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ABSTRACT 
 

 

At its heart, a password cracking attack is just a guessing attack. An attacker makes guesses 

about a user‟s password until they guess correctly or they give up. While the defender may limit the 

number of guesses an attacker is allowed, a password‟s strength often depends on how hard it is for an 

attacker to model and reproduce the way a user created their password. 

 If humans were effective at practicing unique habits, or generating and remembering random 

values, cracking passwords would be a near impossible task. In reality, that isn‟t true. A vast majority of 

people still follow common patterns, from capitalizing the first letter of their password to putting 

numbers at the end. What is changing though are the protective techniques being employed that are 

independent of user behavior. Practices such as salting password hashes negate the ability to pre-

compute attacks. Likewise, password hashes are becoming more computationally complex, raising the 

costs for each guess an attacker makes. 

 While before an attacker could rely on simple brute force methods and ad-hoc models, there is 

a growing demand for more effective ways to predict what a user‟s password will be. The need for this 

is especially strong in the law enforcement community, where tough encryption is encountered 

regularly. It is also important for the defender to be able to accurately model the security that user 

generated passwords provide. 

 This paper details several new ways that probability information can be applied to maximize the 

success of password cracking attacks. From evaluating the effectiveness of known probabilistic 

techniques such as Markov models, to designing novel techniques such as using probabilistic context 

free grammars to create password guesses, there are many different ways probability information can 

be incorporated into modeling user behavior. Furthermore, the techniques described in this paper have 

been developed using real life passwords and have been tested in actual controlled password cracking 

attacks. This focus on training and testing against large sets of real life passwords is fairly unique, and 

only possible due to the increasing availability of disclosed password lists. In addition to allowing the 

development of more effective attacks, knowledge of how people select passwords can then be applied 

to evaluating the effectiveness of password creation policies. For example, how much stronger is an 

eight character password compared to a seven character password? In short, a better understanding of 

how users create passwords can benefit both the attacker and the defender.  
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CHAPTER 1  

INTRODUCTION 
 

 

“But the files were encrypted, and the 39-year-old Wyllie refused to divulge the password. The 
inability of police to review the files - combined with the fact that a camera he used was unplugged 
when the raid was commenced - meant prosecutors lacked the hard evidence they needed to 
prove the man had secretly taped his flatmates.” [1] 
 

1.1 Overview of Password Cracking Research Detailed in this Paper 
 
 
Human memorable passwords are an integral part of most computer security systems today. 

Passwords are essential to our online identity; we use them for everything from online banking to 

Facebook status updates. Therefore, accurately understanding the security that passwords provide us 

is highly important. In addition, as pointed out in the quote above, there are many times when people of 

trust possess legitimate reasons to crack a password. Much of the research in this paper has been 

supported by the National Institute of Justice due to the pressing need of law enforcement officials to be 

able to analyze evidence protected by strong encryption. In a large number of cases, ranging from 

prosecuting child exploitation to investigating insider trading, police possess encrypted files and the 

only way to identify their contents is to crack the password protecting them. 

 Over the course of this research it was startling to find the lack of public analysis into the 

effectiveness of password cracking strategies, despite the fact that some early works such as [61, 62, 

79] demonstrated the potential impact and usefulness of such undertakings. Much of this almost 

certainly stems from the fact that until recently there were very few publicly available examples of real 

life passwords for researchers to work with. As we‟ll see in Chapters 1.5 and 1.6, this is starting to 

change though.  As additional examples of how people create and use passwords become available, a 

more detailed scientific inquiry into the security that passwords provide can be attempted. That in turn 

allows new attack methodologies to be developed and evaluated.  

 When writing this dissertation, my goal was not only to document my research and the new 

techniques I have developed over the last three years, but also provide a reference to help understand 

this research in comparison to existing password cracking methods. Therefore, while Chapters 1.2 

through 1.4 are mostly background information, the main points to take away from them is that due to 

stronger password hashes being used, the computational costs of a password cracking session is 

dramatically rising. At the same time, most existing password cracking tools possess only a 

rudimentary ability to model human behavior. In fact, of all the password cracking tools examined, only 
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two, John the Ripper and Access Data‟s PRTK, allow an attacker to customize their own word mangling 

rules. Chapter 1.5 covers the work I did collecting real user passwords along with the hacker subculture 

surrounding password cracking. Rounding out the first section is Chapter 1.6 which details the 

password datasets that will be referred to throughout this paper. 

Chapter 2 delves into the effectiveness of different styles of brute force attacks, along with 

attempts to optimize brute force attacks using probabilistic methods. While most of the algorithms 

covered in this section are commonly known, to my knowledge this is the first public study of their 

effectiveness against large datasets of real life password. In addition, this section details one of the 

custom tools I wrote, middlechild, which applies word mangling rules to brute force attacks. 

Chapter 3 covers traditional rule based dictionary style attacks. In it, I describe my work creating 

custom dictionaries from internet based sources such as Wikipedia, as well as dictionaries targeted 

specifically against passphrases as well as passwords. A majority of this chapter though deals with the 

development of a customized edit distance metric that can be used to reverse mangle known 

passwords. This has several very useful applications such as a password strength checker, finding the 

relative effectiveness of different input dictionaries, discovering new, (to the attacker), mangling rules, 

and generating mangling rules for use with traditional password crackers. This chapter also shows 

some of the limits of traditional rule based dictionary attacks, and why there is a need for more 

advanced methods such as those detailed in Chapter 5. 

Chapter 4 builds upon Chapter 3 by describing a new algorithm I developed to create dictionary 

based rainbow tables which allow an attacker to pre-compute much of the work involved in a password 

cracking attack. While traditional brute force rainbow tables have been available for years, this method 

provides a way to extend the rainbow table algorithm to cover dictionary based attacks in a flexible 

manner while minimizing storage requirements. 

Chapter 5 describes a completely novel take on performing dictionary based attacks using 

context free probabilistic grammars. While it may sound like an overstatement, I truly do believe that 

this will fundamentally change how people perform password cracking attacks. The basic idea is to 

move away from trying to design mangling rules that model user behavior, which is what traditional 

password crackers do. Instead we should focus on the probabilities associated with how users create 

their passwords. For example, we know people use words such as “password”, “football”, and “love”, 

much more often than “zebra”, and “xylophone”. Likewise certain numbers such as “1234”, are much 

more common than “8131”. What the method I developed does is attempt to take this probability 

information and weaponize it to generate highly targeted password guesses.  

Finally Chapter 6 deals with applying the knowledge learned from cracking passwords to 

helping the defender evaluate the strength of their password creation policies. More specifically it 
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covers some of my research into the effectiveness, (or lack thereof), of using entropy as a password 

strength measurement. While password entropy is basis for most password creation and use policies, 

this is one of the only existing investigations into the accuracy of using entropy as a security metric by 

cracking large sets of real passwords using existing password cracking techniques. 

 

1.2 Overview of a Password Cracking Session 

 
When talking about password cracking, it‟s important to keep in mind that there are two types of 

password cracking attacks: online, and offline. In an online password cracking attack, the attacker uses 

the targeted system like an oracle, submitting guesses to it in an attempt to gain access. The 

distinguishing feature of an online password cracking attack is the device or system the attacker is 

focusing on is operational, and security features set up by the defender, (such as those limiting the 

number of incorrect logins), are still active. A frequently cited example of an online attack is an attacker 

trying to log into someone else‟s website or computer account. Online attack can also include more 

esoteric examples such as defeating an electronic lock, guessing the pin number to a bank ATM, or 

gaining access to a locked cell-phone.  

In an offline attack, the attacker has gained direct access to the password hashes or encrypted 

files. The reason why it‟s called an offline attack is that the system protecting these files has been 

bypassed, and thus the attacker is no longer limited by the defender‟s policies on the number of 

guesses they can make. Offline attacks are often seen when an attacker successfully breaks into a 

computer or a website and is trying to determine users‟ passwords. Cracking those passwords would 

then provide the attacker access to other sites and/or resources. Offline attacks are also employed in a 

forensics setting, such as described in Chapter 1.1 where law enforcement officers have obtained a 

computer hard-drive but must deal with encrypted files. An offline attack is then used to attempt to 

decrypt the files.  

The main distinction between an online and offline cracking attack, (besides the tools used), is 

the number of guesses allowed to the attacker. This is important since if the attacker can only make a 

few guesses before getting locked out, even a very weak password can provide quite a bit of security. A 

good example of this is the PIN used with most bank ATM machines. While user passwords are 

typically limited to four digits, giving it a key-space of ten-thousand possible values, an attacker is 

generally limited to three of four incorrect guesses.  In an offline attack on the other hand, the attacker 

is allowed as many guesses as they have time and computational power to make. This means that an 

offline cracking session comprising several billions guesses can be quite common depending on the 

password hash or encryption algorithm being attacked, and a four digit PIN would likely be cracked in 
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seconds. While the defender can attempt to make the guesses computationally expensive, they are 

always limited by the fact that this also affects legitimate users by increasing the time it takes to log in. 

Due to the prevalence of offline password cracking attacks in computer forensics, most of the 

research described in this paper deals with offline attacks. As mentioned previously - in an offline 

password cracking attack the attacker has already gained access to the encrypted files or password 

hashes. It‟s important to note that in most cases the attacker is not attempting to break the encryption 

directly. Instead they are attacking the user password creation strategy by attempting to guess what 

that password was. Because of this focus on attacking the user, a password cracking attack can be 

viewed as a password guessing attack. This guessing attack can then be broken up into three different 

steps: 

 

1. The attacker makes a guess of what the user‟s password might be. For example 

„password123‟ 

2. The attacker hashes that guess using whatever hashing algorithm is being attacked. In the 

case of file encryption, the hashing algorithm to convert a user‟s password to an encryption 

key is used. 

3. The attacker then compares the hash of their password guess to the hash they are trying to 

crack. If the two hashes match, the password is considered broken. With file encryption, the 

attacker attempts to decrypt the file (or file header) with the key generated, and if the file is 

decrypted successfully, the password is considered cracked. 

 

These three steps are repeated over and over until the attacker breaks the password; or runs out of 

time. A majority of this paper deals with the different ways to make guesses as discussed in Step #1. 

Step #2 will be covered in more detail in section 1.3. Finally, while step #3 may sound inconsequential, 

it does provide a significant stumbling block when attempting to crack several hundred thousand 

password hashes at the same time, or when a password salt is involved. 

 

1.3 Password Hashes and Salts 
 

A hash is a one way cryptographic function that takes data as input and returns a fixed length output. 

This is different from your typical encryption algorithms in the fact that there is no decrypt function for 

hashes. Ideally, any hash used to store passwords should be resistant to pre-image and second pre-

image attacks. Pre-image resistance means given a hash, it should be infeasible for the attacker to use 

a weakness of the hashing algorithm to determine the text which created the hash. Second pre-image 
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resistance means given a hash, it should be infeasible for the attacker to create a collision involving 

that hash, such as creating a second password which would hash to the same value. 

  The above properties of a hashing function allow a computer to authenticate users via a 

password hash while at the same time limiting the ability of an attacker to log on even if they possess 

the password hash. When a user creates a password for the first time, the computer, (or program), 

hashes their password using whatever hashing algorithm it is using. The computer then stores the hash 

of the user‟s password, but not the actual password. Later when the user wants to log into the 

computer, they would type their password again. The computer would hash what they typed and then 

compare it to the hash it has on file. If those two hashes match, it then lets them log in. If the hashes 

are different, it alerts the user to try again. 

  Unfortunately, as described in Section 1.2, while it may be infeasible for an attacker to attack 

the hashing algorithm, they can still treat the hash like an oracle and perform an offline password 

cracking attack. If the attacker has a copy of the hash, they can make a guess of what the user‟s 

password might be, hash the guess, and then compare the guess‟s hash vs. the hash they are trying to 

crack. If the two hashes match, the attacker has cracked the password hash. If not, the attacker 

guesses again. Because of this, any hashing algorithm should always be viewed as a delaying tactic, 

and the security of it depends on the individual user‟s password selection. 

 As a side note, most file encryption protocols also use hashes, but in this case to render a 

user‟s password into a fixed length key. An attacker attacks file encryption in much the same way as 

password hashes, by making a guess, hashing the guess, but this time then using that hash to attempt 

to decrypt the file or the file header. If the file decrypts correctly, the attacker knows they were able to 

successfully crack the password. Throughout this paper while password hashes will be mentioned the 

most frequently, the same techniques also apply to cracking file encryption as well. 

 A password salt is a value added to a password hash to prevent hash lookup attacks. Hash 

lookup attacks, will be covered in much more detail in Chapter 4 “Dictionary Based Rainbow Tables”, 

but the short description of them is that they are a way of pre-generating password hashes and then re-

using the results in later password cracking attacks. A salt is simple a value added to a user‟s password 

sometime during the hashing process so that two users who pick the same password will have different 

password hashes. An example of that can be seen in Table 1.3.1, where the username is appended to 

a user‟s password before it is hashed. 
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Table 1.3.1 Demonstration of Password Salts 

Salt Used User  Password Password Hash (MD5) 

None Bob password1 7C6A180B36896A0A8C02787EEAFB0E4C 

None Alice password1 7C6A180B36896A0A8C02787EEAFB0E4C 

Username, 
(concatenated) 

Bob password1 484502C8A463B4EFD6DEC91D1996D403 

Username, 
(concatenated) 

Alice password1 D9591F23A232750FCC80F7F134BD19C1 

 

 

 Password salts are important, since if the possible values for a password salt are large enough, 

it becomes infeasible for an attacker to pre-generate hashes using all the possible salts. In addition, 

unique passwords salts also make it harder for an attacker to target many different password hashes at 

the same time. Usually when attempting to crack lists of several thousand password hashes, the 

attacker only needs to hash their guess once, and then compare the hashed result against all of the 

targeted password hashes. If a unique salt is used though, the attacker has to hash each guess 

independently with the specific salt for each hash, before making a comparison. To give an example of 

this, consider an attacker targeting ten thousand password hashes. If a typical attack would take one 

hour to compete, and those password hashes did not possess a salt, it would take approximately one 

hour to attack all of them. If the passwords were hashed with a unique salt, the same attack would then 

take ten thousand hours or approximately 1.14 years to complete.  

 It‟s important to note that the password salt is not a secret; it is stored in plain-text on the server. 

The secret is the user‟s password itself. Because of this, the password salt can be thought of as an 

extension of the hashing algorithm. Also since the password salt is stored on the server, the user never 

needs to know that the password salt exists. 

 It‟s very hard to write a document about password cracking without talking about several 

specific password hashing algorithms. Much like a study of car engines will detail specific models and 

makes; a password cracking session is very dependent on the password hash being attacked. 

Depending on the computational complexity of the hash, the attacker may be able to make millions of 

guesses a second, or just one or two. Likewise, if a password hash is salted or not can have a huge 

impact on if hash lookup tables can be used, and whether auditing large lists of password hashes is 

feasible or not. The password hash also determines which password cracking tools may be used, as 

different tools will only support attacking certain hash types. To that end, below is a quick description of 

some of the most common password hashing algorithms encountered. 
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1.3.1 The UNIX Crypt Family of Hashes 
   

The Crypt family is a suite of UNIX tools commonly used to hash and/or encrypt files [13]. The original 

Crypt(1) algorithm was used to encrypt files, but is very rarely employed due to multiple weaknesses 

inherent to it. In fact, tools to crack Crypt(1) have been around since 1984 [14]. The specific password 

hashing algorithms currently in use of the Crypt family are labeled Crypt(3). The original version of this 

used a modified form of DES to create the password hash, and salted that hash with a twelve bit 

number. It proved fairly secure, but has fallen out of use due to the speed at which guesses may be 

made. Some system administrators took their own initiative to run the Crypt(3) algorithm multiple times 

on each password to increase the time requirement and thus make it stronger [13]. This had the added 

advantage of making their implementation of the Crypt(3) incompatible with the standard and thus 

many password cracking programs would not be able to attack them without modification. 

Additional versions of the Crypt hashing algorithm have become popular, and use multiple 

rounds of hashing algorithms such as MD5, SHA1, SHA2 or BlowFish, as their base. The specific 

algorithm being used, (along with the number of rounds it is run), can be identified by the first values of 

the password hash. For example, passwords hashed by a thousand rounds of MD5 may be identified 

by their hash starting with a „$1$‟. Likewise, hashes using the BlowFish algorithm start with a „$2$‟, and 

hashes using the SHA1, and SHA2 start with a „$5$‟, or a „$6$‟. It is widely considered that modern 

versions of the Crypt(3) password hash are extremely resistant to attacks [15], but their security still 

depends on user password selection. 

 

1.3.2 The LANMAN Hash 

 

The Microsoft Windows LANMAN, (also known as LM), password hash is extremely prevalent, and 

unfortunately tremendously weak [16]. As the main password hash used when DOS was developed, it 

was preserved in all future releases up to Window Vista where the hash is no longer enabled by 

default. While the ability to disable the use of LANMAN hashes has existed since Windows NT, it 

required a manual change to the registry file which few users performed. Thus, the password hashes 

on most Windows computers and servers has been trivial to crack for quite some time. 

There are several reasons why the LANMAN hash is considered broken. Much like the original 

Crypt(3), it is based off of a modified version of the DES encryption scheme. Therefore, an attacker can 

make guesses very quickly. Also no password salt was used making it vulnerable to pre-computation 

attacks. Furthermore it severely downgraded the strength of any password the user selected due to 

several poor design choices. First it only allowed passwords to be a maximum of fourteen characters 
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long. Worse, it then split the password hash up into two different hashes, the first one hashing the first 

seven characters of the password, and the second hashing the second seven characters. This meant 

that even a fourteen character long password was only as hard to crack as a seven character long 

password. Finally, it would convert all characters in the password to uppercase before hashing them. 

This means even if the user selected both lower and uppercase characters for their password, as far as 

the computer was concerned everything was uppercase. All of these weaknesses combined made it 

very easy to brute-force the entire key-space, meaning most LANMAN hashes can be cracked in less 

than thirty minutes even with the attacker using a desktop computer. 

 

1.3.3 The NTLM Hash 

 

The NTLM password hash is Microsoft‟s replacement for their LANMAN Hash. It was released with 

their Windows NT operating system, (hence the name, NT LANMAN), and has become the only 

password hash supported by default for local login since Windows Vista was released. While much 

stronger than LANMAN thanks to the fact that it avoids many of the design mistakes, NTLM uses one 

round of MD4 as the basis for its hashing algorithm which allows attackers to generate guesses fairly 

rapidly. Also, the NTLM hashing algorithm still does not make use of a password salt. On the plus side, 

the maximum password length was increased to 127 characters [17]. Also, it supports uppercase, 

lowercase and special characters along with numbers. This allows individual users to create extremely 

difficult to crack passwords. That being said, while NTLM is stronger than LANMAN, it still leaves a lot 

to be desired. 

 

1.3.4 The WPA and WPA2 Hashes 

 

WPA and WPA2 stand for „Wifi-Protected-Access‟ and are encryption protocols used for wireless 

connectivity. While not a hash themselves, these protocols do exchange password hashes between the 

client and the wireless access point when a client connects. Due to the hash exchange mechanism, 

these hashes are vulnerable to interception by a malicious attacker, and are then subject to offline 

password cracking attacks. A redeeming factor though is that the hashes themselves are extremely 

computationally expensive to calculate, (4096 rounds of SHA1), which strengthens them against brute 

force. In addition, they enforce a strict requirement of the user‟s password being at least eight 

characters long, further limiting the effectiveness of brute force attacks against it. The hashes also are 

salted, but unfortunately they are salted with the SSID value of the access point. Since many people 
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choose to use the same SSID value, hash lookup tables have been created to attack the more 

popularly chosen access point names [20].  

 

1.3.5 Website Password Hashes 

 

Rather than use a custom designed password hash, many online websites instead use one of the 

commonly available general purpose hashing algorithms such as a single round of MD5 or SHA1 [3]. 

While not inherently flawed, these hashing algorithms were designed to be fast to compute. This is 

because one of the primary purposes they were intended for was to create message verification values 

and checksums. This lack of computational complexity in standard hashing functions is a serious 

weakness when used for storing passwords. Occasionally these password hashes are salted which 

greatly adds to their strength. Ultimately it is up to the site administrator to determine how they actually 

are used.  

That being said, there are several other standard password storage techniques used in popular 

web forum software that use multiple rounds of common hashing algorithms. Named after the forum 

software they are included in, hashes such as vBulletin and PhpBB3 are becoming much more 

prevalent. vBulletin hashes are salted with a random value, and include two rounds of MD5. PhpBB3 

hashes instead use a variable number of rounds of MD5, (often exceeding several thousand), and are 

also salted with a random value [18]. This standardization of online hashing algorithms is a positive 

move, as site administrators no longer have to develop their own password hashing techniques. While 

the uniformity helps the attacker as well, by allowing for the development of more specialized attack 

tools, it at least ensures that on average, passwords are stored in a more secure manner then if 

designing the password storage methods was left up to each site administrator. 

 

1.4 Existing Password Cracking Tools 
 
 
As can be imagined, there are many existing tools available for password cracking. For the most part 

though, the main difference between these tools is not the techniques they employ but they password 

types they support. The question, “Does it work against the hash I‟m attacking,” generally drives which 

tool is selected for a password cracking session. Other considerations such as distributed support, the 

speed at which the tools can make guesses and the hardware the tools works on are also taken into 

account. For example many password crackers can perform their hash calculations on the CPU, (Core 

Processor Unit), GPU, (Graphical Processor Unit), or FPGAs (Field Programmable Gate Arrays). The 

above does not only cover offline password cracking tools. Programs such as THC Hydra [40], and 
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NCrack [41], are specifically tailored to attack network services and online websites. These programs 

are optimized to perform online password cracking attacks with network scanning ability and other 

features built into them. Because they perform online attacks, these tools also are generally run using 

very small input dictionaries due to the fact that they are often only allowed a few guesses against each 

online target. 

Since the focus of this paper is on offline password cracking attacks, it‟s worthwhile to spend a 

little bit of time covering some of the more popular offline password cracking tools since they will be 

referred to throughout this paper. Please note that this isn‟t an exhaustive survey, but the tools covered 

provide a useful general guideline of the current password cracking software available. 

 

1.4.1 John the Ripper 
 

John the Ripper [23] is one of the oldest still maintained password cracking programs available. 

Originally based off the Crack program, it‟s main target was Unix based Crypt(3) hashes. It has since 

been expanded to handle most computer log-in and web-based password hashes. It does not include 

support for cracking any type of file encryption however. A screenshot of the program can be seen if 

Fig. 1.4.1.1. 

 

 

Figure 1.4.1.1 Screenshot of John the Ripper Password Cracker 

 

John the Ripper is the password cracker covered the most throughout this paper. There are 

many reasons for this, but the main one is that it is an open source project. The advantage of this is 

that it was very easy to look at the code to see exactly what John the Ripper was doing. In addition, 

John the Ripper supports the ability to pipe guesses into it, which means it is possible to write a custom 

algorithm to generate password guesses, and then use John the Ripper as the backend cracker. Also it 
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includes the ability to export guesses generated from the built in algorithms to other programs, which 

made it convenient to map the effectiveness of a password cracking session by keeping track of exactly 

how many guesses were required to crack each password. 

Beyond that, John the Ripper supports many advanced password guess generation techniques, 

and due to community involvement represents the current state of the password cracking field. It also 

has been used as the basis for previous password cracking studies, [28, 29, 43,], which allows new 

results to be compared against other analysis. 

 

1.4.2 Cain & Able 
 

Cain & Able [24] is a very widespread password cracking program with an extremely large fan-base. 

The reason for its popularity is that it runs on windows computers, is free, has an easy to use graphical 

interface, and more importantly incorporates many other tools directly into it. One popular feature 

included in it is a network sniffer that automatically grabs passwords and password hashes that it sees. 

If it captures a password hash, it can then automatically perform a password cracking attack against it. 

This feature is made even more powerful due to the fact that Cain & Able also includes the ability to 

perform an ARP poisoning attack. In this attack, the attacker sends false ARP reply packets to 

computers on the local network so they forward all their network traffic to the attacker‟s computer. Even 

more interesting, it also supports several man in the middle attacks against https secured traffic. Putting 

all of this together, Cain & Able is not only a password cracking program, but is also highly effective at 

collecting passwords and password hashes from targets on the local network. A screenshot of the 

program can be seen in Figure 1.4.1.2: 

 

 

Figure 1.4.2.1: Screenshot of Cain & Able Password Cracker 
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 Despite this added functionality, Cain & Able‟s actual password cracker is fairly limited. While it 

has built in support for creating Rainbow Tables, (which will be discussed more in Chapter 4), and has 

the ability to submit password hashes to online hash lookup databases, it has a very limited word 

mangling rule selection. The only rules it supports are case mangling, swapping letters with digits, and 

appending digits to the end of a password guess. This means it lacks the ability to attack any sort of 

strong password. Furthermore, its brute force methods only support letter frequency analysis attacks 

which is also very limiting. In short, while Cain & Able is a very well designed program, it really is only 

useful for cracking weak passwords. 

 

1.4.3 L0phtcrack 
 

L0phtcrack [44] gained a lot of notoriety back in the year 2000 when it was one of the first password 

cracking programs that could attack Windows LM hashes. Since then it was purchased by Symantec, 

shut down, re-purchased by the original creators, and re-released. L0phtcrack is mostly marketed to 

professional penetration testers who are performing security audits on company networks. Therefore it 

has a very well designed GUI, and the ability to create executive reports. A screenshot of it can be seen 

in Fig. 1.4.3.1: 

 

 

Figure 1.4.3.1: Screenshot of L0phtcrack Password Cracker 

 

 While the built in cracking rules are more sophisticated than those found in Cain & Able, 

L0phtcrack still lacks the ability to define custom word mangling rules or perform brute force attacks 

more sophisticated than letter frequency analysis. As mentioned before, L0phtcrack puts its emphasis 

on performing standardized attacks as part of a risk assessment. It‟s not designed to crack strong 

passwords. 
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1.4.4 Elcomsoft Distributed Password Recovery 
 

Elcomsoft was one of the first companies to produce a password cracking program that not only could 

be distributed across multiple computers, but also takes advantage of a computer‟s graphical processor 

unit, (GPU), to hash password guesses as well. Also, unlike the password cracking programs 

previously mentioned, Elcomsoft‟s main password cracking program EPDR [22] is designed to crack file 

encryption along with windows log-in passwords. A screenshot of their program can be seen in Fig. 

