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Abstract. A variable order method for solving the planetary type N-body problem, which is based on an

approximation by polynomials of variable degrees, is proposed. We present an algorithm for finding such
polynomials, notes on the stability and convergence of the method, and some selected numerical examples.

1. INTRODUCTION

The study of mutual positions of bodies (particles or material points) is one of the basic prob-
lems not only in celestial mechanics. In the N-body gravitational problem, the motion of N ma-
terial points attracting one another in pairs is described by a system of differential equations of
order 6 N (motion in an inertial frame of references) or 6 N- 6 (relative motion) - see Section 2.
As is well-known, the general solution of this system obtained by analytical methods is not
available today. Therefore, numerical methods for solving the problem are used.

In order to solve the N-body problem we can use general numerical methods for solving the
initial value problem or apply some special methods. A survey of the methods for solving the
N-body problem is given, among others, in [1] and [9], From the point of view of the solution
accuracy obtained, the most often used numerical methods are the Gragg-Bulirsch-Stoer method
based on a rational approximation [3, 5], the Everhart method [4], and the Taylor-Steffensen
method [15], which uses the Taylor series for the right-hand side functions occurring in the
differential equations and recursive formulas for coefficients ofthis series. Some special methods
conserving and using constants (integrals) of the motion should also be mentioned (see e. g.
[6-13]).

Conventional numerical methods for solving the relative (planetary type) N-body problem
with optimization or automatic step size correction do not seem to be the best for two reasons.
Firstly, the optimization of step size depends on the 'speed' of change of the solution, which - in
problems such as the problem of motion of the Solar system - leads to a determination of the
optimum step size (in time) on the basis ofthe change of position and velocity for a planet which
has the top mean motion. If the step size was chosen on the basis of the motion of a planet with
small mean motion, the step size could be considerably greater. But the choice ofa different step
size for different planets (material points) is not sensible since the problem of motion of all
planets should be solved at the same moments.
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Secondly, in conventional methods the same accuracy of the solution for all planets is
assumed, while in practice even the initial data have different accuracy for different planets.
Therefore, it seems to be sensible to assume a different accuracy of the solution for each of its
component.

In the method proposed in this paper we assume a constant step size, but different order for
each component of the solution. The different orders, changed from step to step, we achieve using
an approximation of each component by a polynomial of the degree which guarantees (for each
moment) the accuracy given beforehand (see Section 3). It appears that for the method developed
in such away itis possibleto prove sometheorems on the consistency, stability, and convergence
(see Section 4).

2. THE N-BODY PROBLEM

In the N-body gravitational problem, we are concerned with the motion of N mass particles

ofmasses mi >0 (i =1, 2,..., N) attracting one another in pairs with force
mim;
2 b

r,-}-
where rj; is the distance between the i and j'" particle, and G denotes the gravitational
constant. In an inertial and rectangular frame of reference the problem can be written in the for
of the initial value problem as follows

. NoE-E, . .
=G Y "’jl—j—u‘, Eito) =&, &uilty) =&,
]z} Tij (2.1)

I=142,3, i=1,2,...,N,

where

and where &;; and é“ are the I coordinate and I component of velocity of the i"" particle,
respectively. Of course, we assume that &?, and §?, areknown at aninitial moment  to.

Since the basic problem in celestial mechanics is the study of mutual positions of bodies, we
usually consider the motion of those bodies with respect to a central body of the system. Usually,
itis abody with the greatest mass. For instance, in the Solar system we determine the motion of
planets with respect to the Sun.

If we put the origin of a Cartesian coordinate systemin the center of aparticlewith themass my ,
then from (2.1) we get
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. N—1 _
. Xy =Xy Xy
X;;=-Gj(my +m,-)T’+ 2 mj| ——=——+—=—1|
v j=1 1 Tin 2.2)

j#i
xitg) =x0, k) =40, 1=1,2,3, i=1,2,...,N -1,

where

Between the coordinates §, and x, the following relation holds

xp =8 -Ey, 1=1,23, i=1,2,...,N-L

It is common knowledge (see any handbook of celestial mechanics, e.g. [2] or [14]) that the
above problem can be solved analytically only in the case N = 2 and in some special cases for
N = 3. Thus, for arbitrary N we have to apply numerical methods.

