
UsingProblemSymmetry in Search BasedSatisfiability Algorithms
�

EvgueniI. Goldberg
CadenceBerkeley Laboratories

Berkeley, CA
egold@cadence.com

Mukul R. Prasad
FujitsuLabs.of America

Sunnyvale,CA
mukul@fla.fujitsu.com

RobertK. Brayton
Dept.of EECS

Universityof California,Berkeley
brayton@eecs.berkeley.edu

Abstract

We introducethenotionof problemsymmetryin search-
basedSAT algorithms. We develop a theory of essential
points to formally characterizethe potential search-space
pruning that can be realizedby exploiting problemsym-
metry. We unify several search-pruningtechniquesusedin
modernSAT solvers under a single framework, by show-
ing themto bespecialcasesof thegeneral theoryof essen-
tial points. We alsoproposea new pruningrule exploiting
problemsymmetry. Preliminary experimentalresultsvali-
datetheefficacyof this rule in providingadditionalsearch-
spacepruning beyond the pruning realizedby techniques
implementedin leading-edge SAT solvers.

1 Intr oduction

TheBooleanSatisfiability(SAT) problemis acoreprob-
lem in mathematicallogic andcomputingtheory. The last
decadehas seensignificant improvementsin SAT solver
technology[6, 7, 11]. Spurredby thesedevelopmentsSAT
solvershave beenactively usedin a numberof EDA appli-
cationsincludingATPG[9], formal verification[1, 2],logic
optimization[5] andphysicaldesign[10] amongothers.Al-
most all leading-edgeSAT solvers usea backtrackingal-
gorithm basedon the classicalDavis-Putnam-Logemann-
Lovelandprocedure (DPLL) [3] enhancedwith someform
of non-chronologicalbacktrackingandconflictbasedlearn-
ing [6, 7]. This work developsthenotionof problemsym-
metryto formally characterizeandenhancethesearchspace
pruningof aSAT solveroperatingin suchasetting.

Thenotionof problemsymmetrystemsfrom thesimple
observationthatin certainregionsof theBooleanspacethe
unsatisfiabilityof theCNF undercheckcanbe established
without usinga certainvariable,say � . In otherwords,in
this sub-spacethe CNF is symmetricwith respectto � (or�
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Figure 1. Illustration of Symmetry in Search

this is asymmetricsubspacewith respectto � )1. In thecon-
text of abacktracking-basedSAT algorithmthiscanbeused
as follows. Considerthe backtrackingsearchtree shown
in Figure1. Whenexploring the left branchof branching
variable � ( ��� �

) the algorithmcomputesan (under)ap-
proximationof the symmetricsub-space(out of the space
exploredunderthe branch ��� �

) with respectto � (sub-
spaceR1 in Figure1) andin theright branchof � ( ���	� )
thecounter-partof thissymmetricsub-spaceis pruned(sub-
spaceR2 in Figure1).

Our maincontributionsin thiswork areasfollows:
 Weintroducethenotionof problemsymmetryandfor-
mally characterizethe potentialsearch-spacepruning
affordedby it throughthetheoryof essentialpoints.
 We show that many popular searchpruning tech-
niques(suchasthepure-literalrule,non-chronological
backtrackingandconflictbasedlearning)employedin
leading-edgeSAT solversare in fact specialcasesof
pruning underthe generaltheory of essentialpoints.
Therebythis work unifies theseapparentlydisparate
techniquesunder a single framework and paves the
way for discoveringseveralnew pruningtechniques.

1Notethatthisnotionof symmetryis distinctfrom theoftenusednotion
of aBooleanfunctionbeingsymmetricwith respectto certainvariables.




 We proposea new, simpleandefficient pruningtech-
nique called supercubing basedpruning, basedon
problemsymmetry. Preliminaryexperimentalresults
demonstratethis to be effective in providing search-
spacepruningover andabove thepruningaffordedby
existing techniquesin SAT solvers.