1.4.4.1: 

 

 

Figure 1.4.4.1: Screenshot of EPDR Password Cracker 
Taken from the Elcomsoft Website [22] 

 

 Despite, (or perhaps because of), the power EPDR gives the attacker to make a large number 

of guesses extremely fast, it suffers the same problem that many other password cracking programs 

do, in that it not allow the attacker to specify their own custom word mangling rules to use in a 

dictionary based attack. That being said, they do support a respectable range of word mangling rules 

such as case mangling, letter replacement, and appending/pre-pending values. For brute force attacks, 

it only supports letter frequency analysis and not the more advanced techniques such as Markov 

modeling or targeted brute force attacks. 

 

1.4.5 AccessData Password Recovery Toolkit 
 

Like Elcomsoft, AccessData also produces a distributed password cracking program, PRTK [21], for 

cracking file encryption and password hashes. Unlike Elcomsoft, their program is designed to work with 

field programmable gate arrays (FPGAs), instead of GPUs to speed up a password cracking attack. A 

screenshot of the PRTK program can be seen in Fig. 1.4.5.1: 
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Figure 1.4.5.1: Screenshot of PRTK Password Cracker 
Taken from the PRTK User‟s Manual [21] 

 

 What stands out about PRTK is that it has a fully customizable method for creating dictionary 

and brute force style attacks. For the brute force attacks, it supports both Markov modeling and 

targeted brute force. What‟s more, it allows brute force and dictionary attacks to be interlaced, where it 

switches between the two depending on the attacker‟s methodology. The only downside is that PRTK 

does not allow guesses generated by outside programs to be used as input like John the Ripper does. 

For the purposes of the research in this paper, a simulator program was created using the default 

ruleset available online in the PRTK User‟s manual [21], so that the normal attack methodology used by 

PRTK could be compared with other methods. 

 

1.5 Obtaining the Datasets 
 

Originally when starting this research, one of my biggest worries was if we could obtain enough 

examples of how people create passwords in real life. At the time, the only dataset available to our 

research group contained roughly sixty seven thousand passwords [2]. While that may sound like a 

large number, it was from a single user base, (in this case, MySpace users), and we ran a high risk of 

overtraining our attacks. Since then, we have collected over thirty three million passwords and 

password hashes from multiple sites. These passwords have ranged from UNIX logins, to webmail 

passwords. In one case, I even found my own username/password publicly posted online [3]. That 

shouldn‟t be surprising, (even though it most certainly was), considering the large number of websites 

where I have created accounts. It would be foolish to expect that all of them were never broken into, 

and in all likelihood my password has probably been stolen several times over the years, with only this 

one instance being publicly posted online. 
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As you can imagine, this leads to many different types of privacy issues. To that end, for my 

research I separated the passwords from their usernames, and instead used a numeric designator or a 

hash of the username if I was comparing passwords between different lists. This was to protect the 

privacy of the users since I needed to avoid any correlation between an individual user and their 

personal password. I also never verified any of the passwords, (such as attempting to log into accounts 

with them). Nor did I use any publicly available exploits to gain access to any lists myself. The last two 

points should go without saying, but they bear explicit mention to prevent misunderstandings. To limit 

further dissemination of these password lists, throughout this paper they are cited by the 

announcements of their disclosure, and not with links to the actual files. Due to their use as a research 

tool as common datasets, these lists are available upon request to legitimate researchers who agree to 

follow similar ethical standards.  

That being said, I feel it is important to document my efforts to obtain these lists if only because 

it shows an interesting picture of the underground hacking scene today. All of the passwords I have 

worked with are the result of a publicly disclosed hacking attack. This is possible due to the fact that 

many blackhat, (and by blackhat I mean malicious), hackers often love to brag, as can be seen in Fig. 

1.5.1. 

 

 

Figure 1.5.1: Example Website Defacement 

 

 While site defacements as shown above are popular, another option for an attacker is to publicly 

post data about the website‟s users so the attacker can A) Prove they had full access to the site, and B) 

Attempt to cause harm to the website by causing the users to lose trust in the site‟s ability to protect 

their personal information. This information can be disclosed in a variety of ways. Examples include: 

posting the data to a public mailing list [2], posting the documents directly on one of the compromised 
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web-servers [4], and using public file sharing sites such as pastebin [5], torrents [6], and rapidshare [7]. 

Often these disclosures also include a write-up of the attack in addition to the password lists. One such 

example, posted by the ZF0 hacking group [4], can be seen in Figure 1.5.2: 

 

 

Figure 1.5.2: Example of a Hacker Write-Up 

 

 Such disclosures are becoming even more common as the venues for a malicious hacker to 

publicly brag about their exploits increases. One avenue for self promotion that has been gaining 

popularity is the BayWords blogging site, run by the creators of The Pirate Bay [6]. The blogging 

service has become widespread since BayWords promised in their mission statement that they will not 

delete blogs unless they break Swedish law, nor will they ever disclose the identity of the blog 

contributors [8]. Since most hacking attacks occur outside of Sweden, this has provided a public forum 

for hackers to release exploits and detail compromises against various websites without fear of having 

their site removed. Even a simple Google search using the query “inurl:baywords.com + sql” will return 

links to several hacking blogs, such as the one shown in Fig. 1.5.3. That site in particular was one of 

the places where the RockYou password list, (containing over 32 million passwords), was released [7]. 

The actual password files are no longer available on it though since while BayWords is a blogging 

service, they do not provide a file hosting. For that, blackhat hackers often store the password files on 

sites such as Pastebin, or Rapidshare, and simply share the links on their blog. 
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Figure 1.5.3: Example BayWords Hacking blog 

         

 Blogs of course are not the only place where these passwords are released and available for 

public collection and study. Blackhat forums such as [9] also provide an avenue for research, as 

hackers often brag about their exploits there. As an example of that, a screenshot taken from one of 

those forums can be seen in Fig. 1.5.4. In it you can see references to several posts containing 

webmail addresses and passwords/password hashes.  

 

 

Figure 1.5.4: Example of a BlackHat Hacking Forum 
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 There are many reasons why these password lists are released besides self-promotion by the 

original hackers. There are numerous websites that offer free password cracking services for common 

password hash types. Many of the blackhat hackers lack the expertise to crack the passwords 

themselves, and instead submit their collected password hashes to these sites and bulletin boards in 

an effort to have someone else crack the passwords for them. In fact, tools such as md5-utils [12] 

currently submits password hashes to thirty three different online password cracking websites in an 

attempt to break them. To show the volume of password hashes submitted to these sites, in Fig. 1.5.5 

you can see a summary of the number of hashes submitted to one site in particular over a one week 

period as listed under “OpenCrack Daily”. In this particular week, the number of passwords submitted 

ranged from three thousand to a little over thirty thousand password hashes a day with a cracking 

success rate ranging from 11% to 45% of the passwords cracked. This particular site operates in 

collaborative fashion with various users competing to see who can crack the most passwords. In the 

right-hand column you can see the current “score” between these users. Since the un-cracked 

password hashes are posted publicly on the site, this gives us the opportunity to not only collect them, 

but also analyze other people‟s password cracking techniques by analyzing the passwords they do 

manage to break. 

 

 

Figure 1.5.5: Example of an Online Password Cracking Site 

 

 It‟s important to remember that the examples discussed in this chapter represent only a small 

fraction of the online hacking scene. I never participated in any blackhat hacking forums that required a 
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specific invite, or for me to contribute. Finally, it can safely be assumed that a vast majority of personal 

data collected by malicious hackers, (either via breaking into websites, malware keystroke loggers, or 

phishing attacks), is never disclosed publicly. 

 

1.6 Description of Datasets Referenced  
 

As mentioned in section 1.5, many of the passwords and password hashes collected over the course of 

this research were gathered from hacking forums and online password cracking websites. 

Unfortunately, while these lists are useful to gain insight into how people create passwords, there is 

often very little information surrounding the origin of these lists. This knowledge is important because 

people may choose different passwords based upon if they are visiting a banking site vs. an online 

gaming site. Also the passwords posted on many of the online cracking sites may only represent a 

subset of the passwords originally collected. For example a hacker may have only posted the 

passwords they could not crack, or in the case of bragging, the password they could crack. 

Furthermore, the posted list may only contain unique password hashes.  This is a problem because 

people often choose the same password, such as „123456‟.  

That being said, there are a few specific password lists that have achieved widespread 

exposure. Because of that, they have been examined by multiple researchers and provide common 

datasets to analyze and test against. Therefore a vast majority of experiments detailed in this paper are 

run using these password lists. All of the lists are divided into training lists and test lists. This is to avoid 

training and testing against the same set. For example, if a user‟s password falls into the training list, it 

is not used as one of the target passwords in the test set. It should be noted though that it was not 

always possible to completely assure that the same user did not appear in both the training and test 

lists since several of the lists were not released with usernames associated with the passwords. In 

those cases it was assumed that each user only had one corresponding password and the sets were 

divided up accordingly. Also, for privacy issues, once the training and test lists were constructed all 

references to the original usernames were removed when performing a password cracking attack. This 

way when a password is broken, the corresponding plaintext password is not associated with a specific 

user. If a password list consisted of plaintext passwords, it could serve either as a training or a test list. 

If only the password hashes were retrieved though, then those hashes were classified as part of a test 

list since by definition the hashes had to be cracked before their corresponding plaintext values could 

be found. The following sections contain a quick description of several of the lists referenced 

throughout this paper. 
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1.6.1 The MySpace List 
 

Originally published in October 2006 on the Full-Disclosure mailing list, the MySpace list was one of the 

first major password lists publicly disclosed [16]. The list was created by an attacker who had 

performed a phishing attack against MySpace users but failed to secure their collection server. 

Researchers proceeded to log into the malicious server and gathered the passwords from the hacker 

before the hacker could shut it down. The complete MySpace list contained 67042 plain text 

passwords. Unfortunately, not all of these passwords represent actual user passwords. This is because 

some users recognized that it was a phishing attack and entered fake, (and often vulgar), data. For the 

test runs in this paper, there was no attempt to purge these fake passwords due to the difficulties in 

distinguishing between fake and real passwords. 

 Due to its size, and the fact this was one of the first password lists collected for my research, the 

MySpace list was divided into two parts, a training and a test list. This was done by giving each 

password a 50/50 percent probability of being assigned to a specific list. The end results were a training 

list containing 33,561 passwords, and a test list containing 33,481 passwords. Some of the basic 

statistics from the MySpace training list can be seen in Table 1.6.1.1: 

 

 

Table 1.6.1.1: Password Characteristics of the MySpace Training List 

Password Characteristics Results: 

Average password length 8.34 characters 

Percentage that contain uppercase letters 6.92% 

Percentage that contain special characters 9.49% 

Percentage that contain digits 84.97% 

Percentage that only contain lowercase letters 7.29% 

Percentage that only contain lowercase letters and digits 84.08% 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.26% 

 

 

 One thing to keep in mind is that at the time of the attack, MySpace had a password creation 

policy mandating that all passwords had to be at least six characters long and contain one non-

lowercase letter. There were a number of passwords in this list that did not meet this requirement, but a 
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majority of those were most likely caused by users typing in the wrong password, or users who had 

originally created their passwords before the password creation policy was applied. That being said, 

what‟s really interesting is that when forced to create a password under this policy, most users choose 

to simply use one other character class, be it digits, uppercase characters, or special characters. 

 

1.6.2 The PhpBB List 

  

The PhpBB list originated from a hacker who broke into the phpbb.com website and posted all of the 

user information online along with a write-up of their attack [45]. Phpbb.com is the development site for 

the PhpBB bulletin board program which is used as the forum software for many other internet sites. 

The list itself contained 295,424 MD5 hashed passwords, along with over 83 thousand passwords 

hashed with the PhpBB3 hashing algorithm. The reason why two types of password hashes were used 

was because the site had changed their database software, but an individual‟s password hash was only 

converted to the stronger PhpBB3 hashing algorithm once they logged in after the upgrade. Since all of 

the passwords were hashed, they were all treated as a test set. A majority of the work done with these 

lists focused only on the MD5 hashed passwords due to the computational resources required to attack 

the PhpBB3 hashing algorithm. Therefore, when the PhpBB list is mentioned, unless explicitly stated 

otherwise, only the MD5 list is being referenced. 

 Over the course of this research, extensive work was done cracking these passwords to study 

the methods used in a long term password cracking session. A more complete coverage of the results 

of this study can be seen in the talk available online, “Cracking 400,000 Passwords or How to Explain 

to Your Roommate Why the Power Bill is So High” [18].  The short summary though is that initially it 

took approximately four hours to crack 38% of the passwords using one laptop computer. Adding a 

desktop computer to the mix, after one week 62% of the MD5 passwords had been cracked. After one 

month and one week 89% of the passwords had been cracked.  The timeline is not as accurate past 

the one month period since cracking other lists took precedence, but the PhpBB list has been revisited 

several times as new improvements have been made to our probabilistic password cracking program, 

(described in more detail in Chapter 5). Also, since people often choose the same password for several 

different sites, as I collected more datasets this enabled me to crack more passwords since I saw the 

same users across several different datasets. At the time of this writing, I have cracked over 97% of the 

total MD5 hashed passwords in the PhpBB list. Some of the statistics learned from the cracked 97% of 

the passwords can be seen in Table 1.6.2.1.  
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Table 1.6.2.1: Password Characteristics of the Cracked PhpBB List 

Password Characteristics Results: 

Average password length 7.27 characters 

Percentage that contain uppercase letters 7.21% 

Percentage that contain special characters 1.44% 

Percentage that contain digits 45.77% 

Percentage that only contain lowercase letters 50.62% 

Percentage that only contain lowercase letters and digits 84.08% 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.11% 

 

 

 It‟s important to remember that the above results do not contain the 2.6% of the passwords I 

have not been able to crack yet. While the only thing we know about the un-cracked passwords is what 

they are not, on average it should be expected that they are fairly strong. What‟s interesting is that 

while phpbb.com did not have a password creation policy in place, about the same number of people 

used uppercase letters as in the MySpace list. Without that policy though, many fewer people choose to 

use special characters or even digits in their passwords, with over 50% of the cracked passwords 

containing only lowercase letters. 

 

1.6.3 The Hotmail List 

 

The Hotmail list was collected by a sophisticated phishing scheme against hotmail users, primarily 

Portuguese or Spanish speakers [5], and disclosed online via a posting on pastebin.com. What‟s 

interesting is that the passwords posted only cover a small range of users. Specifically the list only 

covers users who e-mail addresses fell into the range ara*** to bla***. It should go without saying then 

that this is only a small sample of the entire list that the attacker collected. While it‟s unknown why the 

list was originally posted online, one possible option is that the attacker was trying to sell the entire list, 

and used this snippet to prove they actually possessed the passwords. Looking at some of the other e-

mail lists collected through this research, the range, (ara-bla), probably constitutes around 4% of all the 

total e-mail addresses. This means that there‟s a good chance this 10k sample was selected from a list 

containing roughly 250k password. One caveat to this analysis was that I used mostly English e-mail 

addresses to come up with that number, so my estimate may be may be wildly off.  
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Currently Hotmail has a password creation policy that requires passwords to be six characters 

long or longer. Once the passwords in the list that did not conform to hotmail‟s password creation policy 

were removed, the list contained 9744 unique username/password combinations. The list was then 

divided up into two parts, a training list and a test list, each containing 4872 passwords. Some of the 

statistics gathered from the Hotmail training list can be seen in Table 1.6.4.1: 

 

Table 1.6.3.1: Password Characteristics of the Hotmail Training List 

Password Characteristics Results: 

Average password length 8.75 characters 

Percentage that contain uppercase letters 8.06% 

Percentage that contain special characters 5.21% 

Percentage that contain digits 51.99% 

Percentage that only contain lowercase letters 43.04% 

Percentage that only contain lowercase letters and digits 86.95% 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.24% 

 

 

1.6.4 The 78k Finnish List 

 

This list was collected by a Finnish hacker through SQL injection attacks against numerous sites, most 

of which were hosted in Finland [3].  The entire list included over 78 thousand username and password 

combinations. Of those, 15,699 of the passwords were stored in plain text, which I designated as a 

training set. The rest of the passwords were hashed, but since multiple sites were compromised, this 

list actually contains several different password hash types. The focus of my cracking sessions was the 

22,733 passwords which were stored as a simple MD5 password hash with no additional salting. Since 

no salt was used, these password hashes were also included when I was attempting to crack the 

PhpBB MD5 password hashes. During those cracking session, I managed to break 97.25% of the 

target hashes from the Finnish list. A record of some of the basic statistics of the passwords in the 

Finnish training list can be seen in Table 1.6.4.1, and the statistics for the cracked passwords in the 

Finnish MD5 test list can be seen in Table 1.6.4.2. 
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Table 1.6.4.1: Password Characteristics of the Finnish78k Training List 

Password Characteristics Results: 

Average password length 7.63 characters 

Percentage that contain uppercase letters 3.00% 

Percentage that contain special characters 1.79% 

Percentage that contain digits 44.82% 

Percentage that contain non-ASCII values 2.49% 

Percentage that only contain lowercase letters 51.64% 

Percentage that only contain lowercase letters and digits 92.82% 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.15% 

 

 

Table 1.6.4.2: Password Characteristics of the Finnish78k MD5 Cracked Passwords 

Password Characteristics Results: 

Average password length 7.16 characters 

Percentage that contain uppercase letters 7.42% 

Percentage that contain special characters 1.46% 

Percentage that contain digits 44.59% 

Percentage that contain non-ASCII values 4.37% 

Percentage that only contain lowercase letters 51.25 

Percentage that only contain lowercase letters and digits 90.98 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.11% 

 

 

It‟s notable that even with 2.25% of the strongest passwords remaining un-cracked, the test list 

shares many characteristics with the training list. The only statistically significant difference was that 

uppercase characters were used much more frequently in the test list. Also, the category „non-ASCII 

values‟ was added to the results to represent the number of Finnish characters, such as „ä‟, and „ö‟ 

that were encountered. 
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1.6.5 The RockYou List 

 

The RockYou list [7] is by far the largest single set of publicly disclosed passwords to date. Containing 

over thirty two million plain-text passwords, none of the previous lists come anywhere close to it. The 

parent website which this list originated from, RockYou.com, makes applications for social networking 

sites such as Facebook, and MySpace. Unfortunately, RockYou had to store user passwords in plain 

text since there was no federated login system available for many of its partner sites. Due to a SQL 

injection vulnerability in one of their applications, RockYou‟s entire database was stolen by hackers and 

the user passwords were posted online.  

One difficulty from a research perspective is that only the passwords were publicly released. 

This was due to the fact that while the passwords themselves were not worth very much to the hackers, 

when combined with the associated e-mail addresses they could be sold for quite a bit of money. With 

only the passwords to analyze, it made it very difficult to separate the list into smaller training and test 

lists since there was no way to ensure that a user‟s passwords only appeared in one list. To that end, 

for testing purposes, the list was randomized using the GNU shuf tool, and then broken up into thirty 

two smaller sub-lists containing one million passwords each. As of right now, only ten of these sub-lists 

have been assigned to either training or test sets. It was decided to hold back on analyzing the other 

twenty two lists to save them for future tests. To avoid confusion, the first five sub-lists, (RockYou1 - 

RockyYou5), have been classified as test lists, while the last five lists, (RockYou28 – RockYou32) are 

classified as training lists. Statistics taken from the RockYou32 training list can be seen in Table 

1.6.5.1. 

 

Table 1.6.5.1: Password Characteristics of the RockYou32 training list 

Password Characteristics Results: 

Average password length 7.88 characters 

Percentage that contain uppercase letters 5.95% 

Percentage that contain special characters 3.48% 

Percentage that contain digits 54.08% 

Percentage that only contain lowercase letters 41.59% 

Percentage that only contain lowercase letters and digits 90.76% 

Percentage of passwords that contain lowercase, uppercase, digits, 
special characters and are greater than six characters long 

0.14% 
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CHAPTER 2 

APPLYING PROBABILITY TO BRUTE FORCE ATTACKS 
 

 

2.1 Description of Brute Force Techniques 

  

As shown in Chapter 1.4, brute force attacks are very common in most password cracking tools. It‟s 

important to note that for the purposes of this paper, a brute force attack includes any type of password 

cracking attack that does not make use of an input dictionary of human generated words. The reason 

brute force attacks are so popular is that most, if not all, input dictionaries only cover a fraction of the 

total words that are employed by users when creating their passwords. A more detailed description of 

the coverage normal input dictionaries provide against test sets of real passwords can be seen in 

Chapter 3, “Evaluating Dictionary Based Attacks”. It‟s tempting to label all brute force attacks as 

“dumb”, but in reality very complicated logic may be applied to them. Specifically, advanced probability 

and frequency information may be used to limit the key-space searched when attempting a brute force 

attack, while still achieving a high coverage of the target passwords. Before delving into the 

effectiveness of these techniques, it first is useful to discuss the different ways probability may be used 

to enhance a brute force attacks. 

 

2.1.1 Pure Brute Force 

 

Pure brute force is any brute force attack that does not use outside probability information that is not 

found inherently in the key-space being searched. While quite basic, it is currently the default brute 

force method found in many different password cracking programs today [22, 24, 25]. The number of 

guesses required to cover a given key-space using a pure-brute force attack is equal to  ����=૙   

where x is the size of the character set, and n is maximum length of the passwords being targeted. This 

means to target longer passwords, an attacker often chooses a reduced character set to include in their 

brute force attack. Several example reduced characters sets from popular password cracking programs 

[22, 25] can be seen in Table 2.1.1.1.   
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Table 2.1.1.1: Example Character Sets for Pure Brute Force Attacks 

Name Character Set 

numeric                      0123456789 

loweralpha    abcdefghijklmnopqrstuvwxyz 

loweralpha-numeric           abcdefghijklmnopqrstuvwxyz0123456789 

mixalpha 
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST
UVWXYZ 

mixalpha-numeric             
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST
UVWXYZ0123456789 

mixalpha-numeric-all-space   
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRST
UVWXYZ0123456789!@#$%^&*()-_+=~`[]{}|\:;"'<>,.?/  

 

 

 A pure brute force attack makes guesses in the order determined by the alphabet given it. Thus 

an attack targeting six character passwords using the loweralpha character-set would make guesses 

starting with, “aaaaaa”, and ending with “zzzzzz”. Different password crackers though vary based on if 

they increment the leftmost or rightmost character first. For example some might make guesses in right 

incrementing order, “aaaaaa, aaaaab, aaaaac ...”, while others might make the guesses in left 

incrementing order “aaaaaa, baaaaa, caaaaaa”. This can have a drastic impact on how quickly 

passwords are cracked, as we will see in more detail when we talk about letter frequency analysis. 

 

2.1.2 Letter Frequency Analysis 

 

A letter frequency analysis attack attempts to use the frequency of characters appearing in a training 

set to increase the effectiveness of a brute force attack. Much like a pure brute force attack, a letter 

frequency analysis attack uses an input character set, and the cost of fully covering a key-space is 

still ����=૙ , where x is the size of the character set, and n is maximum length of passwords being 

targeted. The difference is that the order in which the character set is applied is modified by the 

frequency of the characters appearing in a training set. This is done by the attacker in an attempt to 

crack a majority of the target passwords while only searching a small fraction of the total key space. 

 It‟s important to note that a letter frequency analysis attack is entirely dependent on the dataset 

it is trained on. Take for example the classic letter frequency analysis of the English language that was 

originally published in [27] and can be seen in Fig 2.1.2.1. 
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Figure 2.1.2.1: Example Letter Frequency Analysis of the English Language 

 Image published under the GNU Free Documentation License, Version 1.2 

 

 While the above figure is commonly cited as the standard letter distribution of the English 

language, it was actually generated by training on the novel Moby Dick along with several English 

poems. For whatever reason, Moby Dick is still one of the most popular training sets of the English 

language today, as can be seen in the intro to cryptography lecture slides from both Stanford [30] and 

Colombia University [31]. The question is, does Moby Dick represent the English language as a whole, 

and more importantly, does this represent the frequency at which certain letters are used in 

passwords? 

 The easiest way to answer that question is to perform some letter frequency analysis of 

disclosed password lists. You can see the letter frequency distribution gathered from real life password 

data-sets in Table 2.1.2.1. Notice that not only is the overall letter frequency distribution displayed, but 

the letter frequency distribution for the first and last letters of the password set is also included. That is 

because this information is useful to an attacker since the probability distribution of the first/last letter 

often is different from the overall probability distribution. A simple example of that can be seen in the 

fact that people tend to capitalize the first letter of their password, (if they use capital letters at all), and 

add digits to the end of their password. This means that the letter frequency distribution will differ if it is 

composed of all of the letters found in the passwords in the training set, or only the first or last letters. 

The letter frequency distribution used in a password cracking session then should be selected based on 

if the password cracking program employs a right incrementing order, or left incrementing order as 

described in Chapter 2.1.2.  

 

http://en.wikipedia.org/wiki/GNU_Free_Documentation_License
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Table 2.1.2.1: Letter Frequency Analysis of Various Password Lists 

Training Set Order Letter Frequency Distribution (First 40 chars) 

PhpBB.com Overall aeorisn1tl2md0cp3hbuk45g9687yfwjvzxqASER 

PhpBB.com First Letter s1mpabctdrlfhgkjnw2ei0ov3q45796z8yuxSMPB 

PhpBB.com Last Letter e1nsra326yt0d954o78lkgmihbpcxuwfzjvq!ESA 

MySpace Overall ea1oirs1nt2cmd0hb3yugk9p6485f7wvjz!x.AES 

MySpace First Letter sbmcpldatj1frhgkinwe2ovy304uB8S95z76MJDC 

MySpace Last Letter 1326795408!esary.ntdlohkmg*ucpibxjfzw?$v 

RockYou22 Overall ae1ionrls02tm3c98dy54h6b7kpgjvfwzAxEIORL 

RockYou22 First Letter sm1cba0pljdtrk2hgfniew39v45o8y76zMSBACJq 

RockYou22 Last Letter 1ae326sn5794y08roltdihgmukzc!pxwbA.fEjS* 

Hotmail Overall aeoi1r0ln2st9mc83765u4dbpghyvfkjAzEIOxRL 

Hotmail First Letter a1mbc2sp0lterdjfgn3hi6k759vo48yAwMzBSCuq 

Hotmail Last Letter aos01326e57849nrilydzmtuAhbO.gck*SxpfE@+ 

Example in 
Fig. 2.1.2.1 

Overall etaonrishdlfcmugypwbvkxjqz 

 

 

 There‟s a couple of interesting items that show up in the data presented in Table 2.1.2.1. First, 

the number „1‟ is extremely common as the last character of most English passwords, ranking either as 

the 1st, 2nd, or 3rd, most commonly used last character. In the Hotmail set though, which was composed 

primarily of Spanish and Portuguese speakers, the number „0‟ was more commonly used at the end of 

a password. Second, in the MySpace list, where a password creation rule mandating that passwords 

had to contain one non-lowercase character, the last letter was almost always a digit, or a „!”. Finally, 

looking at the difference between the first letter, last letter and overall letter frequency distributions, it 

highlights the importance of selecting the right letter frequency distribution depending on how the 

password cracker increments its guesses. 