3. APPROXIMATING THE SOLUTION BY POLYNOMIALS

If the functions occurring in the equations of motion (2.2) fulfill the assumptions of the
Weierstrass theorem (what is easy to guarantee), then on the basis of this theorem we can search
for the solution of (2.2) in the class of polynomials.

Let us try to find the polynomials wy () such that

by
X = Wu(t) = Zaliktk, 1=1,2,3 i=12,...,N -1, 3.1)
k=0

where P, denotes the degree of w,(f) and may be different for different / and i, and a,
are coefficients of the polynomial w,(r). Both, P, and a,, must be determined for each
=1,2,3; i=1,2,..., N-1, and k =1,2,..., P,
From (3.1) it follows that

Pli
() =wp()= Y, (k+2)(k +1)ali,k+2tk1 (3.2)
k=0
max(P,,-,P,j)
xh-(t)—xlj(t)Ew,,-(t)-—w,j(t)= 2 (a,ik—a,jk)tk, (3.3)
k=0

where
@i byl == agip, =0, i Py <Py,

ipy+ =+ =agip, =0, if Py > Py
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Moreover, we have

3 2 2max(Py,)
2 ! k
Ty = E an,kt = Y byt (3.4)
where
E @ gis G gik—s» TOr k <max(Py;),
3 |s=0 q
by = Y, max(r,)
=1
I @gisQgik—s» TOT k2 max(Py;)+1,
s = k-max(P,;) q
q
and
,Pq,-H . aqi,max(Pq,-) =0, forg=1,2,3,
q
3 | max(Py, Py;) i 2 Zm:x(P,, Pii) )
j= 2 z (aqik —“aqjk)ll = 2 Cije b (3.5)
= k=0 k=0
where
E (aqts Qgjs (a{Ilk—S qj,k—s)a for k Smax(Pqi, qu),
3 s=0 q
Cijk = E mqax( i Fai)
q:
2 (agis = agjs N agif—s —agj k) fOT k2 max( gi» Pgj) +1,
s-lc——max( i Fai)
and
Qgqv,pH = qvmax( 0 Py) =0, forg=1,2,3and v=i, j.

We also have

2max(Py) 3 6max(P,;)
q q
k k
X o bptt| = X dyth,
k=0 k=

where
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Pi)+L,

k—
2 blS 2 btz bz k—s—z> for 2max( )’
s=0 z=0
2max(Fy) k-2 max(FPy) 2max(Py;)
q k—s q q
2 bis 2 biz bi,k—s—z * Z bis 2 biz bi,k—s——Z’
dik = s=k—m;1x(Pq,~) z=10 s=0 z=k—s—2max(Pq-)
for 2max( )+1<k<4max( q,)
q q
2max(Pqi) 2max(Pq,.)
q q
Y by > biy b; g —s—g» fOr k 24 max(
s=k—4max(P;) z=k—s—2max(Pq,) q
L q q
and
2max(Py, Py;) 6max(Py, Py;)
! k ! k
Z Cijkt = 2 e,-jkt s
k=0 k=0

where e, are calculated in the same way as d,

. (after substitutions ¢
mqax( g qj) for m;x(Pq,-)).

iju

Further, we have

| s,
=— ) ful,
Gmax(F,) dio ,E:O ’
> dytt
k=0
where
fio =1,
d
fxl - 2d10
3d " d;
fin = ___LZ_,
8d%  2dy
fa=- 5d) L3dudi _ di
1

16d}  4dh  2dy’

and

for

51

and



52

Using Polynomials of Variable Degrees for Solving the Relative N-body Problem

where g, canbe fou

I
6max(Pq,»,qu)
q

%

k=0

1

[=g=] k
2 it s
\/eijO k=0

k
e,-jkt

ndin a similar way to f, (aftersubstitution e, ford,).

