safe and decision-free. Each tramsition
18 then characterized by the meeting of a specified set
of tokens, one per input place. For example, in the
FMS example of Figure 2, the transition requiring one
time unit occurs when the machine 1 token meets the
pallet 2 token. All other transitions are similarly
enabled.

The description variables of the algebraic repre-
sentation can be the dates x4 when transition t
fires. Denoting I'"(j) as the set of traunsitions tj
such that there is a place py which is an output of
tx and an input of ty, we have

X4 » max e * Ty, &)
kel ()

where Ty is the duration of transition ty. The var-
lable xj can also be conditioned by the availability
date of one of its input. tokens, as prescribed by the
initial marking. Equations similar to (4) can be
specified for all transitions. These can then be
analyzed via efficient algebraic techniques [l]. If
the Petri net is stromgly connected, we can specify a
linear, (max,+), recurrence equation, Y(n)=Y(n-1)A.
The dimension of matrix A is the number of tokens and
ye(n) 1s the date when token r reaches a prescribed
place in its circuit for the nth time. The real com—
plexity of a safe, decision-free, strongly connected,
Petri net {s the number of its tokens (which remains
constant throughout-—gee §l).

Further research is required to investigate per-

* formance evaluation algovrithms for other classes of

Petri nets, such as the non-conservative ones that
deacribe assembly processes. In addition, the safeness
property is not guaranteed for a strongly counected,
declsion-free Petrl net. For such decision-free Petri
nets, Ramanmcorthy and Ho {7] suggest a rudimentory
procedure that finds the minimum cycle time by totally
enumerating all circuits. However, no additional
useful information is provided, such as the order of
periodicty or the determinatfon of critical resources

(see [1]).

Another analysis technique for timed Petri nets 1is
that suggested by Sifakis {10], which captures the evo-
lution of successive markings. In addition to depend-
ing on the structure of the Petri net and its firing
rules, it appears that the times when firing occur must
be knoiwn. This assumption is not made with the (max,+)
algebraic techanlque: the firing times are found. The
framework of [10] i3 more similar to that of vector
addition systems [4].

5. POTENTIALS AND LIMITATIONS OF PETRI NET MODELS TO
ANALYZE CONTROL PROBLEMS OF PRODUCTION SYSTEMS

There appears to be not much of a limit to the
modeling capabilities of Petril nets. However, at pres-—
ent, the decislon-free requirement appears to be un-



avoildable to use analytical techniques to analyze the
performance of Petri mets. In theory, all sequencing
on machines must be known. In addition, the problems
of optimizing control rules remalns unsolved. On the
other hand, it is now possible to efficlently check the
performance of a particular control strategy.

Petri nets appear to be a very general modeling
tool that is useful for representing discrete-event
systems by means of several primitive symbols (places,
transitions, and tokens), which are simply interpreted.
Systematic system investigation 1s allowed by varying
parameters. DPetri nets model a set of events and the
conditions which cause the occurrence of events. This
provides at least a useful design tool to ensure a
well-defined simulation.

Because of the simplicity of the primitives, one
might conjecture the existence of efficlent means to
analyze discrete event systems. This expectatlon is
founded as reported in §4 for the subclass of safe,
decision-free Patri nets.

Petri net modeling and analysis can provide in-
sight into the real-time behavior of FMSs. Some issues
that can be addressed include the determination of:

i) optimal buffer size via the knowledge of the

maximum buffer occupation;

11) optimum pallet distribution;
1ii) appropriate priority rules;
iv) material handling system capacity and perfor-—
mance}
v) critical tasks and resources;
vi) machine utilizations (dynamical, not just the
steady-state mean values);
vii) appropriate input sequence of parts;
viil) operation sequence at each machine tool.

In contrast with the type of information obtained
by queueing networks, Petrl nets provide dynamical in-
formation, over a finite time horizon, concerning the
evolution of the states of a system.

6. SUMMARY AND FUTURE RESEARCH

A new model has been proposed that can be much
more efficient than simulation, to help the investiga-
tion of dynamical, real-time control problems of FMSs.
The state-of-the-art in Petri net modeling capabilities
has been extended. Because of the new application of
Petri nets, new modeling conventions needed to be
developed. In addition, with the equivalence of a
subclass of Petri nets to a linear (max,+) algebraic
representation, the existence of efficlent analysis
techniques was noted.

Future research includes further extending the
modeling capabilities, for example, to efficiently
model groups of pooled machines [13], or queue disci-
plines in addition to FCFS. Other plans include the
determination of systematic rules for traanslating
Petrl nets into the (max,t) equations. larger classes
of Petri nets that can be expressed in the algebraic
setting should be investigated. Perhaps non-safe, con-
servative, declslon-free Petrl nets can be so represen—
ted. Other technlques to analyze Petri nets wlill be
investigated. The complementary natuce of Petri nets
and queuelng networks shall be explored. Procedures
that derive appropriate (perhaps “optimal") periodic
sequences of parts on machlne tools, given FMS priority
rules, will be lnvestigated. The corresponding Petri
net model would be equivalent to a multiclass, deter-
ministiec, closed queueing network with finite buffers.
The real-time planning and coantrol issues that were
summarized in §5.2 will be investigated. Finally,
Petri nets will be used to model the hierarchical

computer control system for FMSs.

The same model can

represent both the physical and control systems.
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