 

2.1.3 Markov Models 

 

Markov models have many uses, but in password cracking they are a way to represent the joint 

probability of different characters appearing together. This mimics their use in traditional language 

recognition algorithms [32], by using the joint probability of characters to generate human sounding 

words, (or in this case passwords), without the use of an input dictionary. The goal once again is to 
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perform a brute force style attack while minimizing the size of the key-space the attacker on average 

has to search through before they the successfully crack the target passwords. A Zero Order Markov 

Model is the equivalent of using letter frequency analysis as it has no memory. With a First Order 

Markov Model, the probability of each character after the first is given as P(Qt=Si | Qt-1=Sj) where i and j 

represent the index of the character set used. A quick example of this is in the English language, if the 

letter „q‟ appears, it is almost always followed by a „u‟. Markov models can be extended beyond the first 

order to the second, third, a so on, as long as more state memory is used. Markov models beyond the 

second order are rarely seen in password cracking applications though due to concerns about 

overtraining on the input data-set and storage issues surrounding the resulting probability information. 

 While Markov models are extremely useful, the question becomes how should they be 

implemented in a password cracking program to produce effective password guesses? More to the 

point, while an attacker can use Markov models to very quickly evaluate the probability of a given 

guess, how do they produce those guesses in something resembling probability order? Currently there 

are two major algorithms being employed to do this, each with their own pluses and minuses. 

 The first method, made popular in the password cracker John the Ripper [23] is labeled 

incremental mode, Incremental mode actually models the probability of trigraphs appearing in the 

password guess. In this case a trigraph represents a three character long string, such as "abc". Another 

way to say this is that Incremental mode uses trigraphs to represent second order Markov probabilities, 

such as the probability of 'c' given 'ab'. The first two characters are handled as a special case, (since 

they don't have two characters before them), but after that John the Ripper select each successive 

character based on the previous two characters. Therefore, for the guess 'abcdef', it would create the 

trigraphs 'abc', 'bcd', 'cde', and 'def', and assign a final probability to the guess based on these four 

different trigraphs. In addition, the probability of a trigraph is also dependent on where it shows up in 

the password. In this way, the Incremental attack takes into account factors such as numbers often 

show up at the end of a password, and uppercase letters usually are at the front. The main downside 

with the algorithm is that it doesn't generate these guesses in true probability order, and instead uses 

an approximation. As we‟ll see in later tests, this approximation results in it taking longer to crack 

passwords than a cracking session using the true probability order.  The advantage of this optimization 

though is that given enough time, it will cover the entire targeted key-space, while still being able to 

generate a large number of guesses quickly. 

 The second method, first proposed in the Narayanan paper [19], and implemented in John the 

Ripper as Markov Mode, takes a different approach. Unlike incremental mode, the Markov mode does 

not use trigraphs. Instead it starts with the highest probability starting letter, (in the default stats file this 

is a 'c'), and then appends the most probable following character. It repeats this until it hits the 
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probability threshold specified, or it reaches 12 characters long, in which case it outputs a password 

guess. The attack then goes to the last character of the previous guess and changes it to the second 

most probable value, and outputs another guess. It continues to follow this algorithm as it cycles 

through printing out all the possible guesses that are above the probability threshold specified. There 

are many advantages to this approach. For example, it can attack passwords up to twelve characters 

long, and it is extremely fast. The downside of this approach is that it also does not create guesses in 

probability order. Instead it creates all the guesses within a certain probability threshold. Therefore, as 

we will see, if you set a low threshold, Markov mode starts to resemble a letter frequency analysis 

attack. Finally, because of this, Markov mode won't cover the entire key-space, (aka, it won't crack the 

password '3Nw!lswp'). The last point isn't as important as it may seem though, since in all likelihood 

due to time constraints, (aka the attacker only has several months to crack a password if that), the 

attacker generally won‟t have enough time to cover an entire non-trivial sized key-space even using 

incremental mode.  

 To demonstrate the difference between these two algorithms, both of the algorithms were run 

side by side against the Hotmail dataset with the results shown in Fig. 2.1.3.1. Each cracking session 

was allowed one billion guesses. Both the Markov mode and the Incremental mode used the default 

probability values included in John the Ripper. The limit for the Markov mode was set at „214‟, which 

would result in it generating slightly more than one billion guesses which have a higher probability than 

the threshold specified. For Incremental mode, the „Allnum‟ character set was specified which resulted 

in it trying to brute force all lower-case characters plus numbers. 

 

 

Figure 2.1.3.1: Incremental Mode and Markov Mode Run Against the Hotmail Dataset 
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As you can see, the Markov mode started out slow, but finished strong, cracking 786 more 

passwords than the Incremental attack. One of the reasons why it did so well near the end was that the 

Markov mode started trying password guesses that began with numbers, which was very common in 

the hotmail dataset. Also, since the probability of a guess starting with a number was so low according 

to the default rule-set, it only tried high probability strings following a number. 

It‟s important to remember that due to the way it creates guesses - for the most part the Markov 

mode cracks passwords at a fairly fixed rate, while the Incremental mode is much more front-loaded. I'd 

like to caution you against extending the Markov mode's line though, as it has finished just about every 

password guess within the limit that was set. The next question then is: how does Markov mode 

perform when different limits are specified? For the next test, the same cracking session was re-run, 

but this time different limits were specified for the Markov mode attack. The results can be seen in Fig. 

2.1.3.2: 

 

 

Figure 2.1.3.2: Markov Mode Run Against the Hotmail Dataset Using Different Limits 

 

In this run, due to the way the algorithm is designed, Markov Mode cracks passwords at a fairly 

fixed rate, (and in fact operates almost exactly like a letter frequency analysis attack except for the fact 

that it has a limit). When using a limit of 200, it created slightly more than 250 million guesses and then 

finished. If we run the same attack using a limit of 214, it creates almost four times as many guesses, 

but it only cracks 148 more passwords. If we increase the limit to 250, it would generate roughly 46 

billion guesses. That means if it was allowed to run to completion, the Markov attack would eventually 

catch up to Incremental mode, (and then exceed it). Over this short cracking session though, it 
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performed significantly worse, which is shown in the graph. What this demonstrates is that the attacker 

needs to spend the time to tailor their attacks using Markov mode to the resources they expect to 

spend cracking the target passwords. Otherwise, the Incremental mode algorithm is a superior option, 

since it automatically attempts to optimize itself to whatever number of guesses it is allowed. Another 

possible option for an attacker is to use multiple runs of the Markov mode algorithm, but add an upper 

probability limit where it rejects guesses that it made previously. In this way the attacker does not try to 

re-hash guesses they already made on a earlier run, while still cracking the higher probability 

passwords sooner. The downside of this approach is that it can significantly add to the overhead 

associated with making guesses as it generates the same guesses multiple times only to reject them. 

The finer grained an attacker makes these limits, the more times they would have to re-run this 

algorithm during a cracking session. 

Now, the previous tests were run using the default probabilities included in John the Ripper. 

Unfortunately, those probabilities were created by training the two algorithms on different datasets, (the 

Markov mode was a user submitted patch). The Markov algorithm probabilities were trained primarily 

on French passwords, and the Incremental algorithm was mostly trained on English passwords. The 

question then is how they perform if they are trained on the same dataset. For the next test, I trained 

both the Incremental and Markov modes on the same set of disclosed passwords from the PhpBB list. 

In technical terms, I created a new .chr and new stats file for both attacks. The phpbb.com list isn't ideal 

for training to use against the Hotmail list, since the PhpBB list is primarily composed of English 

passwords, while Hotmail dataset is mostly composed of Spanish/Portuguese passwords. That doesn't 

matter for this test though, since what is important is both attacks are being trained on the same list, 

and they have to deal with the same limitations. For this test, I also ran the Markov attack twice. The 

first time I allowed it to attack passwords up to 12 characters long. The second time I limited it to only 

attack passwords up to 8 characters long, (and I assigned it a higher limit so it would generate roughly 

the same number of guesses). The reason for limiting the length was to better compare it against John 

the Ripper‟s incremental mode which only generates guesses up to 8 characters long. The results can 

be seen in Fig. 2.1.3.3. 

Even when trained on the same datasets, Markov mode still cracks more passwords than John 

the Ripper‟s Incremental mode. Still, there were a couple of things that were surprising about the 

results. First of all, the phpbb.com list made a much better training list than using the default .chr and 

stat files. The Markov attack cracked 540 more passwords using the same number of guesses when it 

was trained on the PhpBB list. The Incremental attack also got off to a much faster start, though in the 

end it cracked 17 less passwords than the Incremental attack using the default Alnum character set. 

This isn't exactly a fair comparison though since this time it was trained to use the entire keyboard 
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instead of just lowercase letters and numbers. When compared to the default Incremental mode 

probabilities that contained the same character set, (aka all printable ASCII characters) it performs 

much better, cracking 333 more passwords overall. The second interesting point was that limiting the 

maximum password guess size didn't have much of an effect on the number of passwords cracked 

using the Markov mode. This shouldn't come as a surprise due to their low probability of Markov 

generated strings longer than eight characters. Therefore, very few strings larger than eight characters 

were generated that fell above the specified threshold. 

 

 

Figure 2.1.3.2: Markov and Incremental Mode Trained on the PhpBB Dataset and Attacking the Hotmail 
Dataset 

 

Just as a reminder, both Markov mode and Incremental mode are Markov based attacks. They 

just are different algorithms that implement a Markov based attack given the time constraints that a 

password cracking program has when it comes to generating guesses. 

 

2.1.4 Targeted Brute Force 

 

A Targeted Brute Force attack can comprise letter frequency analysis and Markov models, but applies 

outside logic to these attacks. One example of a targeted brute force attack would be to perform a letter 

frequency analysis attack, but use a different character set for each character position. In this case, the 

first character could be determined by the first character distribution in the training set, the last 

character could be determined by the last character distribution in the training set, and the rest of the 

characters could be determined by the overall character distribution in the training set. 
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Another example of a targeted brute force attack is treat the input generated from a traditional 

brute force attack and input dictionary, and then apply traditional word mangling rules to them. One of 

the tools I created, labeled MiddleChild [33], does just that. Take for example the first few guesses 

output by John the Ripper‟s Incremental mode using the lower-alpha character set: 

 

1. bara 

2. sandy 

3. shanda 

4. sandall 

5. starless 

6. dog 

7. bony 

8. bool 

9. boon 

10. stark 

 

While these guesses resemble human generated words, (and in some cases are actual dictionary 

words), they were generated by a brute force process. The problem is that guesses generated in this 

fashion are unlikely to crack any password created under a strong password policy that requires 

capitalization, numbers and special characters to be included. What MiddleChild does is take brute-

force guesses as input and applies mangling rules such as capitalizing the first character, and then 

adding a special character and a number to the end. Examples of password guesses generated using 

the above words would be „Bara$1‟, „Sandy99#‟, „!Starless73‟, etc. These guesses now would be able 

to attack a strong password requirement, but they still are generated via brute force methods. 

 For a demonstration of the effectiveness of a targeted brute force attack please see the cracking 

session detailed in Fig. 2.1.4.1. In this test, two attacks are run against a subset of the Hotmail 

password list containing only passwords of length 8. Each attack was run for a total of one billion 

guesses. The first attack used John the Ripper operating in Incremental mode, which as mentioned in 

the previous section uses a very sophisticated Markov based approach. For this attack, the incremental 

mode was modified to only generate guesses of length 8 so it would not waste time making guesses 

that did not meet the password length requirements for this test. Also, incremental mode was run using 

the „All‟ charset so it attempted to crack passwords containing letters, numbers and special characters. 

For the second attack, a targeted brute force approach was employed using the tool MiddleChild. Since 

there was no password creation policy in effect for the Hotmail dataset, (beyond the fact that the 

passwords had to be at least six characters long), several rules were used with MiddleChild to create its 

one billion guesses. 
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The following five rules were applied to generate the guesses using MiddleChild: 

 

1. Eight Lowercase Letters: 250,000,000 Guesses 

2. Eight Digits: 100,000,000 Guesses, (maximum number of guesses for the keyspace) 

3. Seven Lowercase Letters, Followed by One Digit: 150,000,000 Guesses 

4. Six Lowercase Letters, Followed by Two Digits: 250,000,000 Guesses 

5. Four Lowercase Letters, Followed by Four Digits: 250,000,000 Guesses 

 

All of the lowercase characters for the targeted brute force attack were generated using John the 

Ripper‟s Incremental mode operating in „LowerAlpha‟ mode. 

 

 

Figure 2.1.4.1: Targeted Brute Force Vs. Incremental Mode. Run on Length 8 Hotmail Passwords 

 

The results show that the targeted brute force attack was able to crack the same number of 

passwords as Incremental mode using less than 242 million guesses. To put it another way the 

targeted brute force attack required around 25% of the guesses to crack the same number of 

passwords. It should be noted that further improvements can be made to the targeted approach since 

with the current version of MiddleChild, the order at which the digits are inserted is not optimized. For 

example, the numbers 0,1 and 9 are significantly more likely to occur than the number 5,6, and 7. 

Currently I am looking at including these optimizations in the probabilistic password cracker, UnLock, 

which will be described in more detail in Chapter 5. 
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It does bear mentioning a couple of other points about the test shown in Fig. 2.1.4.1. It is 

notable that even for length 8 passwords, almost 50% of them were cracked using a brute force attack 

with less than one billion guesses. Considering the key-space for passwords only containing letters and 

digits, (64 characters total), of length 8 is 218,340 billion possible passwords, this is a significant 

improvement as compared to a pure brute force attack. It also shows the feasibility of attacking 7, 8, 9, 

and even 10 character passwords using brute force attacks that incorporate probabilistic methods into 

them. In fact even longer passwords could be successfully cracked if the defender incorporated certain 

creation strategies, such as type the same eight character password twice, since the attacker can then 

model that using a tool such as MiddleChild. 

 

2.2 Comparative Results 

 

While it was briefly alluded to in the previous sections, it‟s worth analyzing how applying advanced 

probabilistic methods improves a password cracking session compared to a pure brute force or a letter 

frequency attack. For the first comparison I ran several brute force attacks against the hotmail 

password list. Each attack was allowed one billion guesses. The first attack used John the Ripper's 

incremental mode targeting lowercase letters and numbers, (a-z0-9). Once again, John the Ripper‟s 

Incremental mode uses 2nd order Markov probabilities to generate its guesses. For the second cracking 

session, a pure brute force attack was used. The third cracking session used letter frequency analysis 

to optimize its password guesses. 

To simulate the brute force and letter frequency analysis attacks, I used the popular password 

guess generation tool crunch [47], since John the Ripper does not directly support pure brute force 

attacks. The command used to generate the pure brute force guesses was: 

 

./crunch 6 8 abcdefghijklmnopqrstuvwxyz0123456789 

 

When crunch is run using the above command, it generates brute force guesses between 6 and 8 

characters long containing the characters a-z0-9, starting with aaaaaa and theoretically ending with 

99999999, (in this run it never finished all of the six character long words). This is also the default 

character set that the popular password cracker Cain&Able [24] uses. 

The letter frequency attack was based on analysis of the cracked phpbb.com password list. This 

was due to the fact that these passwords were viewed as a representative sample of passwords that 

users select when there is no existing password creation policy. For the specific probabilities, only the 

first character of the phpBB cracked passwords were considered. This is because crunch increments its 
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values from right to left; aka it tries 01, 02, 03, 04 etc. This means using the following command, crunch 

will initially crack all the words starting with 's', then move on to words starting with a 'm' and so on: 

 

./crunch 6 8 smp1abctdkjlhrfgnw2ei0ov3q457z968yux 

 

As a side note, when there is no password creation policy, (aka users are not forced to include 

numbers in their passwords), incrementing your guesses from right to left is slightly more optimal than 

password crackers such as Cain&Able who increment their values from left to right, aka 10, 20, 30, 40, 

etc. The reason for this is because the entropy of the first character of a password is slightly less than 

the entropy of the last character. For example, from the phpbb.com cracked dataset, over 51% of the 

users choose one of top ten characters to start their password with. Likewise, 46% of users choose one 

of top ten characters to end their passwords. It's not a big difference, but every little bit helps. If there is 

a password creation policy though, this quickly falls apart, and it's vastly more preferable to use a left to 

right approach since people very frequently put numbers/special characters at the end of their 

passwords. For example, just the number '1' appears 21% of the time at the end of passwords in the 

MySpace training list where users were forced to select a password that included non lowercase letters. 

The results of this test can be seen in Fig. 2.2.1: 

 

 

Figure 2.2.1: Comparing a Markov Optimized Attack, Letter Frequency Analysis Attack, and a Pure 
Brute Force Attack against the Hotmail List 

 

The first thing that stands out about the results is that the letter frequency analysis percentages 

were not ideal for this test set. It actually performs worse initially then the pure brute force approach. 
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That being said, given enough time the letter frequency analysis attack still out-performs the pure brute 

force attack. Comparing the first letter character frequency ordered set of the phpbb list to that 

generated from the hotmail training list we get: 

 

Hotmail list: a1mcs2p01betdrjfng3h6kio9v57y48zuwxq 

Phpbb list:   smp1abctdkjlhrfgnw2ei0ov3q457z968yux 

 

Looking at these frequencies, the best choice would have been to start with the letter 'a' which is 

coincidentally what the pure brute force approach did. The reason for the huge bump in effectiveness of 

the letter frequency analysis attack around the 220 million guess mark is because it hit the '1' as the 

first character, followed by an 'a' which was about the equivalent of a perfect storm since people started 

their passwords with a number, followed by the actual word they were using. That being said, the 

results of this test show how superior using a Markov optimized approach is to both a letter frequency 

analysis and a pure brute force attack. Using less than 40 million guesses, John the Ripper operating in 

incremental mode managed to crack the same number of passwords as the letter frequency analysis 

attack did using one billion guesses. 

 The next question is how these attacks fare against passwords of a set length. The previous 

test was run against the entire hotmail password list. The distribution of hotmail set by password length 

can be seen in Fig. 2.2.2. 

 

 

Figure 2.2.2: Password Length of the Hotmail Dataset 

 

To test how these methods perform when cracking longer passwords, the Hotmail password list 

was subdivided up into three separate lists containing passwords of six, seven and eight characters 
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long. John the Ripper‟s incremental mode along with the letter frequency analysis and pure brute force 

attacks were then run for one billion guesses against each of the subdivided hotmail lists. The only 

modification from the previous tests was that each attack were tailored to only attempt guesses of the 

length of the password set they were targeting. Therefore when making guesses against the seven 

character long Hotmail list, only guesses of length seven were made. The results against six and seven 

character long passwords can be seen in Fig 2.2.3, and Fig 2.2.4. 

 

 

Figure 2.2.3: Various Brute Force Attacks vs. 6 Character Passwords from the Hotmail List 

 

 

Figure 2.2.4: Various Brute Force Attacks vs. 7 Character Passwords from the Hotmail List 
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The graph of the attacks against eight character long passwords was not included since it was 

fairly sparse for the brute force and letter frequency analysis attacks. For eight character long 

passwords, in the first billion guesses the brute force attack did not crack any passwords and the letter 

frequency analysis attack only cracked two. This stands in stark comparison to the Markov based 

attack, where you can see the results of it running against eight character long passwords from the 

Hotmail list in Fig. 2.2.5 where it cracked slightly more that 40% of the entire set. 

 In fact, as seen in Fig. 2.2.5, the Markov enhanced attack remains extremely effective even as 

the password length increases, while pure brute force and letter frequency analysis attacks quickly 

become infeasible. Even when cracking eight character long passwords, John the Ripper‟s Incremental 

mode only required around 185 million guesses to crack 30% of the passwords. 

  

 

Figure 2.2.5: Markov Enhanced Attacks vs. Various Length Passwords from the Hotmail List  

 

In conclusion, an attacker is just wasting their time if they employ a brute force attack that does 

not at the very least use Markov probabilities. This can further be enhanced through the use of targeted 

brute methods to effectively attack longer passwords. Therefore when performing a threat analysis, it is 

important to use these models. This also shows the applicability of using probabilistic methods to model 

human password selection. This idea will be further expanded in Chapter 5. 
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CHAPTER 3 

EVALUATING DICTIONARY BASED ATTACKS 
 

 

3.1 Overview 

 

While brute force attacks were covered in Chapter 2, now it is time to look at dictionary based attacks. 

In a dictionary attack, the attacker uses a dictionary comprised of words they suspect the target may 

have used in their password. The attacker then applies mangling rules to these input words, such as 

capitalizing the first letter, adding two digits to the end, changing the letter „a‟ to an „@‟, etc, to further 

match the targets password. Because of this, there are three ways that a dictionary attack can fail: 

 
1. The target did not create their password using a method that is vulnerable to a dictionary 

based attack. As we‟ll cover in Chapter 3.2, this goes beyond not using dictionary words. 

For example keyboard combinations are still subject to a dictionary based attack. Instead 

this category covers techniques like using randomly generated passwords. 

2. The base word that the target selected for their password was not in the attacker‟s input 

dictionary 

3. The attacker did not apply the correct word mangling rules to their input dictionary in order to 

match the targets password. 

 
The important thing to remember then is that the success of a dictionary based attack depends not only 

on the input dictionary selected, but also the word mangling rules applied to it. The problem though is 

that the number of guesses that an attacker can make is finite. This means that the larger the input 

dictionary the attacker uses, the less word mangling rules they can apply to each individual word. This 

is because each mangling rule can often create several guesses for each word in the input dictionary. 

Likewise, if an attacker wants to use highly aggressive mangling rules that can result in thousands of 

guesses per word, then they must select a highly targeted and very small input dictionary for their 

cracking session. These two attack techniques, a large input dictionary with simple mangling rules, and 

a small input dictionary with complicated mangling rules, are not necessarily exclusive. An attacker 

often makes several runs when attempting to crack a password, first by using a small input dictionary, 

and then if that attack fails, attempt to crack the password using a much larger input dictionary. Finally if 

that fails, an attacker can then switch to brute force methods before giving up. 
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3.2 Creating Input Dictionaries 

 

Finding and creating effective input dictionaries is a non-trivial problem. While many such dictionaries 

specifically created for password cracking attacks are available online [23, 50], a vast majority of them 

were created before the year 2001. While numerous base words that people use, such as password 

and football, remain the same; these dictionaries fail if the target selected a password from more 

modern cultural references. With the increasing popularity of the internet, along with improved search 

functionality, several new possibilities for compiling these input dictionaries have become available. 

 My first such attempt at this resulted in the program WikiGrabber. This is a command line tool that 

builds custom dictionaries by spidering web pages hosted on Wikipedia. Creating custom dictionaries 

based on Wikipedia articles actually turned out to be a very difficult problem though as it was hard to 

construct the appropriate search queries. For example, a search for the term „beer‟, would return a 

page that primarily dealt with the history of the fermentation and brewing of beer. To instead find a page 

devoted to beer brand names, which would be much more useful in a password cracking session, the 

attacker needed to search for brewing companies instead. 

 A much more fruitful endeavor though was to expand the WikiGrabber program to specifically 

target Wiktionary articles instead. Wiktionary [52] is a sister project of Wikipedia, and is devoted to 

creating user generated dictionaries for different languages. This offered several advantages when it 

came to creating custom dictionaries. First, it allows me to create input dictionaries for languages other 

than English. This is tremendously powerful since there are very few non-English input dictionaries 

available online. The second advantage is that since the words are categorized by type, (noun, verb, 

adverb, proper noun, etc), this allows an attacker to create dictionaries ordered by type which can later 

be used in a pass-phrase cracking attack. A screenshot of the WikiGrabber program can be seen in 

Fig. 3.2.1. 

 

 

Figure 3.2.1: Screen Shot of the WikiGrabber Program 



 

44 

 

 The downside of this approach is that these custom dictionaries depend on the level of community 

support when it comes to building and updating the corresponding Wiktionary pages. Because of that 

many of the languages listed on Wiktionary only have a few entries. Some of the more widespread 

languages such as French, German, and Spanish though have much more support. The number of 

entries for these pages has also grown over time. Consider the wordlist generated from the Finnish 

Wiktionary entries. When WikiGrabber was first run on it in October 2008, the resulting dictionary 

contained 96,348 words. When WikiGrabber was run again against the Finnish entries in March of 2010 

the new dictionary contained 114,219 words. 

 This isn‟t the only example of using Wikipedia sister projects to create input dictionaries. Another 

dictionary of famous quotes was generated from the website Wikiquote.org. Even when limited to 

quotes less than 140 characters long, the resulting dictionary contained 187,675 unique quotes to use 

when cracking passphrases. Probably the ultimate example of mining Wikipedia and its sister projects 

was taken by research Sebastien Raveau, who created an input dictionary containing every unique 

word found on every Wikipedia page [54].  The resulting input dictionary just for the English language 

sites contained close to twelve million words. 

 Wikipedia is not the only source of input dictionaries. For example, over the course of this 

research several input dictionaries have been developed to model keyboard combinations such as 

„qwerty‟, and one line ASCII art, such as this picture of a fish „/><{{{{">‟. Perhaps the best source for 

custom input dictionaries though has been from previously disclosed password lists. Using the 

passwords, „as is‟, has been very useful since the datasets available have grown large enough that I 

now sometimes possess a user‟s password from a previous discloser. In a more generalized approach 

though, it has also been useful to lowercase all of the letters in a sample password set and then select 

all of the alpha strings for a custom dictionary. This is because while the password “tigerwoods1972‟ 

might not be that common, the base word „tigerwoods‟ is used much more often. This is very helpful 

since many common words such as „tigerwoods‟ do not appear in a majority of the password cracking 

input dictionaries available online. 

 

3.3 Using Edit Distance to Estimate Coverage 

 

The next question then is how effective are these input dictionaries. What the attacker really wants to 

know is which input dictionary should they use in their password cracking attack, when should they 

switch to a larger input dictionary, and when should they resort to brute force guesses. A naïve 

approach would be to simply run password cracking sessions using different input dictionaries against a 

common test set, and evaluate the results. The problem with that approach is the amount of time 
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required to perform such an analysis. Even a simple rule such as add four digits to the end of an input 

dictionary word can generate ten thousand unique guesses per word that then need to be compared 

against the test set. Likewise, even though a password created using a word from the dictionary might 

be in the target set, if the right word mangling rule is not applied during the guessing phase, the 

password is not going to be cracked. 

 One possible solution to this problem is to use a modified version of edit distance to evaluate the 

effectiveness of input dictionaries. The notion of Edit distance has long been used in computer science 

to determine the number of changes needed to transform one string to another [54]. The goal then is to 

see if the passwords in the target set can be transformed into a word from the input dictionary within a 

set number of edits. 