If we insert all of the above relations into the equations (2.2), we obtain

Py~2
2 (k+2)(k +1)a,
k=0

Since

where

and

NI 1
xm;
=1 €ijo
j#i

1

+

Jin

P, 2
k 1 ‘ k k
ikl =Gl (my +m)—=| Y amt || ¥ fut
Ndio Li=0 k=0
N~ max(Py, By) k’ 1 oo )
+ oy m; Y e —ap)tt == X &in!
ji=1 k=0 : \/eijo k=0
P#i -
P -
P 1 k
+ Zaljkt ijkt 5
k=0 djo k=0
1=1,2,3, i=412,....,N -1
1 P, M= o )
Noapt | X fatt|= X "
Vdio (k=0 k=0 k=0
Lk
Y agis fig—s, fork <Py,
VdiO s=0
hij = P
1 li

> aiis fik~s for k2 Py +1,

\/d_i()_s=0

max(F;, P,j-)

2

k=0

Zgijkfk
k=0

k
(@ —ap

< FLow k
Z ulijkt + E hljkt s
k= k=0

N -1

= 2 nlj
j=1
j#i

b Pl o= k
D at D fut

k=0 k=0

(3.6)



A. Marciniak 53

should be calculated in the same was as 4, (after substitutions e, for d,
for f,, and max(P,, P) for P), we canrewrite the equations

where u,,,

a/m - aw for auw gl/u

(3.6) in the form

P;—2 oo N-—1
Z(k +2)(k +1)(lli,k_|_2tk =-G 2 (mN +m,-)h,,~k + Emj(u”jk +hljk) tk,
k=0 k=0 ji=1

j#Ei

1=1,2,3, i=1,2,...,N -L

Hence

Py—2 k P2 NSt k P;—1

Z (k +2)(k +1)ali,k+2t =-G E (mN +m,~)h”k + ij(ulijk +hljk) "+ O(t L ), 3.7)
k=0 k=0 j=1 .

j#i
1=42,3, i=1,2,...,N -1

if the functions hy Py > Blij, P, and hlj p,— are bounded. From (3.7) it follows that —
1 s L o

excepting terms O(tP"'_l) —foreach £k =0,1,..., P, =2 we have

G N4
ay =——————|(my +m)hy + > m(upy +h) |,
ke (k+2)(k +1) (i i) i ]Z:"l e+ e (3.8)
IE ]

I1=1,2,3, i=1,2,...,N —-L

Let us note that the functions #,, wu,, and #h, on the right-hand side of (3.8) do not
contain the coefficient a,,,,. Moreover, takinginto accountthe previous formulas, we get (for

each k =0,1,...,P,, -2)

1 k
hig =——= > s fifms (3.9)
I

i0 s=0

1 k
Ulijk =T E(alis _aljs)gij,k—s’ (3.10)

ij0 s=0
where
fie = fu(digs digsonesdyg), (3.11)
it = 8ik (€0, €ijtsvvn Cijg )s (3.12)

and where
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) k k—s
¢ = bis X b by g—sgs

s=0 z=0

k k~s

Cijk = 2 Cijs Zcijz Cijk—s—z>
=0 =

tk - 2 anu qik—s>»

._.J,y_.

Cijk = z E(aqm ~dygjs )(aqi‘k-—s —aqj,k—s)'

=15=0

Thefunctions fx and gk aregiven by somewhat complicated formulas, but thereis away
to simplify them. First, let us introduce a multiple sum symbol.
Definition.