The restof thepaperis organizedasfollows. Section2
presentsthenotationalframework usedin theexposition.In
Section3 weillustratethenotionof problemsymmetrywith
a few examples.Thetheoryof essentialpointsandaformal
characterizationof problemsymmetryis developedin Sec-
tion 4. Section5presentstheoreticalresultsshowingseveral
popularpruningtechniquesusedin SAT solversto bespe-
cial casesof thegeneraltheoryof essentialpoints. In Sec-
tion 6 wepresentanew pruningrulecalledthesupercubing
rule. This is alsoa specialcaseof problemsymmetrybut
subsumessomeexisting pruningtechniquesandis orthog-
onalto others.Section7 presentspreliminaryexperimental
resultsvalidatingtheefficacy of this rule. Conclusionsand
suggestionsfor futureresearcharepresentedin Section8.

2 Definitions & Notation

The following discussionwill be with respectto SAT
instancesexpressedas conjunctive normal form (CNF)
formulas. A CNF formula � on � Boolean variables � ��������������������������� is a conjunction of � clauses� ��� � � ������� �"! . Eachclauseis a disjunctionof literalsover
the variables


. Let # denotea literal of oneof the vari-

ables


. lit $%��& refersto a literal of variable � i.e. lit $%��&
is either � or � . ' refers to a minterm or point in the( � Booleanspaceof variables �������������������)��� . Note that
a minterm ' is a completeBooleanassignmentto thevari-
ables


. Further, formula � can be evaluatedunderthis

assignment.In the sequelwe will occasionallyusea lit-
eral of a variableto refer to a particularvalueassignment
to the variable(e.g. ��� ��* � ) anda cube(minterm)to
referto apartial(complete)valueassignmentto variablesof

. +,$%��& refersto the currentassignmentof variable � or
alternatively theliteral correspondingto thatassignment.

The underlyingSAT algorithm usedfor the discussion
is the basic DPLL [3] algorithm, augmentedwith some
form of conflict analysis, non-chronological backtracking
andconflict clauserecording [6]. This is representative of
the SAT methodsimplementedin most leading-edgeSAT
solvers[6, 7, 11].

As in [6, 7] a variable that is consciouslychosenand
assigneda value by the branchingprocedureis referred
to asa decisionvariable (assignment)andis distinguished
from adeducedvariable(assignment)whosevaluehasbeen
implied throughBooleanconstraint propagation(BCP). A
conflictconditionis denotedby - . A conflict conditionoc-
curswhenthecurrentpartialassignment(duringbranching)

unsatisfiesoneor moreclausesof theCNF. Theconflict is
identifiedby oneof theseclauses,whichis referredto asthe
conflictclauseof conflict - anddenotedby

� $.-/& 2.0 $1#2& refersto theclausethatwasusedto imply or deduce
theliteral # . Although,therecanbemany suchclauses,

0 $1#2&
is oneof them,which is heldresponsiblefor thededuction.0 $ � & refersto thesetof deducedliteralsof clause

�
i.e. the

setof literalsassignedthroughBCPimplicationsfrom other
clauses. 34$ � & refers to the set of literals of

�
assigned

throughdecisionassignments.
Givena conflict condition - , conflict analysisperforms

the task of identifying a subsetof assignments,denoted+656$.-/& (out of thecurrentsetof decisionanddeducedas-
signments)which canbeheldresponsiblefor - . As noted
in [6, 12] therecan be multiple ways at arriving at such
a subset(i.e. therecanbe multiple possible+656$.-/& for a
given - ). For thesake of concretenesswe will usethefol-
lowing definitionof +656$.-7& in thesequel.