 While using the edit distance may sound much like running a password cracking attack – both 

methods attempt to modify a word so it matches a value in the other set – there are important 

differences. Most importantly, by trying to modify the password to match an input dictionary word, we 

can safely make some assumptions about the input dictionary since it composition is determined by the 

attacker. For example, the attacker can convert all uppercase characters to lowercase letters in the 

input dictionary. Second, in most cases there are usually many fewer passwords in the training set then 

there are words in the input dictionary. This results in fewer comparisons. Third, unlike with a normal 

password cracking session, edits do not need to be attempted if they have no chance of matching a 

word in the other set. For example, in a password cracking attack, an attacker may attempt to add four 

digits to the end of a dictionary word. If none of the target passwords end with four numbers though, 

this is a wasted effort. 

 One model of edit distance is the Levenshtein distance. The Levenshtein distance measures the 

number of additions, subtractions, or substitutions required to change one string to another. 

Unfortunately, using a pure implementation of Levenshtein distance would result in a large number of 

false positives. Consider the password „star1234‟. It is easy as an observer to tell that it was created by 

someone adding the number „1234‟ to the end of the word „star‟. The Levenshtein distance of this edit 

would then be four.  This can result in false positives though since other words with a Levenshtein 

distance of four include, „stars‟, „stare‟, „start‟, and „starting‟. The goal then is to create a modified 

version of edit distance whose edit rules more accurately model how people create passwords. 

Examples of the edit rules currently being used by the training program for our password guess 

generator UnLock, (further discussed in Chapter 5), can be seen in Table 3.3.1. 
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TABLE 3.3.1: Example Modified Edit Distance Rules 

Rule Description  
Example 
Passwords 

After Rule Had 
Been Applied  

Custom 
Cost 

Lowercase all letters PaSSword password 0 

Remove all digits/special characters from the end 
of the password 

password123$ password 0 

Remove all digits/special characters from the front 
of the password 

123password password 0 

Perform common letter replacements 
p@ssword 
p@$$word 

password 
password 

1 
1 

Remove the same alpha character from the front 
and end of a password 

xpasswordx password 1 

Remove two of the same alpha characters from 
either the front or end 

xxpassword 
passwordxx 

password 
password 

1 
1 

Remove common prefix/postfix values 
passwords 
surfing 

password 
surf 

1 
1 

Remove a single alpha character from the front or 
end of a password  

xpassword password 2 

Subtract another dictionary word from the 
password 

coolpassword cool + password 4 

 

 

 These rules are used with a parser to see if it is possible to transform a password into a 

corresponding dictionary word within a specified number of edits. Currently the maximum cost allowed 

is four. Referring to the above table, not all edits are assigned the same cost. That is because some 

edits are much more likely to cause false positive matches than others. Therefore certain rules such as 

“lowercase all letters” essentially are treated as free. Other rules though, such as “separate a password 

into two dictionary words”, are assigned a much higher cost. Besides limiting false positives, another 

advantage of assigning a limit based on cost is that only a fairly limited number of edits are allowed, 

which means that time required to parse a dictionary and training list of passwords is usually less than 

a couple of minutes. For example, using the input dictionary Dic-0294 which contained slightly more 

than 869 thousand words, and comparing its effectiveness to the MySpace training list containing 

33,561 training passwords took less than three seconds on a lab MacOSX  2.2GHz Pentium Core Duo 

computer. Of course as larger training sets or input dictionaries are parsed, this time increases. 
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3.4 Results of Using Edit Distance to Evaluate Input Dictionaries 

 

Using the methods described in Chapter 3.3, it‟s important to see if the metrics derived from using edit 

distance correspond to results found during a password cracking attack. To that end, the edit distance 

program was run on several popular input dictionaries. A more detailed description of these dictionaries 

and how they were obtained can be found in Chapter 5.3.2. The results of comparing the edit distance 

of these dictionaries to the MySpace training set can be found in Table 3.4.1. 

 

TABLE 3.4.1: Matches between Common Input Dictionaries and the MySpace Training Set 

Dictionary Name  Dictionary Size (words) Percent matched 

Dic-0294 869,228 61.04% 

Passwords.lst 3,115 24.34% 

Common_Passwords 816 6.87% 

English_Wiki 68,611 40.01% 

Wordlist.txt 306,706 47.96% 

 

 

 The next step was to run a password cracking session against the MySpace test list to see how 

the edit distance compared to a dictionary based attack. For this attack the password cracker John the 

Ripper was used [23], operating in wordlist mode with the above dictionaries. For the mangling rules, 

since the default John the Ripper ruleset is fairly short, the “single mode” wordlist from John the Ripper 

was selected instead. Each cracking session was then allowed 100 million guesses. That being said, 

due to the different dictionary sizes, not all of the dictionaries actually used all 100 million guesses 

before terminating even with the “single mode” rule-set. The results can be seen in Fig. 3.4.1. 

 The first thing to note is that given even a hundred million guesses, none of the attacks, with the 

exception of the Common_Passwords list, came close to reaching the percentage given by the edit 

distance calculation. This is actually to be expected. The metric provided by edit distance ideally should 

be an upper-bound of the possible effectiveness of a dictionary based attack. Another interesting result 

was how much more effective the English-Wiki dictionary proved to be compared to the Dic-0294 input 

dictionary. This shouldn‟t be surprising though since the English_Wiki dictionary was significantly 

smaller than Dic-0294 while still managing to match 40% of the passwords using the edit distance 

metric. Since each cracking session was limited to 100 million guesses, the session using Dic-0294 
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was never able to run to full completion. Therefore, given that Dic-0294 contained a large number of 

words that were unlikely to result in cracking a password, it wasted many of its guesses mangling very 

low probability words. 

  

 

Figure 3.4.1: Different Dictionaries Run Against the MySpace Test List 

 

Given those results, the next question then is how Dic-0294 performs relative to the 

English_Wiki when both cracking sessions are allowed to run to completion. In addition, to increase the 

number of guesses generated for this test, the rules for John the Ripper‟s Single mode that are turned 

off by default were enabled. The results of this test can be seen in Fig. 3.4.2. 

 

 

Figure 3.4.2: Longer Cracking Session Run Against the MySpace Test List 
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 As can be seen in Fig. 3.4.2, given more guesses, Dic-0294 eventually cracks more passwords 

than the English-Wiki input dictionary. It is notable though that English-Wiki cracked slightly more than 

70% of the number of passwords that Dic-0294 cracked. The reason why this is significant is because 

according to the edit distance calculations it was predicted that the English-Wiki dictionary would crack 

65.5% of the passwords in the test set compared to Dic-0294. This means in addition to gaining a 

general understanding of the maximum number of passwords that each input dictionary is likely to 

crack; the edit distance calculation also gives us a reasonable approximation of how input dictionaries 

perform in relation to each other in a password cracking session. This matches up with the results in 

Fig 3.4.1, where the common_passwords input dictionary performed 65% as well as the English-Wiki 

dictionary, while the edit distance metric predicted it would crack only 60% as many passwords as the 

English-Wiki dictionary. It‟s important to note that this relative effectiveness metric is dependent on 

each password cracking session being run with the same word mangling rules applied to them, and for 

each session to be run to completion.  

This idea of rating the relative effectiveness of input dictionaries prove to be an important 

component of the probabilistic password cracking program, UnLock, which will be described in more 

detail in Chapter 5. Even for traditional password cracking attacks though, this metric is useful since 

when combined with the size of an input dictionary it can help guide an attacker to which dictionaries 

they should employ when cracking passwords. 

While evaluating the effectiveness of input dictionaries is very useful, edit distance can also help 

identify the word mangling rules used create a password. For example, Table 3.4.2 shows the top ten 

most common rules, (out of 1,010), found when performing the edit-distance calculation on the 

MySpace training set using the input dictionary dic-0294 

 

Table 3.4.2: Top 10 Rules Found in the MySpace Training Set Using Edit Distance 

Rank Rule Number of Occurrences 
1 Append two digits 4920 
2 Append one digit 4121 
3 Append three digits 1420 
4 No-op – Do nothing 1152 
5 Append four digits 1016 
6 Combine two words from the input dictionary 824 
7 Append one special character 713 
8 Insert one digit in the front 343 
9 Insert two digits in the front 230 
10 Uppercase the first letter, append one digit 180 
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Most of the rules listed above, with the possible exception of rule #6, are fairly basic reflecting 

the reality that a majority of people do not employ complicated mangling rules if they are not required 

to. Where this approach has merit though is identifying less likely word mangling rules. For a sample of 

some of the more interesting rules, refer to Table 3.4.3. 

 

Table 3.4.3: Interesting Rules Found in the MySpace Training Set Using Edit Distance 

Rank Rule Number of Occurrences 
12 Lowercase the first character, uppercase the 

rest, append one digit 
139 

19 Replace the letter „i' with a „1‟ 74 
20 Append the letter „s‟, append a digit 70 
21 Append a special character, append a digit 67 
28 Replace the letter „e‟ with a „3‟ 48 
29 Replace the letter „o‟ with a „0‟ 47 
30 Append the letter „y‟, append two digits 47 
31 Append the letter „y‟, append two digits 45 
34 Append a digit, append a special character 42 
102 Replace the letter „a‟ with a „@‟ 13 
 

 

 From this we can learn that mangling rules such as lowercasing the first character and 

uppercasing the rest, while infrequently used, is much more likely to occur than many other mangling 

rules. Also we can see that switching the letter „i‟ with a „1‟ is the most common letter replacement. 

Likewise, replacing the letter „a‟ with an „@‟ occurs very rarely. Also if someone appends both digits and 

special characters to their password, they are much more likely to append a special character followed 

by a digit, (aka password$1), instead of the other way around. 

 The next question is if this knowledge can then be weaponized for a password cracking attack. 

A naive way to accomplish that would be to create word mangling rules based directly on their 

occurrences found in Table 3.4.2. Therefore a custom configuration file for John the Ripper was created 

based on the first ten rules found by the edit distance calculation. The one exception was rule #6 which 

was omitted due to difficulties modeling it using John the Ripper. Password cracking sessions using the 

input dictionaries Dic-0294, English_Wiki, and Passwords.lst were then rerun against the MySpace test 

list with the modified mangling rules applied. Each run was once again limited to one hundred million 

guesses. The results of these tests, compared to the original cracking sessions shown in Fig 3.4.1, can 

be seen in Fig. 3.4.3. 
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Figure 3.4.3: Comparing Edit Distance Generated Rules vs. the Default John the Ripper Rules on the 
MySpace Test Set 

 

The results of this run were decidedly mixed, with the edit distance rules performing better than 

the default John the Ripper rules when dic-0294 was used as an input dictionary, but much worse when 

the English-Wiki dictionary was used. The reason for this is the above approach does not take into 

account the number of guesses generated per rule. For example, while appending three digits was 

slightly more common than not applying any word mangling rules, it would generate one thousand 

times more guesses as it adds the numbers 000 through 999 to the end of every dictionary word. Also, 

the naïve way demonstrated is much too coarse in its rule classification. While appending three digits to 

the end of a password is very common, the vast majority of those three digit numbers are „123‟. Ideally 

you would want to create a separate rule that would just append „123‟ and leave the other three digits 

numbers for a later rule to take care of. A must smarter algorithm that can use this data is described in 

much more detail in Chapter 5: “Using Probabilistic Grammars for Password Cracking”. 

 That being said, the edit distance metric can also be used to classify the word mangling rule 

applied by a user to create a password. This can be very useful in a password strength checker, as the 

mangling rule can then be compared to known password cracking rules. From those rules, and 

common input dictionaries, an estimate can be made on how strong the user‟s password is. In turn, the 

resulting measurement can be incorporated into password creation policies that would reject weak 

passwords.  
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CHAPTER 4 

DICTIONARY BASED RAINBOW TABLES 
 

 

4.1 Overview of Rainbow Tables 

 

In a standard offline password cracking attack, the attacker possesses a password hash, and is 

attempting to guess the password that created it. Depending on the hashing algorithm used, the 

attacker generally spends a vast majority of the cracking session hashing their guesses, (step 2 of a 

password cracking session as seen in Chapter 1.2). If a password salt is not used though, these 

hashes generated by the attacker can be stored and reused in future password cracking attacks. This is 

because the same guess always hashes to the same value. 

The simplest way to perform these pre-computation attacks is to create a database of previously 

hashed guesses and perform lookup on the target hash whenever starting a new password cracking 

session, as seen in Table. 4.1.1. If the hash is found, the attacker simply finds the corresponding 

plaintext value stored in the database and then has cracked the hash. Such lookups can be done very 

quickly, (usually seconds), and drastically reduce the time it takes to crack the most common 

passwords [10]. Such a database is called a hash lookup table. 

 

Table 4.1.1: Example Hash Lookup Table 

Index Plaintext 
Value 

Hashed Value       Target Hash 

1 password1 7C6A180B36896   

2 monkey123 CC25C0F861A83        CC25C0F861A83 (Match) 

3 F00tball 56D4F3C64A5DB   

4 qWeRtY 87BA00BE932A6   
 

 

While hash lookup tables have many advantages, their main weakness is their large file size. A 

good example of this can be found in the Church of Wi-Fi‟s WPA/WPA2 hash lookup tables [20]. WPA 

and WPA2 password hashes are salted with the SSID name and length. Therefore, one set of tables 

was created with one thousand different SSIDs used as salts and an input dictionary of one million 

words. This created a total key space of one billion, (1,000 x 1,000,000). To put it in perspective, that is 
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the equivalent of taking an input dictionary of one million words and adding three numbers to the end of 

them, aka „password111‟, „password112‟, „password123‟… The total file size of those tables ended up 

being a little more than thirty three gigabytes. Therefore, by adding even a moderately complicated 

word mangling rule, the resulting hash lookup tables can easily take up terabytes or more of disk 

space. 

Rainbow tables can be best thought of as a very efficient, but lossy, compression algorithm for 

hash lookup tables. Being a time-memory-tradeoff algorithm the computational requirements to perform 

a lookup are higher than with a hash lookup table, but the disk space usage is significantly lower. The 

basic idea was first proposed by Hellman [34] where chains of password hashes were stored and then 

recreated to attack password hashes. The idea was further refined by Oechslin [24] who introduced a 

different reduction function for each step of the hash chain and removed the idea of distinguishing 

points. A popular implementation of Oechslin‟s attack, rainbowcrack, was later coded and released by 

Shuanglei [25]. 

 

4.2 Rainbow Table Construction 

 

An important concept of rainbow tables is the idea of an index value. The index value ranges from 0 to 

(key-space max -1). To demonstrate this, if the attacker was trying to brute-force all words six 

characters long which contain only lowercase letters the key-space max would be 266. What this means 

is that each possible value of the index variable represents one unique password guess. Therefore any 

attack involving rainbow tables must have a fast indexing function. 

There are three main functions used in the creation and application of rainbow tables, and they 

are cyclical in operation. These functions are IndexToPlain, PlainToHash, and HashToIndex. The 

IndexToPlain function takes an input index value and returns the corresponding plain-text password 

guess. As the name implies, the PlainToHash function takes an input plaintext password guess and 

returns the hashed value of it. Finally the HashToIndex function takes a hash as input and makes use 

of a reduction function to return an index value.  

Rainbow tables are based on the idea of hash chains. When a rainbow table is created, the user 

specifies the chain length, and the number of chains. The chain length value can be thought of as the 

amount of compression to use. The longer the chain is the more hashes that can be stored in the same 

amount of disk space. The downside is that a longer chain takes more time to search during an attack 

and is more prone to collisions. The number of chains determines how many chains are stored, and 

thus the disk space the rainbow table takes up. When a traditional rainbow table hash chain is created, 

an initial index value is randomly selected. IndexToPlain is then run to determine the plaintext password 
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guess. That guess is then run through PlainToHash where it is hashed. Finally HashToIndex is run to 

determine the next index value. This process, (using the previous index value as input), is repeated n 

times where n is equal to the chain length. An example of this can be seen in Figure 4.2.1 

 

Index PlainText Hash Index PlainText Hash Index 

1 cat1 a2371f 62 pass5 387f13 28 

 
 

 
     

 hat8 834cd1 122 monkey2 2ee125 73 

Figure 4.2.1: Creating a Rainbow Table Chain of Length Four 

 

Rainbow tables obtain their compression by only storing the first and last index values for each 

chain. This means that while the individual chain itself may represent several thousand hashes, only 

two values are stored. Since the process to create a chain is deterministic, the entire chain can be 

recreated from the first index value. The last index value is saved so that the target-hash, (the hash the 

attacker is attempting to crack), can be identified if it exists in that chain. 

When attempting to crack a password hash using a rainbow table, the attacker takes the target 

password hash and then runs HashToIndex on it. They then compare the generated index value to the 

last index value of every chain in the rainbow table. If the password hash‟s index value matches one of 

the chains, the chain is then recreated from its first index value. If the target hash exists in the chain, 

the attacker simply goes back one step to see the plaintext that created it. For example, suppose the 

attacker is attempting to crack the password hash „2ee125‟ using the chain represented in Figure 4.2.1.  

They would run HashToIndex on the target hash and obtain the index value „73‟. The attacker would 

then compare it to the last index value for each chain they previously created, and see it matches the 

value in Figure 4.2.1. They would then recreate the chain using the initial index value „1‟. Once they see 

the hash, „2ee125‟, in the recreated chain, they simply go back one step to find the plaintext value 

„monkey2‟. 

Now this only detects if the target password hash is the last hash in the rainbow chain. To check 

every position in the rainbow table, the attacker simply continues to build a target chain using the 

HashToIndex, IndexToPlain, PlainToHash functions for the chain length of the rainbow table. 

Therefore, after running the first iteration of HashToIndex on the target hash and not finding a match, 

the attacker would then run IndexToPlain, PlainToHash, and finally HashToIndex again to calculate the 

next index value to search against the rainbow table. In most cases though, this is more complicated 

since a majority of rainbow tables created since the Oechslin paper [35] use a different reduction 
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function depending on where you are in the chain creation process. As stated earlier, the reduction 

function is used by HashToIndex to determine what the next index value is given a hash value. What 

this means is that the same hash value may generate many different index values depending on what 

step it is in the chain creation process. Because of this, a new target-chain must be created for each 

possible position that the target hash value may occur in the rainbow chain. For example, if we were 

trying to crack the password hash „a2371f‟ using a rainbow table with a chain length of four, we would 

generate target-chains as seen in Table 4.2.1.  

 

Table 4.2.1 Cracking a Hash Using Rainbow Tables with a Chain Length of Four 

Target 

Hash 

Index Plain 

Text 

Hash Index Plain 

Text 

Hash Index Plain 

Text 

Hash Index 

           
a2371f 102          

a2371f 37 rat2 64257f 97       

a2371f 34 bat2 834cd1 107 stuff1 735821 81    

a2371f 62 pass 387f13 28 hat8 834cd1 122 monkey2 2ee125 73 

 

 

Only the rightmost index value from each target-chain is used to check against the rainbow 

table chains. Referring back to the chain in table 4.2.1 again, we can see that the hash „a2371f‟ as 

listed in Table 4.2.1, occurs at the very beginning of the chain, and the plain-text value is „cat1‟. 

 

4.3 Rainbow Table Collisions 

 

One of the main problems that plagues the creation and use of rainbow tables is merging chains. A 

chain is said to merge when two or more chains with different initial index values share the same last 

index value. This can be caused by a collision generated by any of the three main rainbow table 

functions, IndexToPlain, PlainToHash, or HashToIndex. A collision is when one of the functions takes 

different inputs but returns the same output. Merged chains are problematic since all work done in the 

chain after the point where the collision occurred is duplicated. Also, if a collision occurs between one 

of the target chains being generated to check a password and a chain in the rainbow table it can create 

a false alert, otherwise known as a false positive. When this occurs the chain in the rainbow table is 

recreated even though the target hash is not in it. Therefore, these false alerts can drastically increase 

the time it takes to crack a password hash.  
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Depending on the hash type targeted, the PlainToHash function is generally extremely resistant 

to collisions. While hashes such as MD5 have been shown to be vulnerable to birthday attacks [36], the 

probability of such a collision occurring during rainbow table creation is limited. Even if a collision does 

occur from this function it is rare enough not to negatively affect the performance of the rainbow table 

as a whole. With weaker hashes such as MYSQL323, which is only 64 bits long, collisions occur much 

more often. If the collision occurs for the target hash, the rainbow table returns a valid password for the 

user even though the “cracked” password is different from the password the user originally selected. 

Unfortunately, a vast majority of the collisions will be generated by password hashes not matching the 

target hash, which results in wasted work and merging chains. 

Traditionally the IndexToPlain function has also been resistant, if not completely devoid of 

collisions. This is due to the nature of brute-force attacks that have been employed. When generating 

guesses, (as an indexing function), with a brute force approach it is fairly trivial to avoid duplicate 

guesses, and thus collisions from the indexing function. As we will see later though, when applying a 

dictionary based approach special care must be taken to avoid duplicate dictionary words as well as 

rules that generate duplicate guesses. Because of this, it is important to be aware that dictionary based 

rainbow tables require much more planning in their construction, and the attacker may have to accept a 

larger amount of collisions in their table than if they used a brute-force approach. 

Finally, the HashToIndex function is where most collisions occur. This is due to the nature of 

rainbow table construction as the goal in creating a rainbow table is to represent as many plain text 

guesses and thus as many index values from the key-space as possible. Due to the probabilistic nature 

of creating chains, (aka you have no idea what the index value of the next step is until you create it), an 

attacker has no way to avoid duplicate guesses generated by the HashToIndex function. To combat 

this, the HashToIndex function normally uses a different reduction function depending on what step it 

occurs in the chain. This way, even though duplicate guesses may be generated, unless those 

duplicate guesses occur in the same step in the rainbow chain the chains themselves do not merge. 

This limits the damage that is caused by collisions from the HashToIndex function. 

 

4.4 Previous Work 

 

The main difference between most Rainbow Table implementations is their IndexToPlain function. How 

a Rainbow Table indexes the key-space determines what type of guesses they can make. Previous 

Rainbow Table IndexToPlain functions worked on variations of brute force type attacks. The first type of 

attack, popularized by Shuanglei‟s program rcrack [25], relies upon a pure brute-force selection 

mechanism. When generating a rainbow table using this approach, a character-set is selected along 
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with the desired length of password guesses to brute-force. For example, a table could be generated to 

brute-force passwords of length one through five, that contain letters (upper/lower), and numbers. The 

key-space max is then determined, in this case  ૟૛�૞�=૙  which equals 931,151,402, and the 

maximum index then is 931,151,401, (key-space max -1). The IndexToPlain function for these 

traditional brute-force Rainbow Tables takes an index value and then figures out the length of the 

password guess by dividing the index value by the size character-set, until the resulting value equals 

zero. The number of successful divisions is the length of the resulting password guess. From there it is 

fairly trivial to determine the characters to use via modular arithmetic.  A modified index value is created 

by (index_value – charset(length-1)). This modified index value is then run through successive rounds 

where that character at the current position is determined by (modified_index_value mod charset) 

and then the new modified index value equals (modified_index_value div charset). 

Using the above example, in which the character set contains 62 characters, (lower/upper 

alphas, and numbers), and the input index value 388, the output password guess would be two 

characters long, (388/62= 6, 6/62=0). The first modified index value would then be (388 - 64(2-1)=326) 

which equals 326. This makes the first character a „q‟, (326 mod 62 = 16 = ‘q’). For the next character, 

the modified index value would then be five, (326 div 62 = 5), which would cause the second character 

to be „f‟, (5 mod 62 = 5 = ‘f’). Therefore the outputted result of running IndexToPlain on the input 388, 

would be the password guess „qf‟.   

The main problem with the above approach is that it quickly becomes infeasible to brute force 

the entire key-space for longer passwords. One attempt to help mitigate this problem is to only try to 

search a subset of the key-space by performing a targeted brute force attack. This approach was 

popularized by the program rcracki [26]. In this case, the targeted brute-force attack lets the attacker 

specify a unique character set to use for each letter position. What this means is that an attacker can 

generate guesses following rules such as “brute force all passwords that start with four characters, 

followed by two numbers.” Example guesses generated by this rule would be aaaa01, aaab02 … 

zzzz99. This lets the attacker tailor their approach to target certain user password selection 

characteristics, such as users generally put numbers at the end of their passwords. By using this 

method, these tables can attack a majority of human generated passwords while limiting the key space 

the attacker needs to search. The actual algorithm used is much like the pure-brute force approach 

described above, but the character set is determined based on the current position being filled in by the 

IndexToPlain function. 

A third way to implement the IndexToPlain function to make use of Markov models was 

suggested in the Narayanan paper [19]. The Narayanan approach first generates a dictionary of all 

Markov guesses whose probability falls above a specified limit using the algorithm previously described 
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in Chapter 2.1.3. If no other mangling rules are applied, then the IndexToPlain function simply indexes 

into the generated results to create a password guess. As you can imagine, this is highly inefficient 

since the Markov generated dictionary contains every plain-text guess, and in this case a hash lookup 

table would be much more effective. They solve this problem though by adding a second dictionary that 

applies word mangling rules, (such as capitalization, and adding digits to the end of a password guess). 

In this way, their attack becomes a targeted brute-force attack. The second dictionary‟s rules are 

applied by finding an index into the Markov generated input dictionary, along with an index into the 

rules dictionary. This secondary rules dictionary is used much like a mask that is then applied to the 

Markov guess. This is done using the following function get_key5 [19]: 

 

get_key5(index) 
{ 

count1 = partial_size1(0, 0) 
count2 = partial_size2(0, initial_state) 
index1 = index/count2 // quotient is truncated 
index2 = index - index1 * count2 
key1 = get_key1(0, index1, 0) 
// we assume that key1 consists of 
// lowercase characters 
key2 = get_key2(0, index2, initial_state) 
key = "" 
pos = 1 
for char in key2: 

if char is ’a’ 
append key1[pos] to key 
pos = pos+1 

if char is ’A’ 
append uppercase(key1[pos]) to key 
pos = pos+1 

if char is neither ’a’ nor ’A’ 
append char to key 

return key 
} 

 

 While the above algorithm does allow the use of mangling rules, it still has several major 

weaknesses. The main problem is that the secondary dictionary, containing the mangling rules, must 

contain a separate entry for every case mangling rule, and more importantly, digit added. Therefore, if 

an attacker wanted to add four digits to the end of each Markov generated word, they would need ten 

thousand entries in their secondary dictionary, representing 0000 to 9999. This gets worse when case 

mangling is applied, as a separate entry must be created for each combination of case mangling rule 
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and digit appended or pre-pended.  The second problem is it does not support additional mangling 

rules, such as letter replacements, (aka replace „a‟ with an „@‟), or rules such as combine two Markov 

generated words. 

