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Abstract
We present PEER (probabilistic estimation of expression residuals), a software package
implementing statistical models that improve the sensitivity and interpretability of genetic
associations in population-scale expression data. This approach builds on factor analysis methods
that infer broad variance components in the measurements. PEER takes as input transcript profiles
and covariates from a set of individuals, and then outputs hidden factors that explain much of the
expression variability. Optionally, these factors can be interpreted as pathway or transcription
factor activations by providing prior information about which genes are involved in the pathway
or targeted by the factor. The inferred factors are used in genetic association analyses. First, they
are treated as additional covariates, and are included in the model to increase detection power for
mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the
causes of global expression variability. PEER extends previous related surrogate variable models
and can be implemented within hours on a desktop computer.

INTRODUCTION
Here we present a protocol to improve the power and interpretability of population-level
gene expression analyses. The protocol is based on the software suite known as PEER,
which consists of a collection of Bayesian approaches to infer hidden determinants and their
effects from gene expression profiles by using factor analysis methods1,2.

Our understanding of the genetic basis of gene expression has been developed by studying
species such as yeast3-5, worms6, mice7,8 and humans9-12. As large-scale expression data
were generated from these and other species over the past decade, it became increasingly
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apparent that there are nontrivial statistical hurdles to overcome in order to fully harness
their power13,14.

First, there are heterogeneous sources of variability in expression data, and dealing with
them requires careful, iterative analysis. It is important to account for technical and other
confounding sources of expression variation, including batch effects, environmental
influences, sample history and other known or unknown factors. At the same time, we need
to model the effect of the variables of interest, such as locus genotypes or case-control
status. Second, it is beneficial to integrate existing knowledge on pathways and regulatory
networks into the statistical analysis and mapping procedure to better understand the
regulation of multiple transcripts from a single locus15,16.

Learning unmeasured determinants of gene expression variation
Several studies have found that batch effects and other global confounders reduce the power
to find expression quantitative trait loci (eQTLs)17,18. However, these factors cannot be
directly included in modeling if they are not measured. We and others have developed novel
statistical approaches to account for such hidden determinants of expression variation1,19,20.
Our method infers a small number of variables for every individual in the data set. We
assume that these variables have a broad influence, and thus each of them has an effect size
for every gene. We then treat them analogously with measured global confounders such as
batch labels or measured RNA quality, and include them in the model to both improve
power to detect true eQTLs and reduce spurious false-positive associations1.

Learning cellular features from gene expression
eQTL studies have shown the existence of regulatory hotspots that are associated with
multiple genes in trans3-5,21,22. Although a single enhancer may regulate multiple genes via
a direct mechanism, an important alternative explanation is the existence of some other
biological variable that affects the expression levels and is itself under genetic regulation.
PEER can help to find the biological origin of such factors and hence the observed eQTL
hotspots2. For example, we may model the expression variability of genes as a function of
transcription factor activations. Our method again infers a small number of variables, now
corresponding to the activation of each transcription factor, for every individual. However,
we no longer assume that these variables affect all gene expression levels. Instead, they are
likely to influence the gene expression level only if the corresponding transcription factor
targets the gene. For all other genes, the effect of the variable is likely to be very close to
zero. The information pertaining to which factor can affect which gene is provided to PEER,
for example, in the form of transcription factor binding or pathway membership data. The
learned factors can themselves be used as traits and mapped to genetic loci, thereby
explaining trans hotspots as a composite effect of interpretable biological features2.

Applications
PEER has been successfully used in several gene expression variation studies to increase the
number of eQTL discoveries. Initially, we demonstrated additional eQTL findings in yeast
and mouse data sets1. We then found three times more eQTLs compared with a standard
linear model in the HapMap II gene expression data using genotyping arrays1, as well as in
full genome sequences from the 1000 Genomes project23. In the MuTHER project, the
eQTL findings increased twofold in skin and fat tissues, as well as in lymphoblastoid cell
lines24.

Applications of PEER have also helped in understanding the genetics of inferred cellular
traits when including prior information on targets of cellular features2. We reanalyzed the
data from Smith and Kruglyak5, inferring the activations of 167 transcription factors in a set
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of yeast segregants. Here 15% of hotspot-associated trans eQTLs could be explained by
genetic control of the transcription factor activations, which had downstream effects on gene
expression levels.