Consider the following recursive marking function8 $ � & , whichoperatesona clause
�

andis definedas

8 $ � &9�:34$ � &�; 0 $ � &=<>@?�A�BDC�E 8 $ 0 $1#2&�& (1)

Then +,$.-/&F� 8 $ � $.-/&�& . Further +,$.-/& canbe split
into disjoint subsets+6GH$.-/& and + A $.-/& which are re-
spectively thedecisionandimpliedassignmentscomprising+,$.-/& . Theclause

� 56$.-7& recordedonconflict - is defined
to be:

+I5J$.-/&K� +6GH$.-/&� 5J$.-/&K� L>@?NMPOQBSR9E # (2)

Definition 2.1 Givena clause
�

denoteby TF$ � & the un-
satisfiabilitycubeof

�
which is thesetof minterms(assign-

ments)which unsatisfy
�

, e.g. given
 �U����������� ���WV � and� �X$%���ZY ����& , TF$ � &9�[� �������\�WVN� ������� �WV�� .

Notethat TF$ � & canalsobeinterpretedasacubeof liter-
als.For theaboveexampleTF$ � &Q� ���]��� . In thefollowing
weusethetwo interpretationsinterchangeably.

3 ProblemSymmetry in Search

The notion of problemsymmetryhasbeenintroduced
andits potentialin searchspacepruningmotivatedbriefly
in Section1. In this Sectionwe provide two examples
to buttressthis understandingand illustrate that 1.) in-
stancesof problemsymmetryareplentiful in typical SAT
instancesarising from EDA applications,and 2.) current

2This shouldbe distinguishedfrom the new clausê�_a`@bdc which is
recordedor deducedonaconflict b .
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Figure 2. Example of Symmetry in SAT on circuits

pruningtechniquesharnessonly a fraction (albeit inadver-
tently) of the potential searchspacepruning afforded by
problemsymmetry.

Considerthe sub-circuitshown in Figure2(a). Assume
thatthis is partof a largercircuit onwhichsomeSAT prob-
lemis beingsolved3. Here � is aprimaryinputof thecircuit
andthe threegatesshown arethe only fanoutsof � . Sup-
posethe backtracktreeexploredby the SAT algorithm is
of theform shown in Figure2(b). Considerthe left branch
( �m�n� ) of branchingvariable � . Supposethat underthis
branchthe algorithmsubsequentlymakesthe assignmentso �p�N�]qH� �

and rs�p� (andpotentiallyotherassignments
aswell) andreachesasub-spacetJ� (shown in Figure2(b)).
Note that in sub-spacetJ� thevalueof � is no longerrele-
vant i.e. the formula is symmetricwith respectto � in tJ� .
Thus,if thealgorithmfindssub-spacetu� unsatisfiablethen
it neednotexplorethesub-spacet (

, thecounterpartof tJ�
underthe branch �v� �

, as that too will be unsatisfiable.
This is a simpleandclassicalcaseof problemsymmetryin
SAT instancesderivedfrom logic circuits,whichmaynotbe
effectively coveredby existingsearchpruningtechniques.

The next exampleis designedto illustrate that current
implementationsof conflict clauserecordingexploit only a
fractionof thesearchspacepruningpotentiallyaffordedby
problemsymmetry. Considerthefollowing CNF formula.

� � $ qPYwr9Ywxy&\$ q9Y r9Ywxy&\$2q9Ywr9Yzx{&\$2q9Y r�&$ qPY r9Y x{&\$2qPYwr9Y xy&\$ o Y q9Ywr9Y x{&$ o Y q9YzrQY x{& (3)

A typical backtrackingtreefor solving this CNF is shown
in Figure3. The backtrackingalgorithmemploys conflict
analysis,clauserecordingetc.Therecordedclauses(asper
thespecificschemedescribedin Section2) areshownbelow

3This meansthat an appropriateCNF formula is extractedfrom the
circuit andsolvedby aSAT solver.
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Figure 3. Symmetry in backtrack search

eachconflict. Also notedarethesetof decisionassignments
relevant to the conflict. An analysisof the conflictsin the
brancho � �

revealsthat o wasonly relevant to a conflict
when q���� and r�� �

. The restof the sub-spaceundero � �
representsthe symmetricspacewith respectto o .