 

4.5 Indexing Dictionary Based Rules 

4.5.1 Overview of Drcrack 

 

The Rainbow Tables mentioned before all were variations of brute-force style attacks. Part of my 

research was to develop a way to store pre-generated dictionary based attacks in a Rainbow Table. 

This can be thought of as a more general implementation of the Narayanan method [19]. The goal was 

to develop an IndexToPlain function that: 

 

1. Supported arbitrary input dictionaries, such as those composing human generated dictionary 

words, dictionaries containing common keystroke combinations, Markov generated input 

dictionaries, etc.  

2. Allowed a vast majority of mangling rules to be applied to each input dictionary word 

3. Minimizing the file-size of the overhead associated with the finished Rainbow Tables. This 

means the previous method used in the Narayanan paper of using a mask to represent each 

word mangling rule was not suitable. 

4. Given an input index number, generate the resulting plain-text value as quickly as possible. 

5. Minimize the number of collisions generated by the IndexToPlain function. 

 

The end result was an indexing function that works with a majority of word mangling rules, with 

it being implemented and publicly released in the tool drcrack [37]. Drcrack gets its name because it is 

a dictionary based version of the rcrack Rainbow Table creation tool, (aka d-rcrack). The actual 

Rainbow Tables created by drcrack are composed of four separate files. The first file is the 

configuration file. This file holds information about the other three files, (such as file names), version 

information, and global information, such as the Rainbow Table chain length, and number of chains. 

The second file is the actual Rainbow Tables themselves, which are the first and last index values from 

every chain in the rainbow table. The third file is the input dictionary used. The last file contains the 

word mangling rules used, which look much like the word mangling rules used in password cracking 

programs like John the Ripper [23]. 

The key was to generate an efficient indexing function for each type of word mangling rule. A 

user creating a rule-set for drcrack assembles their rules using the GUI frontend shown in Fig 4.5.1.1. 



 

60 

 

 

Figure 4.5.1.1: Screenshot of the Drcrack Rule Configuration Generator 

 

Option 1 allows the user to specify global rules, such as character sets allowed. This is most 

frequently used to specify character groups for insertions, such as which special characters, (aka 

!@#$%^), to append to a password guess. Option 2 is where the user composes word mangling rules. 

They do this by combining base word mangling rules together as can be seen in Fig. 4.5.1.2: 

 

 

Figure 4.5.1.2: Creating a Rule with Drcrack 

 

The rule currently being worked on in Fig. 4.5.1.2, which can be seen near the top of the screenshot, 

actually is composed of three base rules: 

 

1. Capitalize the first letter 

2. Append a digit 

3. Append a digit 
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Therefore the displayed rule creates guesses such as „Password00‟ through „Password99‟. Multiple 

rules may be contained in a single Rainbow Table. As an example of that, you can see in Figure 4.5.1.3 

the first fourteen rules, (out of fifty-five), included in one of the custom Rainbow Tables generated for 

drcrack. This table is currently also available online for public use [37]. 

 

 

Figure 4.5.1.3: First Fourteen Rules of the NTLM_Basic Table 

 

 Each rule has a corresponding Index size, (the number of possible guesses it represents), and 

can be thought of as a unique container. When IndexToPlain is called, it first finds which container the 

index value falls in. Currently this is done via a sequential search, (ordered by the container size), since 

certain rules generate many more guesses than others. It would be trivial though to instead modify the 

algorithm to perform a binary search if there were a large number of equally sized rules. Once the 

target container is known, a modified index value is generated by subtracting the container‟s start 

location from the index value. This simply gives an index location for that particular rule that is 

independent of all the other rules. The rest of the indexing function depends on the type of mangling 

rules applied and will be described in more detail in the next several sections. 
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4.5.2 Performing a Plain Dictionary Based Guess 

 

The first rule type is a simple No-op. While many other rules are applied in a normal cracking session, 

the No-op is usually also included so that the plain words in the input dictionary can be tried as well. 

The indexing function for the No-op is straightforward with the Index size equaling the number of words 

in the input dictionary with a direct one-to-one correlation between the index value and dictionary word 

selected. The No-op is also often used as the basis for other word mangling rules, such as appending a 

value, so most rules start with an implicit No-op. 

 

4.5.3 Appending/Pre-pending a Value 

  

The indexing algorithm for appending and pre-pending values is essentially the same, with the only 

difference being if the value is added to the beginning or end of the dictionary word. For this I borrowed 

heavily from indexed approach in rcracki [26], where different character sets are used to create a 

targeted brute-force attack. With drcrack though, instead of a brute-force attack, it regards the input 

dictionary as one character-set, and the values to append as another character set. Therefore the 

guess „monkey1$‟, would be represented the same way rcracki would regard the three letter guess 

„abc‟, with „monkey‟ representing the first character, „1‟, representing the second character, and „$‟ 

representing the third character. To avoid confusion, the term „position‟ will be used instead of 

„character‟. Aka, the guess „monkey1$‟ would have three positions. The indexing function in drcrack for 

appending values then works much like rcracki as seen in Chapter 4.4, appends characters with it 

using remainder of the modified index to decide the value for each position that is currently being 

referenced. The advantage of this is that is it works independent of all the other rules, so appending a 

digit and then a special character, is no more difficult then appending four digits. Also other rules as 

discussed later may also be easily incorporated by assigning their index values to their own position. 

Therefore, if a previous rule would create ten million guesses, the first position would have a total index 

size equal to ten million. 

 Another advantage of this approach is that the user is not limited to only appending or pre-

pending individual characters. Dictionary words may also be appended. The best example of that would 

be the keyboard based dictionary rainbow table created for drcrack. The input dictionary is a collection 

of 658 common keyboard combinations, such as „qwerty‟, and „1qaz‟. It then appends these dictionary 

words to each other, created guesses such as „qwerty1qaz‟. While an input dictionary containing 658 

words may seem small, by appending the words to each other the resulting key-space can be quite 

large as seen in table 4.5.3.1: 
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Table 4.5.3.1: Index Size Created by Appending Keyboard Combinations to Each Other 

Number of Appends Example Guess Index Size 

1 qwerty 658 

2 qwerty1qaz 432,968 

3 qwerty1qaz2wsx 282,292,528 

4 qwerty1qaz2wsx#EDC 185,748,483,424 

 

 

In the above case, even though a very small input dictionary was used, the resulting Rainbow tables 

would cover a key-space of over 186 billion guesses. This means extremely large Rainbow tables may 

be generated with very low overhead for storing the dictionary and related files such as the word 

mangling rules used. 

 

4.5.4 Case Mangling Rules 

 

While it may seem straight-forward, case mangling proved a unique challenge. The problem is that it 

can‟t be expected that all dictionary words are the same length. While rules such as capitalize the first 

letter may safely be applied to the entire dictionary, what about rules such as capitalize the 7th letter? 

To that end, when drcrack is run, sub-dictionaries are formed based on word length. These dictionaries 

are pointers to the main dictionary, but they allow fast indexing for all the words of length n. This means 

the rule, capitalize the 7th letter is only applied to a subset of the total dictionary containing words longer 

than seven characters long. The key-space referenced represents the sub-dictionaries covered by the 

current capitalization rule. For individual capitalizations, (aka capitalize one letter), this means the 

indexing algorithm is treated exactly like the No-op rule, with the exception being that the resulting 

guesses have their characters at the specified location converted to uppercase. 

 Multiple capitalizations may also be applied the same way, with the highest index position 

determining the sub-dictionary used. For example, if two rules such as capitalize the first letter, and 

capitalize the 9th letter are applied, the entire rule is only applied to dictionary words of length nine or 

longer. While not implemented in the current version of drcrack, rules could also be created to 

capitalize two or more arbitrary characters by creating sub-rules of all possible combinations. A more 

elegant solution might be possible by creating an index function for each sub-dictionary concerning the 

number of capitalizations. 
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 One possible problem though is since drcrack works with user-defined input dictionaries and 

rules, the possibility for collisions generated by the IndexToPlain function is particularly high. Therefore 

many special cases had to be considered when creating an indexing function that involves case 

mangling. Some of the special cases include: 

 

1. What happens when a character is already uppercased at the location specified? For example 

the rule is to capitalize the first letter, and the dictionary word is „Password‟. 

2. What happens when a non-alpha character is at the location for the capitalization rule? For 

example the rule is to capitalize the first letter, and the dictionary word is „123456‟. 

3. What happens when the rule is to capitalize every character and the dictionary word is only one 

character long, such as „a‟? This could create a collision with another rule such as capitalize the 

first letter. 

 

Currently the standard method to deal with the above cases is to generate a unique error return 

value for the IndexToPlain function. The important part is that the generated error message must be 

unique from all other return values for the IndexToPlain function to avoid collisions generated by the 

Rainbow Table algorithm. This means while the resulting guess and hash are essentially wasted, (since 

the error value is hashed by the PlainToHash function), at least it does not create a collision which 

might potentially cause several chains to merge. 

 

4.5.5 Letter Replacement Rules 

  

Letter replacement rules, much like capitalization rules, presented a bit of a challenge to implement. 

Luckily the solution was very similar with the creation of a sub-dictionary for every letter replacement 

rule currently being used in the created Rainbow Table. This is possible since all of the letter 

replacement rules being applied to the various rules are known during creation time, and thus drcrack 

can create the sub dictionaries before it starts generating the tables. For example, if there were two 

rules, the first being replace all „a‟ characters with an „@‟, and in the second rule it said to replace all „a‟ 

characters with an „@‟ and all „e‟ characters with the number „3‟, then two sub-dictionaries would be 

created. The first sub-dictionary would contain all words with the letter „a‟ in them, and the second sub-

dictionary would contain words that had both the letter „a‟ and the letter „e‟. 

The reason why the sub-dictionary must contain all of the replacements in the particular rule is 

once again to prevent collisions from occurring. For example, using the above two rules, it‟s important 
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that the second rule is only applied to words with both „a‟ and „e‟ in them. Otherwise words such as 

„password‟, would be used to generate the guess „p@ssword‟ twice, would create a collision. 

 

4.6 Results 

 

It is hard to make a direct comparison between traditional brute force rainbow tables and dictionary 

based rainbow tables. These two attack types are complimentary, just like how brute force and 

dictionary based attacks are both commonly used together in traditional password cracking sessions. 

Brute force remains extremely effective due to the widespread use of short passwords composed of a 

limited character set. Referring back to the real life password sets detailed in Chapter 1.6, take for 

example the RockYou training list. In that set, over 90% of the passwords contained only lowercase 

letters and/or digits. Likewise, the average password length was 7.88 characters long. This means a 

vast majority of these passwords could be cracked via brute force methods. For comparison, some of 

the free brute force NTLM hashed rainbow tables available on freerainbowtables.com [26] can be seen 

in Table 4.6.1. These tables were generated via a community based distributed computing 

collaboration. 

 

Table 4.6.1 Publicly Available Rainbow Tables for the NTLM Password Hash 

Password Length Character Set Key Space 

1-6 All printable ASCII characters ≈ 742 billion 

1-12 numeric ≈ 1.1 trillion 

1-8 Lowercase alpha, numeric, space ≈ 3.6 trillion 

1-7 Lowercase & Uppercase alpha, numeric, space ≈ 4.0 trillion 

1-7 Lowercase alpha, numeric, symbol32, space ≈ 7.5 trillion 

1-9 Lowercase alpha, space ≈ 7.9 trillion 

 

 

 The above rainbow tables each have an estimated coverage of over 99% of the given key 

space. So let‟s consider the RockYou password list where 64% of the passwords in the training set 

contain only lowercase letters, digits, and were eight characters long or less. This means a vast 

majority of those passwords in turn would be broken via a brute force attack by just the third table listed 

above. Even worse, slightly more than 79% of the passwords in the training set would be vulnerable to 

at least one of the rainbow tables detailed in Table 4.6.1. 
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 Therefore brute force tables are extremely effective if no password creation policy is in place. 

On the other hand, if a password creation policy existed requiring each password to contain at least 

one lowercase, uppercase, number and symbol, and be seven characters or more, none of the 

passwords from that set would be vulnerable to any of the above brute force tables. Likewise if an 

attacker wanted to crack more than 79% of the passwords from the RockYou list they would also have 

to resort to other means besides brute force. That‟s where dictionary based rainbow tables are useful. 

They can target stronger passwords that are not vulnerable to brute force attacks. That being said, their 

effectiveness depends entirely on the input dictionary selected and the word mangling rules used. The 

fact that they are rainbow tables only means that these dictionary attacks can be pre-computed, 

allowing an attacker to use larger input dictionaries, and more complicated word mangling rules. 

 To compare the effectiveness of the described dictionary based rainbow tables, a test set of one 

hundred randomly selected MD5 password hashes was chosen from the PhpBB test list described in 

Chapter 1.6.2. The reason only one hundred hashes were included was because the time it takes to 

perform a rainbow table lookup is multiplied by the number of hashes the attacker is attempting to 

crack. Therefore, if a lookup takes on average twenty minutes, then cracking one hundred hashes 

would take approximately thirty three hours to perform. For the dictionary based rainbow table, the input 

dictionary dic-0294 [50] which contains over 869 thousand words was used. Twenty seven mangling 

rules were then applied to this input dictionary. These rules ranged from adding four digits to the end of 

every dictionary word, to capitalizing the first letter and changing the letter „e‟ to the number „3‟. The 

resulting rainbow table covered a key-space of over 24.7 billion guesses. The total file-size of the 

finalized rainbow table was around 456 Megabytes. Some of the other generation data can be seen 

below: 

 

Generation Info for the Basic MD5 Dictionary Based Rainbow Table 

 Hash: MD5 

 Dictionary: Dic-0294 

 Rules: 27 Mangling Rules – Filename: first_big_test 

 Chain Length: 2400 

 Chain Count: 5000000 

 Number of Sub Tables: 6 

 Key Space Covered: 24,792,961,721 

 Total Size: 456 Megabytes 
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To contrast the compression that the rainbow table algorithm provides the attacker vs. a 

traditional hash lookup table, consider the very popular WPA/WPA2 hash lookup table produced by the 

Church of Wifi [20]. It only covered a key-space of one billion guesses, yet took up thirty three 

gigabytes of space. This means that the above dictionary based rainbow table covered twenty four 

times as much key space while taking up only roughly 1.3% of the disk space. That is the advantage of 

using the rainbow table compression algorithm. 

 For the traditional brute force style rainbow table I selected the popular MD5 table from 

freerainbowtables.com [26] that targeted passwords ranging in length from one to seven characters 

long, containing lowercase letters, numbers, and special characters. This table covered a key-space of 

7.5 trillion guesses and takes up 52.5 gigs of disk space. The generation info for this table can be seen 

below: 

 

 Generation Info for the Brute Force MD5 Rainbow Table 

 Hash: MD5 

 Character Length: 1-7 

 Character Set: loweralpha-numeric-symbol32-space 

 Chain Length: 10,000 

 Chain Count: 67,108,864 

 Number of Sub Tables: 81 

 Key Space Covered: 7,555,858,447,479 

 

The results when both tables were run against the 100 test MD5 password hashes from the 

PhpBB.com list can be seen in Table 4.6.2. The dictionary based rainbow table took around 1/3 the 

amount of time as the brute force table to finish, and cracked 31% of the total passwords compared to 

the brute force table‟s 43% success rate. The most interesting factor was that the percentage of the 

key-space covered due to false alarms, (aka collisions), in the dictionary based attack was roughly 

0.93%, while the dictionary based table covered only 0.01% of the key-space due to false alarms. 

There actually are several factors that could have contributed to this besides the differences in the two 

approach‟s IndexToPlain functions. For example, each of the tables search different sized key-spaces, 

have different chain lengths, etc. This means that variation in number of collisions may also be caused 

by the HashToIndex function. That being said, the results certainly point to the fact that even with 

certain problem cases being taken care of, the dictionary based IndexToPlain function still was 

generating collisions. Even with the increased number of collisions, and considering the overhead 

associated with all rainbow tables though, the dictionary based rainbow tables resulted in being able to 
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search the targeted key-space while calculating only 5.4% of total hashes during the lookup for a 

hundred different password hashes. When the same attack was run against just one password hash 

that was not found during the cracking session, the entire lookup with the dictionary based table took 

less than one minute and calculated only 0.06% of the total hashes from the search space. Therefore, 

even with the increased number of collisions, a dictionary based rainbow tables can drastically speed 

up a password cracking attack. 

 

Table 4.6.2: Results of Rainbow Table Attacks against 100 PhpBB MD5 Password Hashes 

Value Dictionary Based Table Brute Force Table 

Passwords Cracked: 31% 43% 

Total Cryptanalysis Time: 64.4 minutes 2.93 hours 

Total Chain Walk Steps: 1,340,767,315 2,409,386,122 

Total Chain Walk Steps Due to False 
Alarms 

233,949,227 1,448,442,733 

Total False Alarms 291,636 1,554,388 

Percent of the Key-space Covered Due 
to False Alarms 

0.93% 0.01% 

 

 

 But the question remains, is the dictionary based IndexToPlain function the cause of those extra 

collisions? To that end, I generated one brute force table using the same chain length and chain count 

as the dictionary based table. For the character-set I selected 30 characters, (a-z, 0-3), and specified 

for the table to check seven character long passwords. This resulted in a table covering a key-space of 

21 billion possible guesses, which is close to the 24 billion possible guesses covered by the dictionary 

based table. Due to time constraints though, I only created one sub table, vs. the six sub tables created 

for the dictionary based approach. Since the test is to determine the number of collisions, and not the 

number of passwords cracked, comparing only one sub-table from each approach did not pose a 

problem. When both tables were run against one unbroken hash, (that way neither table would crack it 

and finish early), the dictionary based rainbow table encountered 651 collisions resulting in it generating 

2.8 million unnecessary hashes to check the false alarms. The brute force table on the other hand 

encountered 636 collisions which also resulted in it generating 2.8 million unnecessary hashes to check 

the false alarms. When run on several other hashes, the brute force table averaged 641.8 false alarms 

per target hash, while the dictionary based approach averaged 650.8 false alarms per target hash. 
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While the number of collisions was higher for the dictionary based rainbow table, it was not nearly as 

significant as indicated by the test shown in Table 4.6.2. 

The next question focuses on the effectiveness of a dictionary based rainbow table attack. 

Since the entire PhpBB list was hashed, the plaintext values are only available for the passwords I 

managed to crack over a several month long period of time, (See Chapter 1.6.2 for more information). 

Of the randomly selected 100 passwords used in the above tests, the plaintext values for 97 of the 

passwords were known. It can safely be assumed that the remaining three unknown plaintext values 

would not have been cracked by either rainbow table. Manually comparing the plaintext values of the 

97 known values to the passwords the rainbow tables did crack, the dictionary based rainbow table 

cracked all of the passwords that its rule-set and input dictionary targeted. For the traditional brute-force 

rainbow table, it cracked 43 of 44 passwords that were covered by its key-space. While this falls below 

the expected 99.92% coverage for that particular rainbow table, statistically speaking it still matches up, 

as additional tests would need to be run to show if it does not meet the expected coverage. This means 

that while the brute force rainbow table managed to crack more passwords, that was due to the fact 

that it covered a much larger search space. It also was caused by weaknesses in the input dictionary 

and mangling rules selected. For example, Table 4.6.3 shows the analysis of why the dictionary based 

rainbow table did not crack the sixty six other known plaintext values. 

 

Table 4.6.3: Reasons Why the Dictionary Based Table Did Not Crack Passwords from the PhpBB List 

Reason: Number of Occurrences 

Base word was not in the input dictionary 27 

Correct mangling rule was not applied 9 

Both the base word was not in the input dictionary and the 
correct mangling rule was not applied 

7 

The target password was a number 11 

The target password was a keyboard combination 1 

The target password was created via an unknown method 11 

 

 

As can be seen, a vast majority of the passwords were not cracked due a lack of the base word 

appearing in the input dictionary Dic-0294. A more comprehensive input dictionary would help reduce 

this problem. Since the rainbow tables are pre-computed, this actually is a feasible solution, as a larger 

input dictionary would not dramatically impact the time required to crack a password hash. That being 
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said, I was unable to classify how a total of 11% of the known plaintext values, or 14% of the total 

values, were created. Some of these may have been created by using the first letter of each word for a 

passphrase. Others may have special significance to the person who created them. Unfortunately, 

unless a model can be generated to target the way that these passwords were selected, they would 

only be vulnerable to a brute force style attack. 

 In conclusion, the advantage of allowing rainbow tables to be created using a dictionary based 

attack plus mangling rules is that it allows an attacker to search a much larger key-space then they 

normally would using a non brute-force approach. Since rainbow tables are pre-computed, cracking an 

individual password hash can be done very quickly using a combination of traditional brute force 

rainbow tables and these new dictionary based rainbow tables. One specific application of this is law 

enforcement officials need the ability to crack a Windows NTLM password hash in under an hour while 

they are still performing data collection. This way they can confront the suspect directly with the 

cracked password in an attempt to have the suspect voluntarily divulge other passwords. Dictionary 

based rainbow tables make cracking that NTLM password within an hour much more feasible. 
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CHAPTER 5 

USING PROBABILISTIC GRAMMARS FOR PASSWORD CRACKING 
 

 

5.1 Overview of Probabilistic Password Cracking 

 

The main question in password cracking is how to create your password guesses. Traditionally, as 

seen in Chapter 3, dictionary based attacks relied upon word mangling rules to generate these 

guesses. An attacker would attempt to build rules that best mimic how people create passwords in real 

life. For example, in Table 5.1.1 you can see the first ten default rules that the password cracker John 

the Ripper [23] uses in its dictionary based attacks: 

 

Table 5.1.1: First Ten Word Mangling Rules in John the Ripper 

Rule # Mangling Rule 

1 Try words as they are 

2 Lowercase every pure alphanumeric word 

3 Capitalize every pure alphanumeric word 

4 Lowercase and pluralize pure alphabetic words 

5 Lowercase pure alphabetic words and append '1' 

6 Capitalize pure alphabetic words and append '1' 

7 Duplicate reasonably short pure alphabetic words (fred -> fredfred) 

8 Lowercase and reverse pure alphabetic words 

9 Prefix pure alphabetic words with '1' 

10 Uppercase pure alphanumeric words 

 

 

 One thing that immediately pops out is Rule #8, which lowercases and reverses pure alphabetic 

words. As seen from the training sets analyzed in Chapter 3, such a rule wouldn‟t be that effective as 

people rarely reverse words when creating their passwords. Yet that rule is run before many other rules 

which would likely be much more successful at cracking user passwords. This stems from a greater 

problem in that these rules are generally formed in a fairly ad-hoc basis, based on the attackers‟ 
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personal experiences. Ideally we would like to apply machine learning techniques to learn these rules 

directly from a training set of previously cracked passwords instead. 

 Another problem with rule based word mangling is that it becomes very hard to incorporate all of 

the knowledge we have about how people create passwords into an actual password cracking session.  

For example, some words such as „password‟, „football‟, and „monkey‟ are used much more often as 

the base word in a user‟s password than other words like „zebra‟, or „xylophone‟. People tend to 

capitalize the first letter and add digits to the end of their password guesses. Certain digit and special 

character combinations, such as dates, zip codes, keyboard combinations, etc, are used very 

frequently. While you see many traditional password cracking programs try to take advantage of this, 

they do so with only varying degrees of success. 

Let‟s look at the case of trying to conduct a password cracking session using several different 

input dictionaries. To do this with traditional methods, people often input each dictionary in their 

password cracker sequentially. They start by using a very small input dictionary of highly probable 

words, and apply many complicated word mangling rules to them. Later if that attack is not successful, 

they then run a different attack using a much larger input dictionary. This can best be seen in John the 

Ripper where it starts in “Single” mode using an input dictionary of user information gathered from the 

target system, and if that doesn‟t work, switches to “Wordlist” mode where a much larger input 

dictionary is used. The problem with this approach is that an attacker may want to try a low probability 

dictionary word with a high probability mangling rule, (such as „zebra1‟), before they try a high 

probability dictionary word with a low probability mangling rule, (such as „p@sSword921‟). That is very 

hard to do with traditional password crackers. 

There are many other cases as well where it is hard to accurately represent how people create 

passwords using a rule based dictionary attack. For example, it becomes very difficult to model how 

multiple word mangling rules should be optimized when they are all applied to try and crack strong 

passwords. While the number „1‟ is much more likely to be used than the number „8‟, and the number 

„99‟ is more likely than the number „32‟, should the guess „1password32‟ be tried before the password 

guess „8password99‟? How about „pAssword1‟? Should it be tried before the guess „Password8‟?. 

These are very tricky questions, and their answers can have a drastic impact on the effectiveness of a 

password cracking session. 

What we‟re attempting to do is turn the problem on its head. Instead of trying to create word 

mangling rules that mimic the way people create passwords, we are instead assigning probabilities to 

user behavior, and then using those probabilities directly to generate very fine-grained word mangling 

rules, and from those, password guesses. It‟s an important distinction to make, and our testing so far 

has shown this approach to be very promising. 
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5.2 The Mechanics of Probabilistic Password Cracking 

5.2.1 Using Probabilistic Grammars 

 

Context-free grammars have long been used in the study of natural languages [38, 39, 40], where they 

are used to generate (or parse) strings with particular structures. As will be shown in the rest of this 

chapter, they also provide a very powerful framework to represent password guesses. 

A context-free grammar is a defined as G = (V, Σ, S, P), where: V is a finite set of variables (or 

non-terminals), Σ is a finite set of terminals, S is the start variable, and P is a finite set of productions of 

the form (1):  

 

α → β                                          (1) 

 

where α is a single variable and β is a string consisting of variables or terminals. The language of the 

grammar is the set of strings consisting of all terminals derivable from the start symbol. 

Probabilistic context-free grammars simply have probabilities associated with each production 

such that for a specific left-hand side (LHS) variable all the associated productions add up to 1. As will 

be discussed in more detail in Chapter 5.2.2, we derive a set of productions and associated 

probabilities automatically from training sets of real life passwords. These productions attempt to 

capture the characteristics of how people create passwords, along with the frequency that certain word 

mangling rules are used. While we have experimented with many types of productions during the 

development of this algorithm, for simplicity this section only illustrate grammars that use the start 

symbol and variables of the form Ln, Dn, and Sn, for specified values of n. We call these variables alpha 

variables (ignoring case), digit variables and special variables respectively. Please note that rewriting of 

alpha variables is done using an input dictionary similar to that used in a traditional dictionary attack. 

Because of this, the full rewrite for alpha variables is not shown in many of the examples below due to 

the large size of input dictionaries traditionally used in a password cracking attack. 