PEER can be applied to the analysis of reference populations as well as case-control studies
and differential expression analyses. For such uses, an additional covariate for the case
status must be introduced, but the availability of genotype data is not required. PEER can
also account for further measured covariates; for example when data are combined from
multiple experiments or laboratories. More generally, PEER can be used for analyzing any
high-dimensional phenotype with population-scale data.

Algorithm
The application of PEER to gene expression studies consists of two steps (Fig. 1). First,
PEER is used to infer hidden expression determinants from the expression profiles. Second,
the learned factors are used in alternative genetic analyses (Fig. 1a–c).

The learning step done in PEER infers hidden expression determinants from the normalized
and preprocessed expression profiles, taking any known covariates into account. The learned
variables can be constrained to affect known sets of genes via a prior connectivity matrix.
By default, with no prior connectivity given, they are assumed to be global and to affect
large fractions of all genes. The learning algorithm in PEER estimates a suitable number of
factors implicitly and only explains broad variance components, thereby helping to avoid
overfitting1.

PEER produces learned factor activations, their effects on each gene and a residual data set
of the expression values after subtracting the factor contribution (Fig. 1). eQTLs can then be
mapped on the residuals directly (Fig. 1a), or on original data, treating the learned factors as
covariates in the association tests (Fig. 1b). The factors can also be used as phenotypes in
genetic mapping (Fig. 1c) or they can be tested for association with other phenotypes.

PEER itself does not offer low-level data processing. Gene expression normalization and the
necessary preprocessing of genotype information need to be done using external tools25,26.
When RNA-seq estimates are used for transcript abundance, we recommend using DESeq to
estimate library sizes and variance-stabilize expression data sets27. If it is available from
low-level processing, PEER can also correctly use information on measurement uncertainty
for specific probes and samples.

The learning of factors implemented in PEER is based on efficient approximate inference
techniques that ensure computational tractability for practical applications while retaining
the necessary accuracy of the results obtained1,2,28. Once the hidden expression
determinants are learned, association testing is carried out in the second analysis step by
using a range of existing methods. Our instructions assume the use of a standard linear
model that yields a test statistic for linkage or association between individual variants and
genes, such as that implemented in R/qtl (ref. 29) or PLINK30. To assess genome-wide
significance, these statistics have to be converted to association probabilities and corrected
for multiple testing for both genetic variants and transcript levels (e.g., using Bonferroni or
false discovery rate (FDR)31).

Comparison with other methods
The functionality implemented in PEER is in part also available in alternative packages that
account for confounding influences in eQTL studies. These either recover the set of hidden
factors explicitly19 or use the covariance structure induced by them20,32. The algorithm
implemented in PEER is most closely related to surrogate variable analysis19 and has
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previously been compared in more detail1. Notably, PEER allows for the following: the
automatic setting of an appropriate number of hidden determinants to learn, the
incorporation of probe-level uncertainties (e.g., if probe measurements are not variance-
stabilized from count data) and the combination of the inference of hidden confounding
factors while accounting for the effect of known covariates.

Similarly, alternative approaches to learn hidden determinants to be used as trait variables
have been suggested. For example, other bilinear models have previously been used by
Biswas et al.33, and methods to combine eQTL mapping with integrated network models
have been considered by Zhu et al.34 and Aten et al.35. Notably, the supervised factor
inference in PEER is scalable and can be used on genome-wide data sets while retaining
sufficient accuracy, thus allowing for meaningful conclusions to be drawn from the inferred
quantities themselves2.

Limitations
PEER is applicable to a wide range of analysis settings. At present, there is no support for
mixed modeling, wherein some variables (e.g., zygosity, gender, batch) have a random
effect. In addition, information on population structure, if not encoded by the covariates
(e.g., by introducing principal components of the genotype data), is not included in the
model, and it may be recapitulated in the inferred factors. Finally, as a rule of thumb, the
number of samples needs to be larger than the expected number of factors to be learned. In
combination with prior knowledge, it is, however, feasible to statistically identify a greater
number of factors than individuals in the data set2.

Experimental design
Required data matrices—The application of PEER for eQTL mapping requires gene
expression profiles and genotype information for a set of N individuals. Example data files
are provided in Supplementary Data 1. For applications not related to QTL mapping, the
genotype matrix is not required.