Thus,whenexploring the right branchof o , i.e. o ��� we
donotneedto explorethesub-spaceqd� ��� rd�U� . In other
words,on takingthebrancho ��� we canimmediatelyas-
sert qH��� and r�� �

. Note,that theassertionqH��� is also
deducedby meansof therecordedconflictclause$2q�& but the
additionalassignmentr�� �

comesonly throughexploiting
problemsymmetrymore fully. Note that this observation
is not an artifact of the specificconflict clauserecording
mechanismusedin this work andin this example. Rather
it is a fundamentallimitation of conflict-basedlearningin
that on a given conflict the recordedclause(s)represents
only a fraction of the implicatesthat canbe learnedfrom
that conflict. It is neitherfeasiblenor practicalto learnall
possibleimplicates.However, it maybepossibleto extract
additionalpruningusinganother, complementarytechnique



basedon problemsymmetry. The Supercubing technique
presentedlaterin Section6 is asimpleexampleof onesuch
option.

Note that during the search,certainvariables,initially
pickedasdecisionvariables,becomededucedvariablesdue
to BCPimplicationsfrom newly addedconflictclauses,e.g.
in Figure3, q6��� canbe treatedasa deducedassignment
implied from theclause$2q\& , recordedon conflict -�� . Such
assignmentsarecalledfailure-drivenassertions(FDA) [6].
However, q��	� mayaswell be treatedasdecisionassign-
ment. In our treatment,FDAs are treatedas deducedas-
signmentsfor the purposeof generatingthe recordedcon-
flict clauses

� 56$.-/& . However, for generatingtheresponsi-
bleassignmentsshown in Figure3 (andfor thesupercubing
rule presentedin Section6) FDAs are treatedasdecision
assignments.Both versionsof the analysisstill useEqua-
tions1 and2 but generatedifferentsets+6GH$.-/& .
4 The Theory of EssentialPoints

In this sectionwe developthenotionof essentialpoints
to formally characterizethe searchspacepruningthat can
berealizedby exploiting problemsymmetry.

Definition 4.1 A point ' is called #�� essentialif all clauses
of � unsatisfiedby ' (mustbeat leastone4) containliteral# , e.g. given ����$ o Y q\&\$2r�&\$ o Y q�Y r�&\$ o Y r�&\$ o Y:q"Y r�&
theminterm o q�r is an o -essentialpoint.

Definition 4.2 Let ' and 'd  be two points in the
( �

Booleanspace. '   is said to be � -symmetricto ' if it is
obtainedfrom ' by flipping the valueof variable � in ' .
For example, minterms'�� o q\r\x and '� ¡� o q r\x are r -
symmetricwith respectto each other.

Proposition 4.1 Let ' be a completeassignmentto vari-
ables �����)����������������� (i.e. a mintermof

( � ) which satisfies� . Thenassignment'd  which is x-symmetricto ' is either
lit( � )-essential(lit $%��&"¢4' ) or satisfies� i.e. is a solution.

Proof: Suppose'd  is neithera solutionnor lit( � )-essential
(wherelit $%��&£¢�' ). Thenthereexistsa clause

�
of � such

that 'd  unsatisfies
�

and
�

doesnot containany � literal.
But then

�
is unsatisfiedby ' aswell. Therefore' is not a

solutionof � . Contradiction!

Proposition 4.2 If assignment' is lit( � )-essentialthenas-
signment'd  , � -symmetricto ' , is eitherlit $%��& -essentialor
is a solution.

Proof: Suppose'   is neitherasolutionnor lit $%��& -essential.
Thenthereexists a clause

�
of � which doesnot contain

any � literal, suchthat 'd  unsatisfies
�

. But then
�

is
4Thus,satisfyingassignmentsof ¤ arenotessentialpoints.

unsatisfiedby ' aswell. Therefore' is not lit( � )-essential.
Contradiction!