It should be noted that the n subscript in our variables, such as Dn is used to denote the length 

of the replacement variable. So a D2 represents a variable that would be rewritten as a two digit 

number. This means that the probabilities associated with the rewrite of a D1D1 may be very different 

from those associated with a D2, even if they would produce the same guesses. This is due to the 

conditional probability associated with certain strings. For example, the two digit number „79‟, may have 

a very high probability due to it being someone‟s birth year, but the numbers „7‟ and „9‟ may have a very 

low probability of being selected independently. The key to avoid duplicate guesses then is to make 

sure no variables of the same type appear next to each other. For example, the RHS variable D1D1 
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should never be allowed to appear in the grammar, but D1S1D1 is ok. This rule is automatically enforced 

during the training phase when we generate our grammar, and will be gone into more detail in Chapter 

5.2.2  

A string derived from the start symbol is called a sentential form (it may contain variables and 

terminals). The probability of a sentential form is simply the product of the probabilities of the 

productions used in its derivation. In our preprocessing phase, we also derive the probabilistic context-

free grammar from the training set. An example of such a grammar, (along with an input dictionary 

containing two words), is shown in Table 5.2.1.1. Given this grammar, we can derive, for example, a 

terminal structure (consisting of all terminals): 

 

S → L3D1S1 → L34S1 → L34! → cat4!                                         (2) 

 

with associated probability of 0.04875.  

 

Table 5.2.1.1: Example probabilistic context-free grammar 

LHS RHS Probability 

S  → D1L3 S2 0.75 
S  → L3D1S1 0.25 
D1 → 4 0.60 
D1 → 5 0.20 
D1 → 6 0.20 
S1 → ! 0.65 
S1 → % 0.30 
S1 → # 0.05 
S2 → $$ 0.70 
S2 → ** 0.30 
L3 → cat 0.50 
L3 → hat 0.50 

 

 

For optimization purposes, it is useful to introduce the notion of containers. A container is a 

structure that allows us to optimize computations related to terminals of similar type that all have 

identical probabilities. We use the term pseudo-terminal to indicate a container‟s representation in our 

grammar. Pseudo-terminals are an implementation convenience and need not actually appear in the 

formal grammar. For example, we currently assign all dictionary words of length n from the same input 

dictionary the identical probability 1/kn, where kn is the number of words of length n in the input 
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dictionary. Thus we have an associated pseudo-terminal lower case L sub k (we call it lk) with an 

associated production:  

 

Lk → lk    (with probability 1/nk)                                        (3) 

 

This means the grammar views all n-length terminal words as being in the same container. In Table 

5.2.2.1, l3 is a container. While not necessary for the theory of how our probabilistic password cracker 

works, in practice containers have a large impact in the efficient operation of the next function, which 

will be described in Chapter 5.2.4.  

 Just like the notion of containers, there are several stages from processing the start variable S 

to the final stage where all variables have been re-written as terminal value, where we have found it 

useful to define additional terms that allow us to better optimize our generation algorithms. These 

stages, along with example of a rewrite rule at those stages, can be seen in Table 5.2.1.2 

 

Table 5.2.1.2: Listing of different grammar structures 

Structure Example 

Simple SLD 

Base S1L8D3 

Pre-Terminal $L8123 or $l8123 

Terminal (Guess) $password123 
 

 

 The Simple Structure is the first re-write rule after the start symbol S, but it does not contain 

length information. While its use was investigated early on, it was quickly discovered that there is some 

very helpful context sensitive information that is lost when we used the simple structures in our 

grammar. For example, people generally create passwords that are between six and eight characters 

long. That information is not captured in the simple structure, and is hard to re-introduce when using a 

context-free grammar. 

 Because of that, we currently use the Base Structure as the first set of rewrite rules after the 

start symbol S. Base structures are exactly like simple structures, except that they contain length 

information for the following re-write rules. This way we can capture what essentially is context 

sensitive information while using a context-free grammar. 

Sentential forms containing only pseudo-terminals or terminals are referred to as pre-terminal 

structures. These pre-terminal structures are very important because the probability associated with a 

pre-terminal structure no longer changes with any additional replacements, and thus is the same 
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probability as the final terminal guess. This allows us to work with pre-terminal structures when 

generating password guesses in probability order, instead of having to fill in all the variables with 

terminal values. Since a single pre-terminal structure can often generate thousands of unique terminal 

values, this is essential for having an efficient algorithm. This is also important for enabling distributed 

password cracking attacks. For example, a control server could compute the pre-terminal structures in 

order of decreasing probability and pass them to a distributed system to fill in the individual container 

values, (often mostly just dictionary words, though this can also include digit and special strings), and 

hash the guesses. Having a single pre-terminal structure represent several thousand, (or more), 

password guesses reduces the need to send large amounts of data over the network. This ability to 

distribute work is a major requirement for any password cracking program to be competitive with 

existing alternatives. Note that we only need to store the probabilistic context-free grammar on each 

password cracking node, and the management server is the only node that needs to derive the pre-

terminal structures. 

Referring back to Table 5.2.2.1, an example of a pre-terminal structure that could be generated 

from that grammar would be l34! with the associated probability of 0.04875. Note that l3 variable would 

point to the input dictionary containing three character long words, (in this case „cat‟, and „hat‟) and the 

final password guesses, (cat4!, hat4!), would also each have a final probability of 0.04875. It‟s important 

to remember that containers can also hold digits and special strings in addition to dictionary words. In 

the example grammar, the numbers „5‟ and „6‟ both fall into the same single digit container since their 

probabilities derived from D1 are the same. Let the associated pseudo-terminal be d5,6. Our algorithm 

would thus derive the pre-terminal structure l3d
5,6! with probability 0.01625. This pre-terminal structure 

would then be used to output the following terminal password guesses: {„cat4!‟, „hat4!‟, „cat5!‟, „hat5!‟} 

each with an associated probability of 0.01625. 

It should be noted that the algorithms described in this chapter currently do not use the full 

capabilities of probabilistic context-free grammars since their production rules derived from the training 

sets do not have any recursion. Thus the production rules being used are equivalent to (probabilistic) 

finite state machines. However, modeling password creation strategies as probabilistic context-free 

grammars allowed us to find an efficient next function for generating the pre-terminal structures, as 

discussed in Chapter 5.2.4. Creating a next function would have likely been more difficult if a finite state 

machine model had been implemented. Furthermore, using context free grammars is a more general 

solution, as the next function described in Chapter 5.2.4 only requires that the probabilistic context-free 

grammar be unambiguous. Consider the rule: 

  

S → D1L2 S L2 S1 | #                                  (4) 
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where S is the start symbol. We don‟t learn such a rule at present from the data since it does not seem 

to be the way that passwords are created. Our next function however is still compatible with a grammar 

having this rule and the resulting language is not equivalent to any regular language.  In future work, 

the more general capabilities of context-free grammars, in addition to their superior modeling capability, 

may prove to be particularly useful for attacking passphrases because of their obvious ability to 

represent phrase and language structures. 

 

5.2.2 Basic Preprocessing 

 

The preprocessing phase is where the actual probabilistic context free grammar is created. This is done 

by training our password cracker on a set of previously disclosed passwords. Once built, the resulting 

grammar can then be used in subsequent password cracking sessions. The advantage of this approach 

is that once a grammar is generated, it can then be distributed to other agencies without having to give 

them access to the original password lists the grammar was trained on. This allows a centralized 

agency to collect password lists to generate grammars without having to release those passwords lists 

to the general public. 

Since the grammar is built during the preprocessing phase, all of the rules governing the 

grammar are determined in this phase. The first decision that needs to be made is how to decide what 

constitutes an alpha, digit, or special variable. Let an alpha string be a sequence of alphabet symbols. 

Also let a digit string be a sequence of digits and a special string be a sequence of non-alpha and non-

digit symbols. When parsing the training set, we denote alpha strings as L, digit strings as D, and 

special strings as S. For example the password “$password123” would define the simple structure 

SLD. The base structure is defined similarly but also captures the length of the observed substrings. In 

the example this would be S1L8D3. See Table 5.2.1.2 and Table 5.1.2.1. Please note that the character-

set for alpha strings are defined by the training program and can be language dependent. For example, 

the Finnish character set contained the letters “äöïõ” along with normal ASCII alpha characters. In 

addition at this stage of the training, a distinction is not made between upper case and lower case 

letters.  
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Table 5.2.2.1: Listing of Different String Types 

Data Type Symbols Examples 

Alpha String abcdefghijklmnopqrstuvwxyzäö cat 

Digit String 0123456789 432 

Special String !@#$%^&*()-_=+[]{};‟:”,./<>? !! 

  

 

Now that we have defined alpha, digit and special strings, the next step is to capture their 

probability of occurrence. Each string of length n is counted, and a probability is assigned to each 

string. If no probability smoothing is applied, (which will be discussed in more detail in Chapter 5.2.4), a 

string x‟s probability is assigned using the following formula:  

 

Probability(�) =
 (5)        ܖ۹ܖ�

 

where xn is the number of occurrences of string x in the training set, and kn is the number occurrences 

of strings of that type, (be it alpha, digit, or special), of length n that occurred in the training set. It‟s 

important to note that a string is defined by its greatest length of consecutive values from the same 

type. For example the digit string „79‟ would only be parsed as a D2, and the „7‟ and „9‟ would not be 

parsed independently as two separate D1 strings. The reason for this is that by only parsing strings of 

the same length, it allows us to save the conditional probability of the individual characters appearing 

together. In the above example the probability of „79‟ appearing might be high due to it being a birth 

year, even if the individual probabilities of „7‟ and „9‟ might be quite low. This can be seen in Tables 

5.2.2.2 and 5.2.2.3 which show the probabilities of one and two digit numbers learned from the 

MySpace training set.  

  These strings and their associated probabilities are then stored in a text file as terminal 

replacements for their respective alpha, digit, and special variables of the same length. This way the 

grammar may be quickly generated for a password cracking session. For example all terminal 

replacements for the D2 variable are available with their associated probabilities in the digits2.txt file. 
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Table 5.2.2.2: Probabilities of One-Digit Numbers 

1 Digit Number of Occurrences Percentage of Total 

1 12788 50.7803 

2 2789 11.0749 

3 2094 8.32308 

4 1708 6.78235 

7 1245 4.94381 

5 1039 4.1258 

0 1009 4.00667 

6 899 3.56987 

8 898 3.5659 

9 712 2.8273 

    

 

Table 5.2.2.3: Probabilities of Top 10 Two-Digit Numbers 

2 Digits Number of Occurrences Percentage of Total 

12 1084 5.99425 

13 771 4.26344 

11 747 4.13072 

69 734 4.05884 

06 595 3.2902 

22 567 3.13537 

21 538 2.97501 

23 533 3.94736 

14 481 2.65981 

10 467 2.58239 
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The next step is to automatically derive all the observed base structures, along with their 

associated probabilities, from the passwords in the training set. The difference between base structures 

and strings though is that if no probability smoothing is applied, the probability assigned to each base 

structure is: 

 

Probability(�) =
 (6)     ���ܗ�۹ܖ�

 

where xn is the number of occurrences of that particular base structure, and Ktotal is the total number of 

base structures parsed. This means that unless any password guesses are rejected from the training 

set, Ktotal equals the total number of passwords parsed. An example of that can be seen in Table 

5.2.2.4 where the top ten base structures are displayed from the MySpace training set. As you can see, 

a vast majority of users choose a dictionary word for their password and then appended one or two 

digits to the end. This of course would change depending on the training set, as cultural backgrounds, 

age, password creation requirements, and importance of the password protected material. Therefore, 

several different grammars may be created based on different training sets, and in turn the appropriate 

grammar may then be selected based on which one is the closest match to the target‟s profile 

 

 

Table 5.2.2.4: Probabilities of Top 10 Base Structures 

Base Structure Number of Occurrences Percentage of Total 

L6D1 2382 7.09752 

L6D2 2181 6.49861 

L7D1 2100 6.25726 

L8D1 1746 5.20246 

L5D2 1557 4.63931 

L9D1 1366 4.07020 

L7D2 1328 3.95697 

L5D1 1283 3.82288 

L4D2 1206 3.59345 

L8D2 1152 3.43255 
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5.2.3 Case and Dictionary Preprocessing 

 

The next step is to incorporate case mangling rules of alpha strings into our probabilistic grammar. This 

is required to target strong passwords where people use uppercase and lowercase letters when 

creating their password. While we originally looked at several different methods to do this, such as 

including case information into the base structures, we eventually settled on using case mangling rules 

as an additional replacement rule in our grammar. To do this end, we parse all alpha strings, regardless 

of their base structure, and extract a mask representing the capitalization rules used. We represent 

uppercase letters as U, and lowercase letters as N, (for Not uppercase). For example, the alpha string, 

“PassWord” would be represented by a mask of U1N3U1N4. Probabilities are then assigned to each 

mask based on the number of occurrences of each mask of length n, for all alpha strings of length n. 

See Table 5.2.3.1 for an example of this based on the MySpace training list. 

As you can see from the results, if uppercase characters are not required, users very rarely 

incorporate them into their passwords. That being said, it still is useful to include case mangling 

information in our grammar even when there is no password creation policy since some password 

guesses with uppercase letters still are more probable than guesses generated with other mangling 

rules. This means it makes sense to use case mangling rules even during a regular cracking session. 

 

TABLE 5.2.3.1: Probabilities of Top 5 Case Mangling Masks for Six Character Alpha Strings 

Case Mask Number of Occurrences Percentage of Total 

N6 7080 93.206% 

U1N5 241 3.1727% 

U6 222 2.9225% 

N3U3 8 0.1053% 

U1N4U1 6 0.0078% 

 

 

Once included in our grammar, the case mask is used as a replacement variable for alpha 

strings such as L6. The case masks themselves then are replaced with the terminal values from the 

input dictionary with the appropriate letters uppercased and lowercased. Because of this, the probability 

of the case mask is factored into the pre-terminal probability. In the example of the last section, a case 

mask of UN2, would then create the password guesses {„Cat4!‟, „Hat4!‟, „Cat5!‟, „Hat5!‟}. The important 
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thing to keep in mind that while UN2 may look like two separate variables due to the way we represent 

it, in actuality it is treated as one variable. Thus we can have the following rewrite rules: 

 

UN2 → Cat                      (7) 

UN2 → Hat                                            (7)     

 

        After including case mangling into our grammar, we then need to assign probabilities to specific 

alpha string replacements to model the probability that common base-words (such as football, 

password, and iloveyou) are used. Rather than assigning probabilities to the words found in the training 

set, probabilities are instead assigned to input dictionaries that are chosen by the attacker. This is 

because we feel that the alpha strings found in the training set represent only a fraction of the alpha 

strings likely to appear in the target set of passwords. By making use of commonly used input 

dictionaries, we can gain a larger coverage of the target set, while the use of multiple dictionaries 

allows us to assign higher probabilities to more likely words. For example, the attacker can create a 

very small dictionary of common words, and then a much larger dictionary of less probable words to 

use in their password cracking attacks.  

To assign probabilities to words in multiple dictionaries, we use a modified form of edit distance 

to see the percentage of passwords that are likely to be cracked in the training set by each input 

dictionary. A more detailed discussion on how edit distance is applied can be found in Chapter 3.3. For 

example, suppose the attacker chooses to use two different input dictionaries and according to our edit 

distance calculations the first dictionary would crack 60% of the passwords in the training set while the 

second dictionary would crack 5% of the training set. The initial probabilities that each dictionary word 

would receive would be: 

 

(1/nk) * (Percentage of passwords cracked)                (8) 

 

where nk is the number of words in the input dictionary of length k. Therefore if the first dictionary 

contained 10,000 words of length six, each six letter word would be assigned a value of 0.006%. If the 

second dictionary only contained 500 words of length six, then each of them would then be assigned a 

value of 0.01%. This means that even though the second dictionary cracked fewer passwords, due to 

its small size each word is given a significantly higher probability. After these percentages are 

calculated, normalization is applied so that all of the dictionary word probabilities across every single 

dictionary used adds up to 100%. This means if only one input dictionary is used, the probability 

assigned to each word would simply be (1/nk). Additional logic is applied in our training program to deal 
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with word duplication, (the same word appearing in multiple input dictionaries), by assigning duplicate 

words to the dictionary which would grant it the highest probability. 

The information described above is also captured automatically from an input file of training 

passwords using our preprocessing program. The training process itself generally takes less than ten 

minutes, (a vast majority of this is due to calculating the probabilities of individual dictionaries), though it 

varies depending on the size of the training set and the number and size of input dictionaries used. 

 

5.2.4 Probability Smoothing 

 

As can be expected, the training set clearly does not cover all of the possible values that might be 

encountered in a password cracking attack. For example, someone could create the password, 

„monkey762‟, but the number „762‟ may have never been present in the training set. Ideally, an attacker 

would like to try these values, but at a reduced probability compared to what was found in the training 

set.  To that end, our grammar uses probability smoothing to assign probabilities to values not found in 

the training set. The current method is to use a variant of Laplacian smoothing where the probability of 

an element is assigned by the following formula: 

 

       (Number of Times Seen in the Training Set) + α                            (9)      

   (Total Number of Values) + (Number of Categories * α)      

 

In this equation α represents a value between 0 and 1, where 0 represents no probability smoothing 

and 1 represents a large degree of probability smoothing. This equation is then applied to all digit 

strings, special strings, case masks and base structures. Therefore, for an α value of 1, if 500 two digit 

numbers were observed in the training set, but the number 33 was never encountered, the number 33 

would be assigned a probability of:  

 

       (0) + 1               ≈ 0.0016 = 0.16%                        (10) 

               (500) + (100 * 1)         

 

As can be seen, this is considerably less probable than the 1.0% it would be assigned if the 

probabilities were assigned uniformly across all two digit numbers. 

Probability smoothing may also be applied to base structures in much the same way. While 

theoretically the number of base structures is unbounded, since someone could always create a 

password one character longer than their previous one, in reality the length of passwords targeted by 
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an attacker is finite. Therefore, it is up to the attacker to decide the maximum length of base structure to 

apply probability smoothing to. For the test detailed in this paper, probability smoothing was only 

applied to base structures up to six characters long. Therefore, given enough time, the resulting 

grammar eventually brute forces all base structures up to six characters long. It should be noted then 

that this is the equivalent of a targeted brute force attack. Currently alpha strings do not have probability 

smoothing applied to them. Once that is implemented though, this grammar would generate rules such 

as “brute force all six character long words, and append the number „123‟ to the end”. Ideally we would 

like to also implement Markov frequencies into alpha string probability smoothing. This could be 

incorporated into our current grammar by creating sub-dictionaries of different probability brute force 

guesses. 

 

5.2.5 Effectively Generating a Next function 

 

Constructing a probabilistic context free grammar is only the first step. For it to be useful in a password 

cracking session, we also need an algorithm that takes that grammar as input and generates password 

guesses in probability order. Detailed in this section is one such algorithm to do that. First note that it is 

trivial to generate the most probable password guess.  One simply replaces all the base structures with 

their highest probability terminals and then selects the pre-terminal structure with the highest probability 

For example, using the data in Table 5.2.2.1, the highest probable pre-terminal structure would be 

4L3$$. Since the number of base structures is fairly low, (there are only 1589 base structures 

generated by the MySpace training set before probability smoothing), this is not difficult. However, a 

more structured approach is needed to generate guesses of a rank other than the first.  

To optimize the total running time of the algorithm, it is useful if it can operate in an online mode, 

i.e. it calculates the current best pre-terminal structure and outputs it to the underlying (also 

distributable) password cracker. On the other hand, also for performance reasons, at any particular 

stage the algorithm should only calculate those pre-terminal structures that might be the current most 

probable structure remaining, taking into consideration the last output value. Referring to Fig. 5.2.5.1, 

we would like to generate the pre-terminal structures „{5,6}{cat,hat}$$‟ and „4{cat,hat}%%‟ (nodes 2 and 

3) only after „4{cat,hat}$$‟ (node 1) has been generated. 

One approach that is simple to describe and implement is to output all possible pre-terminal 

structures, evaluate the probability of each, and then sort the result. This is the method that was 

described in some of our earlier work [48]. Unfortunately this pre-computation step is not parallelizable 

with the password cracking step that follows (i.e., it is not an online algorithm). It also resulted in over a 
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hundred gigabytes of data even for limited runs that we had to generate and then sort before we could 

make our first password guess. As you can imagine, this does not lend itself to a real world application.  

 

 

Figure 5.2.5.1 Parse Tree for the Pre-terminal Structures for the Base Structures in Table 5.2.2.1 

 

Another tactic would be to take the method detailed in the Narayanan paper [19], and only 

generate the pre-terminal structures whose probability is above a set limit. This is also the approach 

used in John the Ripper‟s Markov mode. The problem with that algorithm is that it would not generate 

password guesses in true probability order. As seen in Chapter 2.1.3, depending on the limit set, all that 

algorithm does is guarantee that the probability of all password guesses generated falls above a certain 

limit, but the actual order those guesses are generated in is fairly random.  

Yet one more approach would be to use a typical depth-first search algorithm, but unfortunately 

as every node needs to be visited eventually, the size of our final tree can include several trillion nodes. 

Since performance is important, these algorithms did not prove feasible due to the amount of 

backtracking required. 

The current solution adopts as its main data structure a standard priority queue, where the top 

entry contains the most probable pre-terminal structure. In the following, we denote by the index of a 

variable in a base structure to mean the position in which the variable appears. For example, in the 

base structure L3D1S1 the variable L3 would be assigned an index of 0, D1 an index of 1, and S1 an 

index of 2. Next, all terminal values, (such as the numbers 4, and 5 for D1), are sorted in priority order 

for their respective class. That way the next most probable terminal value can be quickly found.  

The structure of entries in the initial priority queue can be seen in Table 5.2.5.1. Each entry 

contains a base structure, a pre-terminal structure, and a pivot value.  This pivot value is checked when 

a pre-terminal structure is popped from the priority queue. The pivot value helps determine which new 

pre-terminal structures may be inserted into the priority queue next.  The goal of using pivot values is to 
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ensure that all possible pre-terminal structures corresponding to a base structure are put into the 

priority queue without duplication. In short, it makes sure that only one unambiguous parse tree is 

generated from all of the different parse trees that are possible. 

 

Table 5.2.5.1: Initial Priority Queue for the Grammar in Table 5.2.1.1 

Base Structure Pre-Terminal Probability Pivot Value 

D1L3S2 4{cat,hat}$$ 0.1575 0 

L3D1S1 {cat,hat}4! 0.04875 0 

 

 

More precisely, the pivot value indicates that the pre-terminal structures to be next created from 

the original base structure are to be obtained by replacing variables with an index value equal to or 

greater than the popped pivot value. Let‟s look at an example based on the data in Table 5.2.1.1. 

Initially all the highest probability pre-terminals from every base structure is inserted into the priority 

queue with a pivot value of 0. See Figure 5.2.5.1 and Table 5.2.5.1 

Next, the top entry in the priority queue is popped. The pivot value then is consulted, and child 

pre-terminal structures are inserted as part of new entries for the priority queue. These pre-terminal 

structures are generated by substituting variables in the popped base structure by values with next-

highest probability. Note that only one variable is replaced to create each new candidate entry. 

Moreover, this replacement is performed (as described above) for each variable with index equal to or 

greater than the popped pivot value. The new pivot value assigned to each inserted pre-terminal 

structure is equal to the index value of the variable that was substituted. See Fig. 5.2.5.1 and Table 

5.2.5.2 to view the result after popping the top queue entry.  Also see Appendix 1 for a pseudo-code 

implementation of the full algorithm.  

 

Table 5.2.5.2: Priority Queue after the First Entry is Popped 

Base Structure Pre-Terminal Probability Pivot Value 

D1L3S2 4{cat,hat}** 0.1575 2 

D1L3S2 {5,6}{cat,hat}$$ 0.1575 0 

L3D1S1 {cat,hat}4! 0.04875 0 
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In this instance, since the popped pivot value was 0, all index variables could be substituted. L3 

was not incremented since there were no additional containers to fill in for it. This is due to the fact that 

there was only one input dictionary, so the algorithm views all words of length n from that dictionary as 

a single container. Both the D1 structure and S2 structure were replaced, resulting in two new pre-

terminal structures being inserted into the queue with pivot values of 0, and 2. Notice that when the 

next priority queue entry is popped, it does not cause a new entry to be inserted into the priority queue 

since it can only increment the S2 structure due to the pivot value being equal to 2. As for the S2 

structure, since „**‟ is the least probable terminal variable, there is no next-highest replacement rule and 

this entry is simply consumed.  

Observe that the algorithm is guaranteed to terminate because it processes existing entries by 

removing them and replacing them with new ones that either (a) have a higher value for the pivot or (b) 

replace the base structure variable in the position indicated by the pivot by a terminal that has lower 

probability than the current terminal in that position. It can moreover be easily ascertained that the pre-

terminal structures in the popped entries are assigned non-increasing probabilities and therefore the 

algorithm can output these structures for immediate use as a mangling rule for the underlying 

distributed password cracker. 

This process continues until no new pre-terminal structures remain in the priority queue, or the 

password has been cracked.  Note that we do not have to store pre-terminal structures once they are 

popped from the queue, which has the effect of limiting the size of the data structures used by the 

algorithm.  Also, it‟s important to remember that each pre-terminal structure often generates many 

different terminal values, (password guesses), due to the use of containers. This means each node 

popped frequently produces several thousand guesses.  

 

5.2.6 Proof of Correctness 

 

First, we establish a few claims about how the algorithm introduces pre-terminal structures in the 

priority queue for processing. 

 

Claim 1. Every pre-terminal structure generated by the grammar eventually is added to the priority 

queue for processing. 

 

To prove this claim, we only have to show that it holds for pre-terminal structures with maximum 

probability among all pre-terminal structures sharing the same base structure. Indeed, let Xi be an 

arbitrary pre-terminal structure and assume that the maximum probability pre-terminal structure Xmax 
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that shares the same base structure as Xi is added to the priority queue at some point. Consider the 

first position where Xmax and Xi differ. The probability of the pre-terminal in that position is higher at Xmax 

than at Xi, otherwise, by changing the pre-terminal at Xmax we would obtain another pre-terminal 

structure with the same base structure as Xmax but higher probability, contradicting the definition of Xmax. 

So, by processing Xmax at this position as pivot will eventually lead to Xmax' which differs from Xmax in a 

single position, where it matches Xi. The argument can be repeated for subsequent positions of the 

pivot, to show that eventually Xmax will produce Xi. 

 

The claim now follows because the algorithm initialization is defined precisely by introducing the 

highest pre-terminal structure for each base structure to the queue. 

 

Note that since our grammar does not include empty productions (i.e., a variable with a 

production leading to the empty string in the RHS), the processing of two distinct base structures 

cannot lead to the same pre-terminal structures. Moreover, since each pre-terminal structure is 

processed by the algorithm by replacing at each pivot position with another entry of lesser probability 

value, it is clear that Claim 1 has a complement: 

 

Claim 2. No pre-terminal structure generated by the grammar is added to the priority queue for 

processing more than once. 