• Expression matrix. Matrix of shape N × G, where G denotes the number of
measured gene expression levels. Expression estimates can be positive or negative
values and on a logarithmic scale, as provided by most common normalization
methods. Ideally, the expression estimates should be variance-stabilized.

• Genotype matrix. Matrix of shape N × S, where S denotes the number of
genotypes. For fitting association models, genotypes should be encoded as the
minor allele count (0/1 for haploid, 0/1/2 for diploid organisms). Existing packages
(R/qtl, PLINK) will have their own format requirements for genotype data.

Optional data matrices
• Covariates matrix. Matrix of size N × C, where C is the number of covariates.

Examples of covariates include other cofactors such as gender information,
population membership or batch variables to be accounted for in the analysis.
Categorical variables (e.g., batch number) have to be encoded as indicators, with a
different binary variable for each batch, having a value of 1 if the individual was in
the batch and a value of 0 otherwise. See the tutorials provided with the PEER
package for further examples.

• Uncertainty matrix. If they are provided by the low-level processing of gene
expression, it is possible to include uncertainty estimates specific to each gene.
This matrix has the same dimension as the expression estimate, N × G, providing
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the variance of each measurement. If no uncertainty matrix is provided, PEER
estimates the data variance automatically.

• Prior connectivity matrix. To infer factors that affect specific genes, PEER requires
knowledge about which genes every factor can influence. This information takes
the form of a matrix of size K × G, where the (k,g) entry corresponds to the a priori
probability of factor k having a nonzero effect on gene g. For example, if a
transcription factor k is known to bind to the promoter of gene g, the (k,g) entry
should be close to 1, denoting a high probability of true regulation. In the simplest
case, this matrix is binary with a value of 1 if variable k is known to affect gene g
and a value of 0 otherwise. Prior link probabilities between 0 and 1, reflecting
uncertain information, are also possible2. Note that the genes in the expression
matrix and in the prior connectivity matrix have to be ordered in the same way.

File formats and example data files
• Data files should be formatted as comma-separated values (CSVs) or tab-delimited

values. CSV files can be exported from common software for genomic data.

• Missing data are not supported for covariates and expression levels. Individuals
with missing values should be dropped before the protocol, or their missing values
need to be imputed. We suggest using the R ‘impute’ package for this task (see
Step 5).

• We provide data files with an example eQTL experiment based on yeast data4 in a
format compatible with R/qtl (Supplementary Data 1). These experimental data
include a genotype matrix (genotype.csv), expression levels (expression.csv),
covariates (covariates.csv) and a prior connectivity matrix for learning biological
variables (prior.csv). These example data can be used to understand the PEER
workflow for other experiments and to reproduce the analysis steps in this protocol.

MATERIALS
EQUIPMENT

• Computer operating system: Linux or Mac OSX

• R (http://www.r-project.org): an open-source software environment for statistical
computing (version 2.9.0 or higher)

• Example data (example data sets and scripts to reproduce the results shown here are
available as Supplementary Data 1)

Required R packages
• PEER R package (can be downloaded from https://github.com/PMBio/peer/wiki.

The examples in the protocol are based on PEER 1.3.)

• R/qtl (optional for QTL mapping in crosses; it can be installed from R by entering
install.packages(“qtl” at the command prompt)

• Impute R package (optional for imputation of missing values in gene expression; it
can be installed from R by entering install.packages(“impute”) at the
command prompt)
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Optional implementation
• Optionally, all analysis steps outlined in this protocol can also be implemented

using the Python interface of PEER, offering near-identical syntax, or the
command-line tool (see https://github.com/PMBio/peer/wiki).

PROCEDURE
Preparation and data loading  TIMING 15 min

1| Load PEER and R/qtl:

> library(peer)

> library(qtl)

2| Load the prepared data matrices into an R/qtl cross object in the running R session. We
assume that the data files follow the naming convention of the example data provided. For
details on required and optional data matrices, see Experimental design.

> cross < - read.cross(format=“csvs”,genfile=“genotype.csv”, 
phefile=“expression.csv”, genotypes=c(0,1))

Learning of hidden determinants from gene expression using PEER  TIMING 30
min–2 h

3| Build the model (Fig. 1).

> model=PEER()

4| Set the maximum number of unobserved factors to model.