For a literal # , thesetof # -essentialpointswith respectto
thecurrentCNFis denotedby ¥"$1#2& . Thesubsetof ¥"$1#2& lying
in a sub-space¦ is denotedby ¥�§W$1#2& andby ¥©¨~ª�«�$1#1& when
thesub-spacebeingreferredto is clearfrom thecontext.

Thesearchspacepruningthatcanbeachievedusingthe
notion of essentialpointscanbe operationallydefinedby
thefollowing theorem.

Theorem4.1 Supposethe algorithm hasexplored the left
branch of variable � (withoutlossof generality �4� �

) and
found no solution. Moreover, supposethe algorithm has
computed¥ ¬�$%��& (the subsetof ¥"$%��& in the Booleansub-
spacespannedby the �� �

branch). Then under the
branch �®�¯� , solutionsof � mustlie in the setof points� -symmetricto pointsin ¥ ¬�$%��& (denotedby ¥P ¬ $%��& ).

Proof: For correctness,thealgorithmonly needsto ensure
thatit doesnot skip any solutionsof theCNF in thebranch�v��� (it canpruneeverythingelse). By Proposition4.1
solutionscanonly bepoints� -symmetricto pointsin ¥ ¬�$%��& .

Theorem4.1 implies that for testingsatisfiabilityof � ,
whenexploring thebranch�4�°� , thealgorithmonly needs
to explorethesetof points ¥P ¬ $%��& . It is alsoeasyto seethat
it is not necessaryto computethe set ¥ ¬�$%��& exactly. Any
over-approximationof it would work as well, thoughthe
amountof pruningwould bereducedproportionally.

Under a clauserecordingscenario,i.e. when the algo-
rithmprogressivelyaddsimplicatesof theCNFto theclause
database(for examplethroughconflictclauserecording)the
setof essentialpoints ¥"$1#1& for eachliteral # eitherremains
unchangedor shrinks.

Theorem4.2 Let CNF ��± be obtainedfrom � by adding
clause

� ± to � where
� ± is an implicateof � . Then,for

any literal # , the setof essentialpointsof # in �W± , denoted¥Z±²$1#2& mustsatisfy¥Z±d$1#2&"³w¥�$1#2& .
Proof: Considerany minterm '�´¢µ¥"$1#2& . Then,theremust
exist a clause

�
of � suchthat #�´¢ �

and '[¢¶TF$ � & . But,
since �W±m�·� � � ± ,

�
is alsoa clauseof ��± . Thus, '	´¢¥Z±²$1#2& . Therefore,'[´¢4¥"$1#2&9¸¯'[´¢4¥Z±²$1#2& .

The relevanceof Theorem4.2 is that under a clause
recordingscenario,whena new clauseis added,all partial
setsof essentialpointscomputedup to thatpoint continue
to bevalid with respectto thenew CNF5.

5However they canpotentiallybeover-estimatesof theessentialpoints
with respectto thenew CNF.



5 Popular Pruning Techniques: Special
Casesof EssentialPoint Pruning

In the following we show that several popular search
pruning techniquessuchas the pure-literal rule [4], non-
chronological backtracking (NCB) and conflict clause
recording (or conflict-basedlearning) [6] arespecialcases
of the pruning afforded by the theory of essentialpoints.
This unifiesthesetechniquesundera singleframework and
paves the way for developing potentially more powerful
variantsof problemsymmetrybasedpruning.

5.1 The Pure-Literal Rule

The Pure-Literalrule [4] canbe usedto effect pruning
in branchingby looking for variablesthat appearin only
onepolarity(thepurepolarity) in open(undecided)clauses,
at the currentpoint in the search,and then assertingthe
variableto the purepolarity. In effect this meanspruning
the otherbranchof the variable. If no solutionis found in
theexploredpure-branch,thepruningeffectedby thepure-
literal rulecanbeexplainedby thetheoryof essentialpoints
asfollows.