     

Having established these preliminary statements, we are now ready to prove the main result: 

 

Property 1. Pre-terminal structures are output in non-increasing probability order. 

 

Remember that the processing of an entry in the priority queue results in its removal and output, 

and (possibly) in the insertion of new entries. For convenience of description, we call these new entries 

“the children” and the removed entry “the parent”. Recall that children never contain pre-terminal 

structures of strictly higher probability than the pre-terminal structure contained in the parent. 

For the sake of contradiction, assume that Property 1 does not hold, i.e., that at some step of 

processing, an entry x is output of strictly higher probability than a previously output entry y.  That is: 

 

Prob(x) > Prob(y) and y is removed and output before x.   (11) 
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First let's argue that x had a parent entry z. Indeed, if x has no parent, then it was inserted in the 

priority queue during the algorithm initialization (when the highest probability pre-terminal structure for 

each base structure was inserted). But that means that x was in the priority queue at the step where y 

was output (recall via Claim 2 that an element is added to the queue at most once), in violation of the 

priority queue property. This contradiction implies that x had a parent z.  

Without loss of generality, we can also assume that x is the first value produced by the 

algorithm that violates Property 1. Consequently, when z was output, it did not violate this property, and 

since: 

 

Prob(z) >= Prob(x) > Prob(y)      (12) 

 

it follows that z must have been output (and processed) prior to y. That means that x was inserted in 

the priority queue before y's removal, again in violation of the priority queue property. This final 

contradiction concludes the proof. 

 

5.2.7 The Deadbeat Dad Algorithm 

 

When talking about the next algorithm, it is important to remember that it actually performs two different 

tasks. The first is that it provides a unique and repeatable parse tree given a probabilistic context free 

grammar. What this means is for every single terminal value that exists in the grammar, there is exactly 

one set of productions that generate it. The next algorithm accomplishes this through the use of a pivot 

value. What the pivot value does is ensure for every child node in the parse tree, there is exactly one 

parent that is allowed to produce it. Consider the parse tree built by the next algorithm and shown in 

Fig. 5.2.7.1. Instead of using the password cracking grammar described previously, this parse tree 

simply shows a generic context free grammar containing one base structure with three different non-

terminal variables. For each variable, there are then three possible terminal replacements. Therefore 

each node in the tree represents one final terminal value generated by this grammar. 

The second task that the next algorithm performs is given a unique parse tree; it generates all 

possible strings in probability order. This is primarily accomplished through the use of a priority queue. 

As we will see in chapter 5.3.3 though, while the next algorithm has performed very admirably in all 

password cracking sessions to date; due to its reliance on storing values in the priority queue, the next 

function‟s memory requirements have the potential to become a bottleneck when more complicated 

grammars are introduced. To reduce the memory usage caused by storing a large number of nodes in 

the priority queue, a new “next” algorithm needed to be developed. The replacement version for the 



 

90 

 

next function currently is labeled the deadbeat dad algorithm. While the algorithm‟s name is 

unfortunate, it has stuck because it fairly accurately describes how the algorithm works. 

 

 

Figure 5.2.7.1: Generic Parse Tree Generated by the Next Function 

 

 The key to reduce the memory usage is to delay pushing child nodes into the priority queue as 

long as possible. With the original next algorithm, when a parent node is popped from the priority 

queue, all of the parent node‟s possible children as determined by the pivot value are then pushed into 

the priority queue. The goal of the deadbeat dad algorithm then is to have some parent nodes after they 

are popped occasionally abandon their child nodes and not push them into the priority queue. This is 

possible due to the fact that if a pivot value is not used, there often exists many different sets of 

productions that can generate the same final terminal value. This can be seen in Fig 5.2.7.2 which 

shows the possible productions for the node {1.2.2}, using the simplified grammar depicted in Fig 

5.2.7.1. The probability associated with each terminal value is listed to the right of each node. 

 

 

Figure 5.2.7.2: Multiple Parents for Node #4 
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The current next function first pops node 1, and then pushes nodes 2 and 3 into the priority 

queue. Node 2 then is popped, due to its probability being 25%, and the function then pushes node 4 

into the priority queue. This is because node 4 is node 2‟s child as seen in Fig. 5.2.7.1. The problem is 

a child node‟s probability is always less than any of its parent‟s probability, as shown in property 1 in 

the proof of correctness detailed in Chapter 5.2.6. This means node 4 will never be popped from the 

priority queue until node 3 is popped. Therefore node 3, instead of node 2, should be responsible for 

pushing node 4 into the priority queue. 

Since no child nodes are popped until all of their parent nodes are popped, and the parent 

nodes are popped from the priority queue in probability order, ideally a child node should be inserted 

into the priority queue by the parent node with the lowest probability. This in a nutshell is the deadbeat 

dad algorithm, as can be seen in Figure 5.2.7.3. 

 

 

Figure 5.2.7.3 What Happens When a Node is Popped in the Deadbeat Dad Algorithm 

 

The pseudo code for this algorithm can also be seen in Appendix B. This algorithm uses the 

same priority queue as the next function. The difference is, whenever a node is popped, it then creates 

all of the possible children for that node. For each child generated, the algorithm then generates all of 

the possible parents for that child and check to see if any of them have a lower probability then the 

currently popped parent. If another parent‟s probability is less, the popped node abandons the child for 

the other parent to take care of. If another parent node‟s probability is the same as the popped node‟s 

probability, then the tiebreaker is assigned by whichever node created the child with the rightmost 

transition. This way, one parent is guaranteed to take care of the child. If the popped node is the lowest 

probability parent, it then pushes the child node into the priority queue. 

The advantage of this approach is that it results in a significantly smaller priority queue. Even 

with the additional overhead of having to calculate the probability of possible parents for each child 
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node, the smaller queue size leads to faster insertions, which in turn reduces the algorithm‟s running 

time along with its memory usage. More analysis of the performance characteristics of the deadbeat 

dad algorithm can be found in Chapter 5.3.3 

 

5.3 Experiments and Results 

 

The current version of our probabilistic password cracker, called „UnLock‟, is written in a combination of 

Java and C++, and is available for free download from [49]. A screen shot of our program can be seen 

in Figure 5.3.1.1 showing our password cracker being trained on a known password set. 

 

 

Figure 5.3.1.1: Screen Shot of our UnLock Probabilistic Password Cracking Program 

 

As stated previously, our password cracker is trained on existing corpuses of disclosed 

passwords to create a probabilistic grammar. It then uses this grammar to generate password guesses 

to crack passwords.  If the target passwords are not hashed, UnLock simply outputs its guesses to a 

checker program that verifies if the guesses match a valid password. If the target password is hashed, 

we instead hash the guess using the appropriate hashing function before checking to see if the 

generated hash matches one or more of the target hashes. The password is considered crack it the two 

hashes match. For all of the tests that follow, if we included a user‟s password in our training set for a 

particular experiment, we do not use that same user‟s password in the test set for that attack. This is 

just another way of saying that we do not train and test against the same passwords. 

As a comparison against our probabilistic password cracking technique, it was decided to use 

John the Ripper‟s default word-mangling rules.  These word-mangling rules are as close to an industry 

standard as we could find, and represent the approach most people would take when performing a 
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dictionary-based password cracking attack. At its core, both our probabilistic password cracking guess 

generator and John the Ripper operating in wordlist mode are dictionary based attacks. When 

comparing the two methods, we ensure both programs use the same input dictionaries when trying to 

crack a given password set. In a dictionary-based attack, the number of guesses generated is finite, 

and determined by the size of the dictionary and the type of word-mangling rules used. To reflect this, 

unless otherwise specified, we limited the number of guesses our probabilistic password generator was 

allowed to create based on the number of guesses generated by the default John the Ripper rule set. 

This is because our program can generate many more rules than what is included in the default John 

the Ripper configuration and thus would create more guesses given the chance. By ensuring both 

methods are only allowed the same number of guesses, we feel we can fairly compare the two 

approaches. 

 

5.3.2 Description of Input Dictionaries 

 

Due to the fact that both our password cracker and John the Ripper in wordlist mode operate as a 

dictionary attack, they both require an input dictionary to function. A total of six publicly available input 

dictionaries were selected to use in the tests below. Three of them, “Passwords.lst”, “Spanish_lower”, 

and “Common_Passwords” were obtained from John the Ripper‟s public web site [23], with 

“Passwords.lst” being the default dictionary distributed with John the Ripper. Additionally we used the 

input dictionary “dic-0294” which we obtained from a popular password-cracking site [50]. This list was 

chosen due to the fact that it has been found to be very effective in the past when used in traditional 

password crackers. The dictionary “Wordlist.txt” which is the default input dictionary for the popular 

password cracker Cain&Able [24] was also included. Finally, I created my own wordlist “English_Wiki” 

which is based on the English words gathered off of www.wiktionary.org. This is a sister project of 

Wikipedia, and it provides user updated dictionaries in various languages. 

Each dictionary contained a different number of dictionary words as seen in Table 5.3.2.1. Due 

to this, the number of guesses generated by each input dictionary when used with John the Ripper‟s 

default mangling rules also varied as can be seen in Table. 5.3.2.1. Because our probabilistic password 

cracker can make use of multiple input dictionaries, in some of the tests in section 4.3, both Dic-0294, 

and the Common-Passwords input dictionaries were used. To keep the comparison fair with John the 

Ripper, Dic-0294 actually contains all of the words found in the Common-Passwords input dictionary. 

This means all this optimization is doing is giving several of the words in Dic-0294 a higher probability 

compared to the rest. Also for these test, UnLock is still limited to the number of guesses John the 

Ripper makes just using Dic-0294. 
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Table 5.3.2.1: Size of Input Dictionaries 

Dictionary Name  Number of Dictionary Words Number of Password Guesses  

Dic-0294 869,228 37,781,538 

Passwords.lst 3,115 139,498 

Common_Passwords 816 41,019 

English_Wiki 68,611 3,179,219 

Wordlist.txt 306,706 15,017,243 

Spanish_Lower 86,060 3,405,215 

 

 

5.3.2 Password Cracking Results 

 

Since our probabilistic method requires it to be trained it on real passwords, for every test run there is a 

training set and a test set. For the first test the MySpace test set was targeted while training UnLock on 

the MySpace training set. Referring back to Chapter 1.6.1, the MySpace training set contained a total of 

33561 passwords, and the MySpace test set contained a total of 33481 passwords. The results of our 

password cracker, UnLock, versus John the Ripper using different input dictionaries can be seen in 

Figure 5.3.2.1. 

 

 

Figure 5.3.2.1: Number of Passwords Cracked Total. Trained on the MySpace Training List. Tested on 

the MySpace Test List 
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Given the same number of guesses, our probabilistic password cracker was able to crack 

between 36% and 93% more passwords than John the Ripper. For example, using the dictionary dic-

0294, and given close to 38 million guesses, UnLock cracked 35.4% of the MySpace test set, while 

John the Ripper‟s default rules only cracked  19.6% of the test set. 

While Fig. 5.3.2.1 shows the final password cracking results, it also is helpful to see how many 

passwords are cracked given a certain number of guesses. To that end, instead of showing only the 

final passwords cracked it is useful to see the number of password cracked over time using one input 

dictionary. The results shown running the above test using Dic-0294 can be seen in Fig. 5.3.2.2. 

 

 

Figure 5.3.2.2: Number of Passwords Cracked Over Time. Trained on the MySpace Training List. 
Tested on the MySpace Test List 

 

What stands out is that UnLock‟s graph is much smoother than John the Ripper‟s. This is an 

advantage of using a probability model since it can create very fine-tuned guesses compared to what is 

normal for a typical rule based mangling approach. Also, while the number of new passwords cracked 

goes down over time as it tries less and less probable guesses, you may notice that even after 37 

million guesses, the number of new passwords that UnLock is cracking is much higher than John the 

Ripper. This leads to our next experiment. What happens when a password cracking session is run for 

a much longer period of time? 

To model a longer password cracking session using John the Ripper, we ran John the Ripper in 

wordlist mode using dic-0294 just as we did in the previous test. To generate additional guesses, after 

the wordlist mode finished, we then ran John the Ripper using incremental mode to perform a brute 

force attack. This simulates a standard password cracking session as an attacker first tries a dictionary 

attack and then move on to brute force if that attack fails [51]. It‟s important to note that John the 

Ripper‟s incremental mode is actually quite intelligent, and uses trigraphs to model the conditional 
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probabilities of letters appearing together, (aka Markov models), as described in Chapter 2.1.3. A 

cracking session showing UnLock, John the Ripper using wordlist and incremental mode, and John the 

Ripper just using incremental mode can be seen in Figure 5.3.2.3.  

 

.  

Figure 5.3.2.3: Number of Passwords Cracked Over Time. Trained on the MySpace Training List. 

Tested on the MySpace Test List 

 

One interesting point is that when John the Ripper switched to a brute force attack, it almost 

immedialty cracked a large number of passwords. This was due to the number of shorter passwords 

that were vulnerable to a brute force attack but were not created using dictionary words that appeared 

in dic-0294. With probability smoothing, UnLock inhearently does a limited amount of brute force 

attacks as well, though since we currently do not apply probability smoothing to alpha characters, it 

does not try words not found in the input dictionary. This means that it may currently be worthwhile to 

pause our password cracking session and try bruteforcing a small keyspace before resuming UnLock. 

That being said, even after 300 million guesses, our probabilistic password cracker was still cracking 

more new passwords than John the Ripper. 

So how does UnLock fair against other password lists? The next test shows UnLock, trained on 

the MySpace training set, and John the Ripper cracking the PhpBB list. As described in Chapter 1.6.2, 

this list contained 259,424 unsalted MD5 password hashes. Since all the passwords were hashed, (aka 

we don‟t know what they are until we crack them), all of the password hashes were used in the test set. 

Fig. 5.3.2.4 shows the results. 
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Figure 5.3.2.4: Number of Passwords Cracked Total. Trained on the MySpace Training List. Tested on 
the Phpbb.com Test List 

 

Compared to the previous test shown in Fig. 5.3.2.1, the results are not nearly so dramatic, with 

our probabilistic method actually performing worse than John the Ripper in two of the cases. The main 

reason for this was the relative simplicity of the phpbb.com passwords. Using a much longer cracking 

session and multiple techniques, we have since been able to crack over 97% of the passwords in that 

set [18]. Analyzing those passwords, only 3% of the cracked passwords contained an uppercase letter, 

only 1% of the passwords contained a special character, and slightly more than 50% of the passwords 

only contained lowercase letters. In comparison, with the MySpace test list, 7% of the passwords 

contained an uppercase letter, 9% contained a special character, and less than 8% of the passwords 

contained only lowercase letters. This means that UnLock spent much more time trying complex 

password guesses when it would have better to only try basic password guesses. That being said, with 

a longer cracking session, like that used with dic-0294, UnLock still managed to crack 40% more 

passwords that John the Ripper‟s default rules. 

     The next test involves the Hotmail-10k list. As mentioned in Chapter 1.6.3, this list was 

comprised primarily of Portuguese and Spanish speakers [5]. Since the list contained plaintext 

passwords, it was possible to divide it up into training and test lists, each containing 4872 passwords.. 

The results shown in Fig 5.3.2.5 represent three different password cracking sessions using the 

specified input dictionaries. The first one is John the Ripper.  The second session is UnLock trained on 

the MySpace training list. The third session is UnLock trained on the , and the Hotmail training list. 
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Fig. 5.3.2.5: Number of Passwords Cracked Total. Tested on the Hotmail Test List 

 

The results of this test are pretty much as expected with our probablistic password cracker 

performing best when it was trained on Spanish and Portuguese passwords, (aka the Hotmail training 

list). The improvements when using a Spanish input dictionary were particularily striking. When the 

Spanish input dictionary was used and UnLock was trained on English passwords it performed slightly 

worse than John the Ripper, but when it was trained on the Hotmail set it cracked 107% more 

passwords than John the Ripper. That being said, when a longer password cracking session was run, 

such as when dic-0294 was used as the input dictionary, even UnLock trained on English passwords 

performed significantly better than John the Ripper. 

 

5.3.3 Time and Memory Requirements 

 

For any password guess generation algorithm, it‟s important to understand the computational time 

required to generate guesses. Furthermore, since our Next function is heavily reliant on a priority queue 

that grows over time, we also need to understand the memory requirements for our algorithm as well. 

First though, let‟s discuss the space complexity of storing the grammar which would be distributed to 

the end user once the password cracker has been trained. 

Since the grammar is generated from a training set, the size of the grammar is dependent on 

the size of this set.  To distribute this grammar we need to save the set of S-productions (grammar 

rules with the start symbol S on the left hand side) that give rise to the base structures and their 

associated probabilities. See Table 5.2.2.1. Consider a training set of j passwords each of maximal 

length k.  At worst each password could result in a unique base structure resulting in O(j) S-
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productions.  Similarly the number of Di-productions and Si-productions depend on the number of 

unique digit strings and special strings, respectively, in the training set.  This could result in a maximum 

of O(jk) unique productions. Finally, the number of L-productions (rewriting an alpha string using a 

dictionary word) depends on the input dictionary chosen.  For a dictionary of size m, the maximum 

number of L-productions is simply O(m).  In practice, we expect the grammars to be highly portable with 

many fewer production rules than the worst case. Table 5.3.3.1 details the size of several grammars 

created using an earlier version of our program. The two lists MySpace10k, and MySpace20k represent 

sub-lists of the MySpace training set respectively containing 10 thousand and 20 thousand training 

passwords. 

 

Table 5.3.3.1: Size of the Stored Grammar Training Set 

Training Set & 
Size 

# of Base Structures 
Number of Si-
productions 

Number of Di-
productions 

MySpace10k 820 79 2405 

MySpace20k 1216 108 3377 

MySpace 
(33,561) 

1589 144 4410 

Finnish 
(15,699) 

736 49 1223 

 

 

 As you can see, the resulting grammar is extremely small. The number of guesses it can 

generate though is non-trivial taking into account the maximum number of pre-terminals and password 

guesses that could possibly be generated by our grammar. Consider as an example a base structure 

that takes the form S1L8D3. A pre-terminal value might take the form $L8123, and a final guess, 

(terminal value), might take the form $password123. To find the total number of possible pre-terminal 

values for this base structure, one simply needs to examine the total possible replacements for each 

string variable in the base structure. Using this example, and assuming there are 10 S1-production rules 

and 50 D2-production rules, then the total number of pre-terminals that may be generated by S1L8D3 is 

500. 

To find the total number of password guesses we simply expand this calculation by factoring in 

the number of dictionary words that can replace the alpha string. In the above example, if we assume 

there are 1,000 dictionary words of length 8, then the total number of guesses would be 500,000.  See 

Table 5.3.3.2 for the total search space generated by each given training set and input dictionary using 

an older version on UnLock that did not include case mangling or probability smoothing. Please keep in 
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mind that newer versions of UnLock that include probability smoothing and case mangling generate 

substantially more pre-terminal and terminal structures than what is listed in Table 5.3.3.2. As should 

be apparent though, even with a very small input dictionary such as Common_Passwords, the number 

of possible guesses that can be generated by any of these grammars is much larger than any 

password cracking session is likely to generate. Therefore in just about any use case, UnLock runs until 

all the target passwords are cracked or the attacker decides to terminate the cracking session due to 

time constraints. 

 

Table5.3.3.2: Total Search Space 

Training Set Input Dictionary 
Pre-Terminals 
(millions) 

Password Guesses 
(trillions) 

MySpaceFull Dic-0294 34,794,330 >100,000,000 

MySpaceFull English-Wiki 34,794,330 >100,000,000 

MySpaceFull Common_Passwords 34,785,870 36,000 

Finnish Dic-0294 578 >100,000,000 

Finnish English-Wiki 578 10,359,023 

Finnish Common_Passwords 506 6 

  

 

The running time for our next algorithm for generating guesses is extremely competitive with 

existing password cracking techniques.  As we add new grammar productions though, such as case 

mangling and probability smoothing, it has been increasing the computational time required to generate 

additional password guesses. On one of our lab computers, (MaxOSX 2.2GHz Intel Core 2 Duo) it took 

on average 33 seconds to generate 37,781,538 un-hashed guesses using an older version of our 

method that did not include case mangling or probability smoothing.  Comparatively, the popular 

password cracking tool John the Ripper [23] operating in wordlist mode took 28 seconds to make the 

same number of guesses.  If we expand the number of guesses to 300 million, our technique took on 

average 3 minutes and 23 seconds to complete, while John the Ripper operating in incremental (brute-

force) mode took 2 minutes and 55 seconds.   

When case mangling was included, (but not probability smoothing), the average time to 

compute 37,781,538 password guesses increased to 1 minute and 40 seconds, and the time it took to 

generate 300 million guesses increased to 19 minutes 41 seconds. Likewise when we included 

probability smoothing as well, the average time to compute 37,781,538 guesses increased to 4 minutes 
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and 53 seconds, and the time it took to generate 300 million guesses was 18 minutes fifty seconds. A 

majority of this time increase was probably due to the size of the priority queue increasing due to the 

more complex replacements used. Another possible option though could simply be that the case 

mangling rules were coded inefficiently. Note that the vast majority of time (often weeks) taken in 

cracking passwords is spent in generating the hashes from those guesses and not in the generation of 

the actual guesses themselves. Because of this, even several minutes or even hours spent generating 

guesses would be minor. 

The next question is how does the space requirements of the priority queue grow over time, 

especially when new grammar productions are added. The priority queue grows when a popped parent 

node creates more than one child nodes. The size of the priority queue shrinks when a popped parent 

node has no children. By adding probability smoothing, the probability of a childless parent node being 

popped is often very low because some of the child productions usually include values not seen in the 

training set. The resulting pre-terminal values thus generally have a significantly lower probability then 

most pre-terminal values that only include values seen in the training set. These children then are very 

unlikely to be popped unless a much longer password cracking session is run. Likewise, when case 

mangling is added, there are some case masks, such as U1N1U1N2U1 that can also have a very low 

probability. Once again this means that childless nodes generally include these low probability case 

mangling rules and therefore are unlikely to be popped from the priority queue during a normal cracking 

session. For an example of this, the priority queue for UnLock using the dictionary Dic-0294 and 

running without case mangling or probability smoothing enabled can be seen in Fig 5.3.3.1. 

 

 

Figure 5.3.3.1: Size of Priority Queue  
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 For comparison, Fig 5.3.3.2 shows the size of the priority queue when the Next algorithm is run 

two more times. Once when case mangling is enabled, but probability smoothing is not, and once when 

both probability smoothing and case mangling are enabled.  

 

 

Figure 5.3.3.2: Production Rules vs. Size of the Priority Queue 

 

As you can see, while case mangling adds significantly to the size of the priority queue, the 

queue size doesn‟t explode until after probability smoothing is added. Currently for most cracking 

sessions run, even with probability smoothing enabled, the size of the queue is still manageable but it 

was a point of worry. To enable more complicated grammars, the deadbeat dad algorithm as described 

in Chapter 5.2.7 was developed. When run using the grammar generated from the MySpace training 

set with case mangling and probability smoothing enabled, its priority queue grew at a noticeably 

slower rate than the original next function. The results of that test can be seen in Fig. 5.3.3.3. 

 

 

Figure 5.3.3.3: Size of Priority Queue - Deadbeat Dad vs. Original Next Function 
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As can be seen from the graph, the deadbeat dad algorithm drastically reduced the size of the 

priority queue. In fact when comparing the size of the priority queue generated by the deadbeat dad 

algorithm using a grammar that included probability smoothing to the original next function using a 

simpler grammar with no probability smoothing enabled, (as seen in Fig. 5.3.3.2), the deadbeat dad 

algorithm still performed slightly better. That‟s encouraging since this means that with the deadbeat dad 

algorithm, further productions may be added to the underlying grammar without having to be too 

concerned about the memory requirements. In the future though, if the size of the priority queue does 

become an issue there still are several other changes that may be made. The easiest would be to add 

a probability limit, below which child nodes would no longer be inserted into the priority queue. Since 

these low probability pre-terminal values would be unlikely to ever be popped from the priority queue 

during a real password cracking session, this approach would have minimal impact on the algorithm‟s 

effectiveness. If setting the correct limit is a concern, (such that an attacker may want to continue a 

password cracking session past the original limit they set), the pre-terminal values can be saved 

unsorted to disk. That way when the current priority queue is exhausted, a new limit may be set and all 

of the pre-terminal values saved to disk that have a probability above the existing limit can be re-

inserted into the priority queue. 

 

5.3.4 Future Research 

 

There are several areas that are open for improvement with regards using probabilistic grammars for 

password cracking. First, UnLock currently does not support the idea of attacking keyboard 

combinations. Keyboard combinations include passwords that are memorable based on the location of 

keys on the keyboard vs. an actual word. An example of this would be the password „qwerty‟ or 

„1qaz@WSX‟. One possible solution would be to identify keyboard combination in the training phase. 

An attacker could then create a specialized input dictionary containing only keyboard combos and treat 

them like alpha strings, or they could create a whole new base structure, labeled K, that would 

represent keyboard combinations. One problem with these approaches is that they might generate 

duplicate password guesses. For example, the password guess „1qaz‟ could be made first by a 

keyboard combo, and again by the structure D1L3. 

Another improvement would be to identify and attack letter replacement strategies. For 

example, changing the letter „a‟ to an „@‟ in the password „p@ssword‟. One possible strategy would be 

to identify and assign a probability to specific replacements during the training phase through the use of 

edit distance. An attacker could then apply letter replacements using the specified probability, much like 

we currently apply capitalization mangling now. The main downside is that once again this may lead to 
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duplicate password guesses. For example, the password guess „c@t‟ could be created both by a letter 

replacement rule and the structure L1S1L1. 

In addition, it would be nice to add support for tailoring a grammar against a particular target. 

Currently UnLock is optimized for cracking a large set of passwords. In an individual password cracking 

session though, the probabilities assigned to certain replacements should be modified to best mimic 

how the targeted individual created their password. One way this can be accomplished is by collecting 

information about the subject, such as birthdays, home addresses, names of family members, etc, and 

then creating specialized input dictionaries with associated high probabilities. It is also possible to 

modify certain digit and special string probabilities, such as dates, such as lowering the probabilities of 

dates that do not have a special relationship with the target while raising the probability of dates that do. 

Yet another improvement, briefly alluded to in Chapter 2.1.4, is to add full targeted brute force 

support to UnLock. Currently UnLock do not perform probability smoothing on alpha strings. This 

means if an alpha string does not appear in one of its input dictionaries, it never tries that word. Ideally 

UnLock would like to use a form of Markov modeling, so that it would automatically switch between 

dictionary based attacks and brute force depending on the current probability of the password guess. 