)
(0) =
2 0('.:0 - 0('s,—p—l-l’

So=7p
Sk+1 Skl S, (3.13)
g £
(k) — (k-1)
20y =Y D0 | Oy aptis, -
S =7 k=P SH=7p

The aboverecursive definition makes arule that the 0-based multiple sum is asingle element,
and the k-based multiple sum one can obtain as aregular sum of products of the (k - 1)-based
multiple sum and an element. Using this definition we can significantly simplify some notations,
for instance

k s p 3) s =k
2 E Zal—lup—l—l 0(’s—l—p Q-5 = Z (xso'
s=2lp=21=2 so=2

Using (3.13), we can write the formulas that determine fi, and gj (see(3.11) and (3.12))
in the form

fi0=]-y

S| = (3.14)
fa= 2| 2" Xdig, [ k=12,

n=1 n i0 5 =0
gijo =1,

L-L) 1o i (3.15)
ik = X || 2 - ey |+ k=L2..,

n=1 n ,10 5o=0

The above formulas may also be written as follows
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fi[) :1’
k 1
Y (3.16)
fie = 2 2 | % k=12,
n=1\{ n
where
di
gy =;'—,
i
1 k= (3.17)
ikn = 3 Qip =t @ik—ps 1=2,3,...,k,
i0 p:n—l
and
gijo =1L,
k 1
- (3.16)
gt =2 | 2 By k=12,...,
n=1\ n
where
€ijk
Bijkl =,
€50
(3.17)

k-1
1
Bikn = 2 Bijp,n—leij,k—-p’ n=2,3,....k,
¢ijo p=n—l

If we fix i, then the quantities a,, form an upper triangular matrix with elements calculated
— according to (3.17) — on the basis of the following scheme

Ol

oy T))

Qi3q %39 %33 \
Qg ' Oy

The quantities f,,,, givenby (3.19), are evaluated on the basis of the same scheme.
An approximation to the solution of (2.2) at the moment ¢ ., = ¢, + (v +1)h, where & is

a given step size, we determine from the formulas

By By
vH _ k v vH k-1
= Y aht, Ry =vpt = Y ka Rt
k=0 k=1 (3.20)

v=0,1,..., =123 i=1,2,...,N ~1,
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where @y = x,\,-’, any = v,\,-}:x',\,-’, and the coefficients ayy =ayy (fg +Vh) =ay, (xV,vY)
(k=2,3,..., P, are calculated from (3.8)-(3.10).
Now, let us try to find P, (foreach /andi). Let P, denote such a degree of polynomial that

P,
a“,P" hil l< 8[,‘;

Py
ajp, b <ey,

p,—1 P;—2 (.21)
IPliali,P,,»h“ l<8li1 I(Pli—l)ali,P,ih f |<81i,

The above conditions mean that the summations in (3.2) should be finished if an addition of

consecutive elements does not cause a change in the result greater than 2¢,, where ¢, is a

i
given accuracy for each / and i.

Let us note that in (3.21) it is necessary to take into account two consecutive elements of the
sums which occur in (3.20), since according to the analytical theory of the relative N-body
problem (see e.g. [2], [14] or [17]) there exist some simple case in which series expansions of
x, =x(f and )éli = x'l,-(t) contain even or odd powers of # only. An example of such a case
is the circular motion in the two-body problem.

An application of the criteria (3.21) for finding P, need an existence of constants K, > 0
such that for each k;; 2 K;, one or both of the following inequalities are fulfilled:

k2 Ky
}azi,k,,-+2 b ~<“11i,k,,.h : , (3.22)

or

ket K
\azi,k,,ﬂh : ‘<‘ali,k,,-h f ‘ (3.23)

The first inequality — (3.22) — means that starting from a certain odd (even) element of the
series, all further odd (even) elements are decreasing, and the second inequality — (3.23) —
means that staring from a certain element all further elements are decreasing. Of, course, neither
the condition (3.22) nor (3.23) follow from the convergency ofthe Taylor series for x, = x, (t)
and )51,- = ,\'cll-(t), which are the solution of (2.2). Taking into consideration the cases mentioned
earlier (about odd and even powers of 4, we can eliminate the inequality (3.23). Moreover, ifwe
accept the condition (3.22) as an assumptions, we can prove [11]