> PEER_setNk(model, n_unobserved_factors)

Note that unlike PCA-type models, the number of unobserved factors is not crucial when no
prior is specified because PEER uses automatic relevance determination36 to choose a
suitable effective number of factors. Hence, n_unobserved_factors needs only to be set to a
sufficiently large value (for technical details see Stegle et al.1). If no prior information on the
magnitude of confounding effects is available, we recommend using 25% of the number of
individuals contained in the study but no more than 100 factors.

5| (Optional) Impute missing values in gene expression. If the gene expression data set
contains missing values, we suggest using the impute package to fill in the missing
measurements.

> library(impute)

> cross$pheno < - impute.knn(cross$pheno)

6| Set expression data.

> PEER_setPhenoMean(model, as.matrix(cross$pheno))
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7| (Optional) Set expression data uncertainty.

> PEER_setPhenoVar(model, as.matrix(expression_variance))

8| (Optional) Set observed covariates.

> PEER_setCovariates(model, as.matrix(covariates))

9| (Optional) Set prior connectivity.

> PEER_setSparsityPrior(model, as.matrix(prior))

If prior connectivity is specified, setting the number of unobserved factors is not needed.
The number of factors in the prior information matrix over-rides any previous specification.

10| Train the model, observing convergence:

> PEER_update(model)

If the model is not converged after the default 1,000 iterations, and the variance of the
residuals keeps decreasing, choose a higher value of iterations, e.g., 10,000.

> PEER_setNMax_iterations(model, 10000)

A total of 100 iterations should be sufficient to reach convergence on most data sets.

? TROUBLESHOOTING

Diagnostics and interpretation of learned hidden determinants  TIMING 30 min

11| Run correlation analyses between the inferred variables and batch confounding effects.
For example, to check first factor and first covariate, use:

> cor (PEER_getX(model)[,1], PEER_getCovariates(model)[,1]))

If several inferred factors correlated with batch effects/confounders, this can be indicative of
a more complex, nonlinear effect of these known covariates on the mRNA levels. Scatter
plots can help understand the nature of these dependencies.

12| Plot the posterior variance of the factor weights and convergence diagnostics. If there is
a natural choice for the number of factors (usually observed as an ‘elbow’), and you are
using the inferred factors as covariates in the linear model (see below), consider only
including the more relevant factors, or rerun the model with this number of factors (Fig. 2).

> PEER_plotModel(model)

Application of learned hidden determinants in eQTL analyses  TIMING 5 h

13| Correcting for learned determinants in eQTL scans. This can be done using option A
(performing an eQTL scan on residual data set after accounting for confounders (Fig. 1a)) or
option B (including observed and inferred confounders in the model (Fig. 1b)).

A. Perform an eQTL scan on a residual data set after accounting for confounders
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i. This allows the use of nonparametric QTL methods such as rank
correlation. To perform per-marker nonparametric tests on PEER residuals
for genes 7–12, implicitly estimating genotype probabilities where data are
missing, and to calculate q-values, use:

> cross$pheno=PEER_getResiduals(model)

> colnames(cross$pheno)=1:dim(cross$pheno)[2]

> lod_scores=scanone(cross, model=“np”, pheno.col=7:12)

ii. Correct for multiple testing by using FDR for the first tested trait, on the
basis of χ2 P values from the nested model.

> qvals=p.adjust(dchisq(2.*log(10)*lod_scores[,3]), 
method=“fdr”)

Alternatively, for all traits without correcting for tests with multiple
transcripts, use:

> qvals=apply(lod_scores[,3:8],2,function(x)
{p.adjust(dchisq(2*log(10)*x,1), method=“fdr”)

B. Include observed and inferred confounders in the model

i. This approach can only be used with parametric models. To perform per-
marker parametric test for genes 7–12, using inferred PEER factors as
covariates, use:

> lod_scores=scanone(cross, method=“hk”, model=“normal”, 
pheno.col=7:12, addcovar=PEER_getX(model))

The number of discovered associations between expression levels and genotypes of nearby
loci should increase as the variability attributable to other global factors is explained away.
When testing for association with variants in a 10,000-bp window around the probe, we
found many additional eQTLs for a range of LOD score cutoffs (Fig. 2a).

? TROUBLESHOOTING

14| Genetic mapping by using the hidden determinants (Fig. 1c). This can be achieved by
using option A (mapping the genetic basis of inferred variables by setting them as the cross
phenotype, followed by standard mapping) or option B (further genetic analyses based on
the learned factors).