Finally, the next step is to expand the probabilistic method to attacking passphrases as well as 

passwords. Since probabilistic context free grammars are often used in parsing human generated text, 

the methods developed for attacking passwords may also be well suited for generating passphrase 

guesses. The main problem slowing this research is a lack of passphrase sets to train on, as 

passphrases still have not become popular among the general user population. Currently though there 

are several different ways of attacking pass-phrase creation strategies using context free grammars. 

The first method would be to take a “Mad-Libs” approach, where additional replacements are 

used to designate specific input dictionaries are added to the base structures. For example a base 

structure could take the form: 

 

Proper-Noun Verb a Noun   ->   Bob Cracks a Password                             (13) 

 
Specific dictionaries can then assigned to common word types such as verbs, nouns, adjectives, etc. 

Each category may even have multiple dictionaries with different probabilities assigned to them. This 

means there might be a proper-noun dictionary targeted specifically to a certain user with the names of 

their friends and family assigned a very high probability and a larger dictionary of general names with a 

lower associated probability.  

 Note, that the original grammar replacements may also be used. Therefore the base structures 

still may contain Sn and Dn variables to represent the punctuation used. Also, pass-phrase specific 
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mangling strategies can also be modeled as variable replacements. For example, instead of using the 

whole sentence, a guess could be replaced by the first letter of each word, turning the above example, 

“Bob Cracks a Password”, into “BCaP”. Also certain words may be replaced by common substitutions, 

such as the word “one” being replaced by the number “1”. These replacements would all occur based 

on the probability they are encountered in the training set. 

 A slightly simpler approach would be to use an input dictionary composed entirely of commonly 

used pass-phrases. In this case the advanced word mangling rules described above may still be 

employed, but it would reduce the search space covered since the grammar is no longer generating 

arbitrary sentences. A final approach would be to build the entire sentence using a context free 

grammar, instead of basing it on a set base-structure “Mad Libs” approach. The main worry about that 

is depending on the grammar used, the search space could be extremely large. Therefore a lot of care 

would have to be put into how the grammar was structured. 
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CHAPTER 6 

EVALUATING ENTROPY AS A METRIC FOR THE STRENGTH OF 
PASSWORDS 

 

 

6.1 The NIST Model of Password Entropy 

 

It is unlikely any other document has been as influential in shaping password creation and use policies 

as the NIST Electronic Authentication Guideline SP-800-63-1 [55]. The findings and recommendations 

published in it have proven the basis for many government and private industry password policies [56]. 

Central to this document is the notion of measuring password entropy. The idea of information entropy 

was first formalized by Claude Shannon [57], as a way of measuring the amount of information that is 

unknown due to random variables. In a way, it attempts to determine the randomness of a variable 

based upon knowledge contained in the rest of the message. Most often this “randomness” is 

expressed using the following equation: 

= ܠ �  ૙=�� �ܠ � − ૛�ܗۺ  (14)    (�ܠ)�

 

While other bases for the Log value may be chosen, when dealing with password entropy, base 2 is 

almost always selected due to the ability to represent the randomness prevalent in the system as 

equivalent to a random binary key of length H(x). For example a fair coin flip would land as heads 50% 

of the time. The resulting entropy of this would be − � . ૞ ૚�=૙ ૛�ܗۺ �(. ૞)  which is equal to 1 bit of 

entropy. Each successive flip of the coin would add an additional bit of entropy as the result is a 

summation across all of the variables. In addition, if multiple variables are being modeled, the 

information leakage can be modeled as: 

,ܠ �  ≥ ܡ + ܠ �  (15)            (ܡ)� 

 

Due to the above properties, if the correct probability information is used, a defender can model the 

information leakage as the difficulty of an attacker guessing a random binary key of length H(x). The 

benefit this provides is the defender can then estimate the likelihood of an attacker, given a set number 

of guesses, can discover the correct value for the unknown variables. For example, the NIST SP-800-
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63-1 document lists an acceptable number of attempts to allow an attacker to guess a random binary 

value for two different security levels: 

 

Level 1: Number of Allowed Attempts = 2H(x) x 2-10   (1 in 1024 chance of compromise) 

Level 2: Number of Allowed Attempts = 2H(x) x 2-14   (1 in 16,384 chance of compromise) 

 

The above approach is labeled the guessing entropy of a system. The appeal of using the 

guessing entropy when designing password policies is obvious. If you can estimate the probabilities 

inherent in how users create passwords, you can then enforce policies that limit the chance of a 

successful password cracking attack to fall within acceptable levels. The difficulty in this approach is 

that estimating the information leakage caused by user selected passwords is not a trivial problem. If 

the entropy is significantly underestimated, (such that the resulting value for H(x) is considerably lower 

than the actual value), the resulting password policies may become overly burdensome to the users. 

Likewise if the entropy is overestimated, the security provided by the resulting policies may not be 

enough to protect against attacks. 

 In addition, as brought up in [58], the guessing entropy as detailed above does not provide a 

true measurement of the security provided by the system, as it does not take into account the number 

of targeted users, or the underlying distribution of their password selection. A proposed solution was 

detailed in [58], but only applied to binary passwords that are not directly generated by users, and as 

the author admits, is only applicable for uses such as one time passwords. Therefore the NIST model 

still remains the only widespread model of the security provided by user selected passwords. 

 Ignoring the weaknesses inherent in only using the guessing entropy, another question is how 

does the NIST model estimate the information leakage caused by users generating their own 

passwords under existing password creation rules? To that end the NIST paper details a set of rules 

that take advantage of the additive properties detailed in Equation 15 to derive a measurement of 

average entropy. These rules, quoted directly from the document, are as follows: 

 

1. The entropy of the first character is taken to be 4 bits; 

2. The entropy of the next 7 characters are 2 bits per character; this is roughly consistent 

with Shannon‟s estimate that “when statistical effects extending over not more than 8 

letters are considered the entropy is roughly 2.3 bits per character;” 

3. For the 9th through the 20th character the entropy is taken to be 1.5 bits per character; 

4. For characters 21 and above the entropy is taken to be 1 bit per character; 
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5. A “bonus” of 6 bits of entropy is assigned for a composition rule that requires both upper 

case and non-alphabetic characters. This forces the use of these characters, but in 

many cases these (sp) characters will occur only at the beginning or the end of the 

password, and it reduces the total search space somewhat, so the benefit is probably 

modest and nearly independent of the length of the password; 

6. A bonus of up to 6 bits of entropy is added for an extensive dictionary check. If the 

Attacker knows the dictionary, he can avoid testing those passwords, and will in any 

event, be able to guess much of the dictionary, which will, however, be the most likely 

selected passwords in the absence of a dictionary rule. The assumption is that most of 

the guessing entropy benefits for a dictionary test accrue to relatively short passwords, 

because any long password that can be remembered must necessarily be a “pass-

phrase” composed of dictionary words, so the bonus declines to zero at 20 characters. 

 

There has been some confusion based on the examples given in the NIST document whether rule #5 

requires numbers and special characters to both be present or if the presence of either one would allow 

assigning of the “bonus” six bits of entropy. In Chapter 6.2, if such a distinction is important in any of the 

tests, the method to calculate rule #5 will be explicitly stated. 

As an example of using the above model , consider a password creation policy requiring nine 

character passwords, and for at least one uppercase letter, lowercase letter, digit, and special character 

to be present. Fig 6.1.1 shows the calculation of the NIST entropy value. 

 

 

Figure 6.1.1: Calculation of the Guessing Entropy of a Password Creation Policy 

 

Therefore, to limit an attacker to a guessing entropy value that provides enough security to meet the 

requirements of the level 1 classification, the number of allowed guesses would have to fall below: 

 

 225.5 x 2-10 = 215.5 ≈ 46,000 guesses        (16) 
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6.2 Evaluating the NIST Model of Entropy against Password Cracking Attacks 

 

The real question then is if the NIST model of entropy effectively predicts the resilience of a system 

against online password cracking attacks. The authors of the NIST publication themselves state, 

“Unfortunately, we do not have much data on the passwords users choose under particular rules”  

To that end, I simulated several different password cracking attacks against the RockYou password test 

sets detailed in Chapter 1.6.5. First though, let‟s take a look at the distribution of passwords which 

could be created under different password policies based on the NIST entropy model. For this test, the 

minimum “entropy value” for each password was evaluated individually using the rules NIST put 

forward, with Rule 5 being interpreted as requiring both number and special characters. The reason 

“entropy value” is in quotation marks is that this value isn‟t the Shannon entropy value, but instead the 

minimum calculated NIST measurement at which that each password could be created under. The 

resulting values for entropy measurements ranging from 4 to 32, using RockYou test sets 1-3 can be 

seen in Fig. 6.2.1: 

 

 

Figure 6.2.1 NIST Entropy Measurements for the RockYou Test Lists 

 

 The above graph may be a little difficult to read since the distribution of the NIST calculated 

entropy values was almost identical across the different test sets. In fact, the same test was run on the 

RockYou4, and RockYou5 test lists as well, but they were not included in the above graph since their 

results were the same. The lack of variation in itself is an interesting observation. This means that the 
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distribution above is likely to hold across other test sets as well when the test set, like the RockYou list, 

is generated without any external password creation policy being in place. 

 The next question is if increasing the minimum password length corresponds with adding 2 or 

1.5 bits of uncertainty to the guessing entropy value of the resulting password creation policy. The 

reason why this is a concern is that most people create passwords based on dictionary words. Likewise 

in an online attack, the attacker is likely to employ a dictionary based guessing method as that 

increases their chances of cracking a password in a limited number of guesses. To simulate a generic 

dictionary based attack, John the Ripper [23], operating in wordlist mode using the single mode rule-set 

was employed. For the input dictionary, Dic-0294 [50] was selected. Multiple cracking sessions were 

then run against subsets of the RockYou1 test list, where each subset only contained passwords 

meeting a minimum length requirement. To further optimize the attack and to model the fact that an 

attacker may have knowledge of the password creation policy, each cracking session was only allowed 

to generate password guesses that meet the minimum length requirement as well. The results of 

cracking passwords with a min lengths ranging from seven characters to ten characters and limiting the 

attacker to one billion guesses can be seen in Fig. 6.2.2: 

 

 

Figure 6.2.2: Cracking Attacks against Password Sets with Different Min Length Requirements 

  

As can be seen, it appears the effectiveness of each attack was influenced by the minimum 

password length. Before we analyze how much security increasing the minimum password length 

provided in the above test, it is useful to discuss several other possible causes that might have caused 

this decrease in password cracking effectiveness. One thing to keep in mind is that the RockYou list did 

not enforce a password creation policy. This might lead to a subdivision of the security minded users. 
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For example, people who created longer passwords when they don‟t need to, (based on policy), might 

inherently choose a stronger password than users who create the simplest password allowed. Since 

none of the test sets I have access to enforced a password policy requiring users to create passwords 

longer than six characters long, verifying if this occurs is problematic. That being said, a statistical 

breakdown of the composition of the different sub-lists can be seen in Table 6.2.1: 

 

Table 6.2.1: Composition of the Different RockYou1 Sub Lists 

Character Set  7+ Chars 8+ Chars 9+ Chars 10+ Chars 

Contains Digits 57.5% 59.5% 60.2% 60.0% 

Contains Special Characters 4.4% 5.1% 6.6% 8.0% 

Contains Uppercase 6.5% 6.7% 6.9% 7.1% 

Contains Only Lowercase 
Letters and Digits 

89.2% 88.4% 86.7% 85.1% 

 

 

As expected, as shorter passwords were excluded, the average complexity of the remaining 

sets increased. What‟s interesting is that the percentage of uppercase letters rose slightly as the 

minimum password length was increased. Since uppercasing a letter does not change the length of a 

password, (vs. appending a digit), applying this mangling rule indicates that the users creating longer 

passwords were more concerned about security. Still, the percentage of users selecting uppercase 

characters remained low, and the above statistics do not seem to fully account for the difference in 

resistance to password cracking attacks across the different sub-lists. To further confirm this, the above 

lists were once again sub-divided to only include passwords containing at least one digit. Likewise, the 

password cracking attacks were further modified so they only produced guesses that contained digits 

as well. The results of re-running the password cracking attacks against these new lists can be seen in 

Fig. 6.2.3. 

 The test shows, even when all passwords were required to contain digits, there still was a 

noticeable difference in the effectiveness of the attacks against the different test sets. That being said, 

the divergence between the test sets was less than if no digits were required; The attack against the 7+ 

character set performed worse when digits were required, and the attack against the 10+ character set 

surprisingly performed slightly better when digits were required. Note: it would probably be the wrong 

conclusion to assume that requiring digits in a password creation policy would make 10 character long 

passwords weaker. What more likely happened is that this additional rule excluded “junk” passwords in 



 

112 

 

the list that did not correspond to an actual user generated password, (for example some URLs greater 

than a 100 characters were present in the RockYou list). In addition several passwords may have been 

created in a way that made them strong but did not include digits, such as certain pass-phrases. By 

excluding digits, some of these strong passwords may have been excluded as well. 

 

 

Figure 6.2.3: Cracking Passwords Sets of Different Lengths Which Contained Non-Lowercase Letters 
 

The next step is to evaluate what effect increasing the minimum password length has on the 

effectiveness of a password cracking attack. To accomplish this, we must first determine a relevant 

method to compare the success of different password cracking attacks to each other. This is not a 

trivial problem. One approach would be to compare the final number of passwords cracked. A problem 

with that approach is: how long should the cracking session be limited to? As an example of that, Fig 

6.2.4 shows the same cracking sessions detailed in Fig. 6.2.3, but this time limited to 50 thousand 

guesses. 

 

 

Figure 6.2.4: A Shorter Password Cracking Session of Passwords that Contained Digits 
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 This time, the results are decidedly mixed with the minimum length only making a noticeable 

difference in the effort required to crack 10+ character long passwords. It also is worth keeping in mind 

that the above attack was not optimized for a password cracking session of that length, as the input 

dictionary itself, dic-0294, contained over 800 thousand words. It is interesting though that even in this 

un-optimized attack, each of the cracking sessions nearly cracked 1% of the total passwords. We‟ll see 

in the next test though that 1% cracked over 50,000 guesses is actually a poor success rate. Another 

method would be to determine how many guesses were required to crack a certain percentage of 

passwords. Once again though, this is highly dependent on the limit set, as be seen in the previous 

graph 6.2.3, as a password cracking session starts out fast, but quickly slow down as it takes more and 

more guesses to crack each successive password. 

 As briefly mentioned, the above attack wasn‟t optimized for a limit of 50,000 guesses. 

Considering the NIST 800-63-1 document is primarily concerned with online password cracking attacks, 

it is very important to evaluate the effectiveness of shorter password cracking sessions. To set the next 

test up, I combined the training password lists RockYou28 through RockYou32 to create a training list 

of five million user passwords. I then sorted the entire training list by the number of occurrences of each 

password, (so the first password was „123456‟), and then removed all duplicates. This resulted in an 

input dictionary where the most probable guesses are tried first. I then used it as input to generate 

50,000 guesses against the various sub-lists, generated from the RockYou1 test list, that were used in 

the previous examples. The results of this attack when limited to 50,000 guesses can be seen in Fig 

6.2.5: 

 

 

Figure 6.2.5: Cracking Sessions against the RockYou1 Test Lists, Targeted Against 50,000 Guesses 

 



 

114 

 

 The interesting thing about the above graph is given just fifty thousand guesses, over 25% of 

the 7+ character long passwords were cracked, and over 14% of the 10+ character passwords were 

cracked. This begs the question, how does the above cracking session compare to the acceptable 

NIST guessing values given for level 1 and 2 systems? The answer, based on the above tests can be 

seen in Table 6.2.2: 

 

Table 6.2.2 Comparison of a Targeted Cracking Attack against the NIST Guessing Values 

Value 7+ Chars 8+ Chars 9+ Chars 10+ Chars 

NIST Entropy 16 18 19.5 21 

Level 1 # of 
Guesses 

64 256 724 2048 

% Cracked Using 
Guesses Allowed 
by Level 1 

3.21% 6.04% 7.19% 7.12% 

Acceptable Level1 
Failure Rate 

0.097% 0.097% 0.097% 0.097% 

Level 2 # of 
Guesses 

4 16 45 128 

% Cracked Using 
Guesses Allowed 
by Level 2 

0.98% 2.19% 2.92% 2.63% 

Acceptable Level2 
Failure Rate 

0.0061% 0.0061% 0.0061% 0.0061% 

 
 

 As can be seen, if a blacklist of common passwords is not part of the password creation policy, 

the NIST model quickly breaks down. For comparison, a policy that meets a Level 1 system should only 

allow an attacker to guess a password within the allowed number of guesses with a probability of 1 in 

1024, or approximately a 0.097% chance. Likewise, a Level 2 certified system should only allow an 

attacker to be successful with a probability of 1 in 16,384, or approximately a 0.0061% chance. This is 

drastically different from the above findings. What‟s worse, the attacker‟s success rate actually 

increases as the number of guesses allowed grows due to the higher minimum password length, 

(though it does drop a bit when 10+ characters are required). This implies that the current NIST 

measurements overestimate the security provided by increasing the minimum password length. 

 In all fairness, in the NIST 800-63-1 document, it does state that a blacklisting approach was 

required for a minimum entropy estimate. That slightly contradicts though their original entropy 

calculation, where they assign an optional 6 bits of guessing entropy if a blacklist is employed. What the 
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above test shows is that a blacklist approach must be employed for any sort of security against online 

password cracking attacks, considering 1.74% of 7+ character long passwords were cracked with just 

sixteen guesses. 

The next question is how effective are different sized blacklists of prohibited passwords. This 

was simulated by creating blacklists based on the training list input dictionary from the previous test. 

For example, a blacklist containing 500 banned passwords would be formed from the 500 most 

frequently used passwords in the training set. The results of re-running the attacks depicted in Fig. 

6.2.5 against the RockYou1 test list containing 7+ character words, and using various length blacklists, 

can be seen in Fig 6.2.6. It should also be noted that for these password cracking sessions, it was 

assumed that the attacker would have knowledge of the blacklist of banned passwords, so they would 

not use them in their attacks, (aka for the 500 banned password blacklist, the attacker would start by 

guessing the 501‟th most probable password guess). 

 

 

Figure 6.2.6 BlackLists Used to Defend Against Online Attacks against the RockYou1 Test List 

 

The most restrictive password creation policy in this test, where passwords must be seven 

characters long and a blacklist of 50,000 words is used, yields a NIST calculated entropy value of 22. 

For a Level 1 certified system, that means an attacker would be able to make 4096 guesses, and for a 

Level 2 system the attacker would be able to make 256 guesses. Digging into the results depicted in 

Fig 3.6, this would lead to an attacker cracking 0.848% of the passwords for a Level 1 certified system, 

and 0.058% of the passwords for a Level 2 certified system. While this is a much higher failure rate 
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than estimated by the NIST model, it represents a definite improvement over the results when a 

blacklist is not employed. 

Now a legitimate concern with the previous tests is that while the training passwords and the 

test passwords were different, they both came from same website. It can be argued that this represents 

an unfair advantage for the attacker, and would not translate to a real world password cracking session. 

To that end, using the same dictionary formed from the RockYou training set, password cracking 

sessions were run against several other disclosed password lists using a maximum of 50k guesses.. As 

in the previous tests, these lists were divided by minimum password length. The results of these 

password cracking attacks can be seen in Fig. 6.2.7. 

 

 

Figure 6.2.7 Online Cracking Session using 50k Guesses against Various Password Lists 

 

As Fig. 6.2.7 shows, the cracking sessions against the RockYou dataset actually performed 

worse than most of the other datasets. Much of this is probably due to user training, and the relative 

importance of the passwords to the users. For example, the Neopets list for the most part represents 

young children, while the PhpBB list was a development and distributions site for the PhpBB bulletin 

board which means it can be assumed that most of its users were webmasters and/or programmers. 

Another point of interest is the effectiveness of the RockYou training set dictionary compared 

with other available input dictionaries. To illustrate this, several cracking sessions were run against the 

FaithWriters password list. Since the FaithWriters and the Singles.org password lists were both 

composed of people almost exclusively of the Christian faith, another targeted input dictionary was 

created from the Singles.org list. This dictionary was generated in the same way as the dictionary from 
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the RockYou training list. Since Singles.org represented a much smaller password list, it only contained 

12.234 unique words. Likewise the default dictionary provided with John the Ripper, passwords.lst was 

also used. Due to password.lst‟s very small size, (3,116 words), the default John the Ripper mangling 

rules were also applied to generate some of the extra guesses required. All three input dictionaries 

were then allowed to make 10 thousand password guesses against the FaithWriters list. The results of 

this can be seen in Fig. 6.2.8. 

 

 

Figure 6.2.8: Multiple Targeted Dictionaries against the Singles.org List 

 

 As expected, the Singles.org dictionary performed slightly better initially, but it was too small of 

a sample size to compete with the custom RockYou dictionary over a longer password cracking 

session. Both custom dictionaries though performed better than the default John the Ripper dictionary. 

This test illustrates though that the findings depicted in this chapter can always be improved on as an 

attacker gains more knowledge about their targets. 

 The main lesson learned from these experiments is that the NIST 800-63 defined entropy does 

not correlate to the actual guessing entropy of a test set of passwords. While this has been pointed out 

in previous works [79, 80], the previous tests show it empirically as well. Furthermore, these 

experiments imply that a method for rejecting weak passwords, such as a blacklist approach, may 

provide much more security against online attacks than specifying base rules, (such as password 

length), during password creation. 
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CHAPTER 7 

CONCLUSION 
 

 

 When originally starting this research, I was skeptical about my chances of finding new and 

novel techniques to enhance password cracking attacks. Password cracking has been around ever 

since someone invented the first secret word. What I didn‟t expect was until recently, due to the 

sensitive nature of passwords, very few datasets were publicly available to develop and evaluate 

innovative cracking techniques on. Therefore I was fortunate to conduct my research at a time when 

the widespread adoption of stronger password storage techniques combined with publicly disclosed 

password lists have spurred new explorations into this field. 

 I hope this paper brings forward the idea that by applying advanced modeling techniques, the 

effectiveness of a password cracking attack can be drastically increased. While individual users can 

always create passwords that are resistant to these models, the effectiveness of these attacks is based 

on the fact that users as a whole have a hard time being unique. This means that even in the future, if 

users adopt new ways to create passwords, an attacker will most likely still be able to model the new 

creation methods as well.  

 Going forward, I fully expect the probability methods described in this paper to become more 

prevalent in password cracking attacks. I‟m especially proud of the work detailed in Chapter 5 on using 

probabilistic context free grammars to model user password creation. This is a completely new 

technique, and one that will only increase in effectiveness as additional optimizations and 

improvements are added to it. In addition, by allowing attackers to pre-compute dictionary based 

attacks as described in Chapter 4 and re-use the results later, highly advanced word mangling rules 

and large dictionaries can be incorporated into normal password cracking sessions. This is in contrast 

to before, where often due to time constraints, this was not possible. 

 That being said, I remain cautiously optimistic about the future of human memorable passwords. 

The key though is to enhance the underlying security in how passwords are stored, accessed and the 

policies that govern them, rather than continuing to blame users for poor password selection. 

Techniques such as blacklisting common passwords and limiting the number of password guesses 

allowed to an attacker can drastically increase the cost and decrease the effectiveness of password 

cracking attacks. In addition, widespread adoption of practices such as using password salts can 

effectively eliminate some classes of attacks such as hash pre-computation. While perfect password 

security will never be a reality, the future is not as dire as it might seem. 
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APPENDIX  A 

PSUEDO-CODE FOR THE PROBILISTIC PASSWORD CRACKER NEXT 
FUNCTION 

 

 

//The probability calculation depends on if pre-terminal or terminal probability is used 
//New nodes are inserted into the queue with the probability of the pre-terminal structure acting as the priority 
//value 
For (all base structures) { //first populate the priority queue with the most probable values for each base structure 
 working_value.structure = most probable pre-terminal value for the base structure 
 working_value.pivot_value = 0 
 working_value.num_strings = total number of L/S/D strings in the corresponding base structure 
 working_value.probability = calculate_probability(working_value.structure) 
 insert_into_priority_queue(priority_queue, working_value)   //higher probability == greater priority 
} 
working_value = Pop(priority_queue) //Now generate password guesses 
while (working_value!=NULL) { 
 Print out all guesses for the popped value by filling in all combinations of the appropriate alpha strings. 
 For (i=working_value.pivot_value; i<working_value.num_strings;i++) {  
        insert_value.structure=decrement(working_value.structure,i);  //get next lower probability S or D 
structure at pivot value „i‟ 
        if (insert_value.structure!=NULL) { 
   insert_value.probability = calculate_probability(insert_value.structure); 
   insert_value.pivot_value = i 
   insert_value.num_strings = working_value.num_strings 
   insert_into_priority_queue(priority_queue,insert_value) 
        } 
 } 
 working_value = Pop(priority_queue) 
} 
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APPENDIX  B 

PSUEDO-CODE FOR THE PROBILISTIC PASSWORD CRACKER 
DEADBEAT DAD FUNCTION 

 

 

//The probability calculation depends on if pre-terminal or terminal probability is used 
//New nodes are inserted into the queue with the probability of the pre-terminal structure acting as the priority 
//value 
For (all base structures) { //first populate the priority queue with the most probable values for each base structure 
 working_value.structure = most probable pre-terminal value for the base structure 
 working_value.num_strings = total number of L/S/D strings in the corresponding base structure 
 working_value.probability = calculate_probability(working_value.structure) 

insert_into_priority_queue(priority_queue, working_value)   //higher probability == greater priority 
} 
working_value = Pop(priority_queue) //Now generate password guesses 
while (working_value!=NULL) { 

Print out all guesses for the popped value by filling in all combinations of the appropriate alpha strings. 
 For (i=0; i<working_value.num_strings;i++) {  

child_node=decrement(working_value.structure,i);  //get next lower probability S or D structure at 
//pivot value „i‟ 
child_node.num_strings = working_value.num_strings 

        if ((child_node!=NULL) AND (lowest_probability_parent(child_node, working_value,i)) { 
   child_node.probability = calculate_probability(child_node.structure); 
   insert_into_priority_queue(child_node,insert_value) 
        } 
 } 
 working_value = Pop(priority_queue) 
} 
 
 
Boolean function lowest_probability_parent(node child_node, node working_value, int parent_pivot) { 
 For (i=0;i<child_node.num_stings;i++) { 
   If (i!=parent_pivot) {  //not the parent node 
   //find the probability of the other parent 
    other_parent_probability = generate_parent_probability(child_node, i); 
   if (other_parent_probability<working_value.probability) { 
    //some other parent will take care of the child 
    Return false; 
   } 
   else if (other_parent_probabity == working_value.probability) { 
    //the location of the pivot is used to break ties 
    if (i>parent_pivot) { 
     Return false; 
    } 
   } 
  } 
 } 
 Return true; 
} 
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