Theorem 1. Ifthe inequality (3.22) holdsfor each ky =21 (I= 1,2,3; i =12..,N -1),

then in the method (3.20), in which the coefficients a, are calculated from
(3.8) - (3.10) and (3.16) - (3.19), the step size h shouldfulfill the relation

. : 1 2
lhl<rr}1in(h,-(),h,(,-)>, (3.24)

where the dot means an approximate inequality, and

203
G(my +m;)’
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3
@) _ . g
by’ = : ,

3
3fam | X Iapiﬂapill
p=1

+1

G(my +m;)

ek

|am !pizN

3
201211'0:
p=1

but iffor some | and i we have aj; = 0, then the adequate value of h;®
should not be taken into account in (3.24).

4. NOTES ON THE STABILITY AND CONVERGENCE
OF THE METHOD

The stability and convergence of the method presented in Section 3 may be proved on the
basis of the Stetter theory about general analysis of discretization methods for ordinary diffe-
rential equations [16]. In what follows we present somelemmas and theorems concerning our me-
thod. Theproofs, which one can find in [11], are omitted here because of the complicated cal cu-

lations involved.
Lemma 1. |If there exist thefollowing constants

O<r= min r(t), R= max r;i (1),
telty, T1 tefty, T
ij=1,2,....N Li=12,..,N
i#j i#j
(4.1)
V= max ‘Vij(f)l»
1€, T]
ij=12,...N
i#j
where

‘ 3
0= | SOy Oy (1)
p=1

then there exists a constant W =W (k)> 0 such thatfor each | = 1,2,3;
i=1,2. .. N -1, and k =2n we have

law |sW,

where aj = ajx (xV, y", v=0,1,..., n
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Using this lemma we can prove

Theorem 2. [f there exist the constants (4.1), then the method (3.20) is consistent with the
initial value problem (2.2).

Two next lemmas, namely

Lemma 2. [fthere exist the constant (4.1), thenfor arbitrary 1, p =1, 2, 3;
hq=12,..., N -1, and we have

oa; day;
ai <C(k) and |—|< C(k),
Y pq O pg

where C (k) > 0 denotes a constant that depends on k only.
and

Lemma 3. [f there exist the constants (4.1), then for each | = 1,2,3; i = 1L2,.., N — 1

and the following  inequality  holds:
- 3 N-1, _ -
0 (0 3) = a5, 0| SCWV Y S ([0 =500 [+ 10 =7 )

where C(k) > 0 denotes a constant.
allow us to prove
Theorem 3. Ifthere exist the constants (4.1), then the method (3.20) is stable on the initial
value problem (2.2) (in the sense of [16, Section 1.1.4, Definition 1.1.10]) with
the stability constant

S =exp(3(N ~1I}(P+1)0+P-1],

where P = max Py, 0= max C(k), and C(k)>0 arecon-
1=12,3 k=2,3,...,P
i=12,....,N—1
stants from the above lemmas.
On the basis of [16, Section 1.2.1, Theorem 1.2.3] from the theorems 2 and 3 immediately
follows
Theorem 4. [f there exist the constants (4.1), then the method (3.20) is convergent on the
initial value problem (2.2).