A. Mapping the genetic basis of inferred variables by setting them as the cross
phenotype, followed by standard mapping

i. To map the genetic basis of inferred variables, set them as the cross
phenotype, followed by standard mapping:

> cross$pheno < - PEER_getX(model)

> colnames(cross$pheno) < - 1:n_factors
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> lod_scores < - scanone(cross, pheno.col=1:n_factors, 
method=“hk”)

Factors associated with a genotype are indicative of a trans eQTL hotspot,
with many gene expression levels associated with a single variant. If a
biological prior is not being used, include this locus genotype in the model
as a covariate and rerun; this increases the interpretability of the results.
Depending on strong effects or suitable prior information, learned factors
explain trans eQTL hotspots with few individual factors (Fig. 3).

B. Further genetic analyses based on the learned factors

i. The learned factors can be used in other contexts, e.g., to identify genetic
interactions between cellular features, the genetic state and expression
levels2. For an interaction scan of gene 10 and factor 5 using R/qtl, use:

> int_lods=scanone(cross, pheno.col=10, 
intcovar=PEER_getX(model)[,5], addcovar=PEER_getX(model)[,5])

In this case, additional care has to be taken for multiple testing corrections,
as the space of possible interactions is large.

? TROUBLESHOOTING

? TROUBLESHOOTING

Troubleshooting advice can be found in Table 1. For additional troubleshooting and
diagnostic guidelines, please also consult the PEER WIKI online (https://github.com/
PMBio/peer/wiki).

 TIMING

Steps 1 and 2, loading data and setting up the R environment: 15 min

Steps 3–10, setting up the PEER model and running inference: 30 min–2 h (for 6,000 genes
and 170 factors). Application of PEER scales linearly in time and memory consumption
with the number of genes and individuals, and quadratically with the number of learned
factors. We recommend creating a moderate-sized data set to estimate the running time.

Steps 11 and 12, diagnostics of inference results: 30 min

Steps 13 and 14, application to eQTL analysis: 5 h (for 6,000 genes and 3,000 SNPs)

Computation time for eQTL scans scales linearly with the number of tested loci and
transcripts.

ANTICIPATED RESULTS
PEER produces estimates of hidden determinants of gene expression that aid analysis of the
data. Depending on whether prior information is included while learning (Step 9), these
estimates resemble either interpretable cellular features or broad variance components (Fig.
2). In eQTL mapping, the inferred factors can be used to increase power in genetic mapping
(Fig. 2) and to identify the genetic determinants of learned cellular features (Fig. 3). In
addition to applications in genetic mapping, hidden determinants of gene expression can be
used in other analyses of gene expression (see, for example, Leek et al.19).
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Protocol alternatives for applying PEER to analyses of expression QTL studies. PEER infers
hidden factors (red triangles), their weights (red star) and a residual gene expression matrix
(red square) from a set of gene expression levels (orange squares). If available, experimental
confounders (blue triangles) or prior information on groups of genes affected by a factor
(blue star) can be included. (a) Results of PEER are processed in downstream QTL analysis
on the residual data set. (b,c) Alternatively, the inferred factors can be used (b) as additional
covariates or (c) as phenotypes themselves. Orange shapes denote experimental
measurements; blue shapes denote prior information including covariates; and the red shapes
denote PEER results. Similar shapes of the figures denote similar matrix dimensions.
Dashed arrows indicate dependencies that optionally can be taken into account.
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Figure 2.
Illustrative analysis results of the application of PEER. Data are from Smith and Kruglyak5.
(a) The number of significant associations between locus genotype and probe expression
levels is expected to increase upon the application of PEER (orange line) compared with the
standard model (light blue line) for a range of LOD score cutoffs (FDR threshold of 5%
shown as dashed line). (b) Diagnostic plot of the factor relevance (ARD parameters). PEER
deactivates all but the first three factors in this data set.
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Figure 3.
Illustrative analysis results of the application of PEER in supervised mode. Data are from
Smith and Kruglyak5. (a) Density of the genetic associations between genetic markers and
genes (per-gene FDR < 5%). (b) When PEER is used to infer transcription factor
activations, the resulting variables are themselves influenced by genotype, which are
demonstrated here by linkage plots of YAP5 (orange), PHO4 (light blue) and PDR3 (black)
factors. Inferred factors capture some of the eQTL hotspots from standard eQTLs.
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