5. NUMERICAL EXAMPLES

First, let us test our method for a problem the exact solution of which is known. Let a material
point with the mass m, =1 at the initial moment ¢, belocated at (x,’, x,") = (1, 0) onthe xx,
plane, and let the velocity at #, begivenby (v, , v,’) = (.\:‘10, lg) = (0, ). Ifthe material point m,
orbits elliptically the material point m,, in which the origin of the rectangular frame is located,
then (see e.g. [2], [14] or [17])

Xy =a(cosE —e), x2:a\/1—e2 sin E, (5.1)
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where e is the eccentricity, E denotes the eccentric anomaly (see further), and

2
2¢ic
e= [1+212

u(-e?)’ u?

a= y W=G(my +my),

and where the constants ¢,, ¢, can be found from the initial conditions. Since (see e.g. [11] or

[17])
o =qJu(lte),

then if we assume the '+' sign, m, =328900.1, and G =1.20021974563227948 x 10", we

2
have

00=6.282941942913183700 x 4/ 1 +e.

From this relation we can evaluate a, and thereby v“Z =, (), in such a way that an elliptic

orbit with an eccentricity e given beforehand will be fully determined (see Table 1).

Table 1. Initial velocities and periods for the given eccentricities

e V() period
0.00 6.28294194291318370 1.00003873412624436
0.05 6.43809967544139349 1.08001904469491341
0.10 6.58960510226671025 1.17125931415944000
0.20 6.88261805925777273 1.39759661852445071
©0.30 7.16365600063424312 1.70753557924319781
0.50 7.69500092183402779 2.82853668139951299
0.70 8.19195404519764599 6.08604192288728225

In the test two-body problem considered the 'relative error' has been determine as follows

[ == ]
E=—| V=t = |»
SW T
- - dx . )
where X andv = E denote the exact solution obtained from (5.1), and "x " =|x1 |+|x2 |

Applying the method from Section 3 to the orbits from Tablel, we get (after adequate pe-
riods) the relative errors presented in Table 2. In all calculations the accuracy 10 '° has been

assumed for each component of the solution, i.e. ¢ for x, and v, ¢, for x, and v, and

e,=e,=10"°,

In our method for each component of the solution the appropriate degree of polynomial is
chosen on the basis of the accuracy given beforehand. Influences of these accuracies on the
relative errors are given in the next table (Table 3), and in Table 4 we present the achieved de-
grees of polynomials for different eccentricities. Let us note that higher degrees are obtained for
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greater eccentricities, what corresponds to a decrease of step size in automatic step size correction
methods. Finally, in Table 5 we present some results obtained using our method for long time

integrations.
Table 2. Relative errors (g, = ¢, = 10 %)
mean relative error
e step size degree of after the period
polynomials (x10"
0.00 period/10 = 0.100003873412624436 18 0.2
0.05 period/10 = 0.108001904469491341 25 1.6
0.10 period/10 = 0.117125931415944000 28 6.7
0.20 period/20 = 0.06987983(09262225355 22 5.0
0.30 period/20 = 0.0853767789621598905 24 0.6
0.50 period/40 = 0.0707134170349878248 20 22.9
0.70 period/90 = 0.0676226880320809140 16 183.2

Notes: 1) Mean degree of polynomials = mean order of solution obtained by our method
2) Period = period of orbiting

Table 3. Relative errors depending on given accuracies (¢ = 0.1, 2 = period/10)

mean .
e =g desrec of relative error

T & . after the period

polynomials

107 33 0.3x107'6

1076 30 0.4x 107

o™ 27 49.5x 10 =0.5% 107"
107" 23 89622 x 107 =09 x 107"

Table 4. Degrees of polynomials for solution coordinates x,, x, (¢, = &, = 107, h = 0.1)

degrees of polynomials

e
=02 t=04 t=0.6 t=0.8 t=1.0
0.00 18,18 18, 18 18,17 18,18 18,18
0.05 26, 26 24,23 22,21 23,22 25,25
0.10 29,29 26, 25 22,22 22,23 26, 26

0.20 34,34 27,27 21,23 20,19 23,23
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Table 5. Relative errors and computational times for 100 x period (¢, = ¢, = 10 )

degrees relative error .
. . . relative time
e step size of polynomials  at 100 x period of computations
at 100 x period (x10') P
0.00 0.100003873412624436 18,18 10.25 1.00
0.05 0.108001904469491341 27,27 150.53 2.61
0.10 0.117125931415944000 32,33 655.47 3.86

Note: "Relative time of computations” means that the time for e = 0.00 has been taken as a unit

I have compared the method presented in Section 3 with a number of well-known numerical
methods. For the two-body problem considered, the relative errors obtained in three selected me-
thods are presented in Table 6, while in Figure 1 we show a comparison of computational time
for these methods (the computational time for the Taylor-Steffensen method with e = 0.0 has been
taken as a unit).

Table 6. Relative errors in selected conventional methods

relative errors after the period (x10'6)

) TS (order) GBS EV (order)
0.00 0.39 (18) 14.99 0.77 (13)
0.05 8.56 (25) 20.99 3.14 (12)
0.10 14.74 (28) 25.76 3.92 (13)
0.20 36.38 (22) 23.82 1.17 (12)
0.30 5.68 (24) 34.37 5.64 (12)
0.50 259.80 (20) 115.37 5.83 (12)

TS - the Taylor-Steffensen method [15] with an automatic step size correction
GBS - the Gragg-Bulirsch-Stoer method [5],
EV - Everhart's method [4]

EV 8 cBs VDP M Ts

Fig 1. Computational times (VDP - the method of variable degree polynomials)
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From theresults presented, it follows that only accuracies obtained by the method of Everhart
can be compared with those obtained by our method. On the other hand, the method of variable
degree polynomials is more efficient (with respect of computational times) than that of Everhart,
and greater values of e only confirms this conclusion. From the point of view of efficiency, the
Taylor-Steffensen method seems to be the best.

The method of variable degree polynomials is especially efficient for small eccentricities and
in problems with the number of material points N> 2 where for each such a point (and even for
each coordinate and each component of velocity) we can assume adifferent accuracy. The motion
of the Solar system is an example of such a problem. Applying Theorem 1 it is possible to
evaluate the maximum step size for this problem, which depends on the planets considered (see
Table 7). From the point of view of method accuracy we do not recommend step sizes greater
than half of the values given in Table 7.

Table 7. Maximum step size in the problem of motion of the Solar system
(evaluated from the initial data at 1950.0 - the beginning of the year 1950)

planets considered maximum step size (in years)

Mercury 0.015
Venus 0.139
Earth+Moon 0.228
Mars 0.472
Jupiter 2.86
Saturn 6.37
Uranus 19.6

Neptune {7 $ 369 .
Pluto v V 66

As for N= 2, we performed a number of tests for N> 2 and compared numerous well-known
conventional methods with ours. As it turned out, only Taylor-Steffensen method with an auto-
matic step size correction was comparable from the point of view of efficiency. As an example
we present some results for the problem of motion of giant planets of the Solar system (Jupiter,
Saturn, Uranus and Neptune). We have solved this problem for 500 years using step sizeh = 0.5
year, and equal (10*?) and different (from 10™*? for Jupiter to 10° for Neptune) assumed
accuracies in components of the solution. It turned out that the different accuracies did not cause
the solution to change significantly and they enabled to save about 5% of CPU time (see Figure 2,
where the computational time for the Taylor-Steffensen method of order 9 has been taken as a
unit). It should be noted that the mean degrees of polynomials in the method with equal accu-
racies were equal from 13 to 14 for Jupiter to 11 for Neptune, while in the method with different
accuracies assumed - from 13 to 14 for Jupiter to 8 - 9 for Neptune.

Finally, let us add oneremark. Any decreasing of assumed accuracies must be carried out with
great care. A lesser accuracy we can assume only for a material point with a small mass or very
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distant from other points, i. e. for a material point whose gravitational influence on other points

is relatively small.

VDP with equal accuracies
VDP with different accuracies
TS of order 13

TS of order 11

TS of order 9

Fig 2. CPU times for the test five-body problem
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