Thepure-polaritybranchof thevariable(say �4� �
) can

beconsideredtheleft branchof � , which thealgorithmex-
plored and found no solution. The other polarity branch�µ��� which wasprunedby thepure-literalrule is thepo-
tential right branch. Thus, if we can prove that the sub-
spaceunderthe pure-branch�°� �

doesnot containany� -essentialpointsthenthepruningdoneby thepure-literal
rule is explainedby Theorem4.1.

It is sufficient to only considerthe casewhenthe pure-
literal branchof thepure-literalvariableis unsatisfiable,be-
causeif thereis a solutionunderthepure-literalbranchthe
algorithmterminates.In sucha casethe claim of pruning
theotherbranchhasno meaning.

Theorem5.1 The sub-space under the pure-polarity
branch (say �,� �

) of a pure-literal variable � cannotcon-
tain any � -essentialpoints.

Proof: Considerexploring the pure polarity branch(say�¹� �
) of thepure-literalvariable � . By assumptionthere

is no solutionunderthis branch.Now considerthefollow-
ing algorithmwhich just exploresthesub-spaceunderthis
branchusingastripped-down DPLL procedure(i.e. noBCP
or pure-literalrule).

Suchan algorithm would explore the entire sub-space
under the �º� �

branch, stoppingand chronologically
backtrackingevery time the currentassignmentunsatisfes
a clauseof theCNF. Let thesetof suchconflict clausesen-
counteredwhile exploring this branchbe

� ��� � � ��������� �9» .

It is easilyseenthat TF$ � ��&";�TF$ � ��&";w�����©;�TF$ �9» & sub-
sumesthe entiresub-spaceunderthe �v� �

branch. Ad-
ditionally, noneof theseclausescontainvariable � sincea
conflict clausehasall literalsunsatisfiedby thecurrentas-
signmentandthepure-literalassignment�4� �

merelysat-
isfiessomeclausesandrestricts6 none.Theresultfollows.

5.2 Non-ChronologicalBacktracking (NCB)

Thenotionof non-chronological backtracking(NCB)[6]
is usedto pruneareasof thesearchspaceby backtrackingto
the last variableresponsiblefor the currentconflict, rather
thanthe lastvariablein thecurrentassignmentstack.This
methodeffectspruningbyskippingtherightbranchof some
of the stackvariables.Operationally, this is accomplished
by deducinganimplicate(throughconflict analysis)whose
unsatisfiabilitycubesubsumestheregionsto bepruned.

Another way of looking at this pruning is that NCB
prunesthe right branchof a variable � , if and only if all
conflictsin the left branchof � wereindependentof (sym-
metric in) � . This is obviously a specialcaseof symmetry
(describedby the theoryof essentialpoints)which targets
pruningsub-spacessymmetricin a particularvariable.Be-
foreproving thiswestatea few simplefacts,withoutproof,
to formalize the operationaldefinition of NCB. The inter-
estedreaderis referredto [6] for details.
 Fact 1: NCB pruningis donein a settingwherecon-

flict analysisis usedto produceconflictclauses(impli-
cates)responsiblefor theconflict7.
 Fact 2: Thedeductionprocedurefor a conflict clause
may be simulatedby a treeof resolutionstepswhere
theleafclausesareclausesof theoriginalCNF(or pre-
viously addedconflict clauses)andthevariablebeing
resolvedout ata nodeis adeducedvariable.
 Fact 3: NCB to prunethe right branchof variable �
happensonly ondeducingaconflictclausewhichdoes
not containany literal of � andwhoseunsatisfiability
cubesubsumesthe subspacebeing prunedunderthe
right branchof � .

Proposition5.1 If clause
�

is the resolventproducedby
resolvingclauses

� � and
� � in somecommonvariable(say� ) then TF$ � &"³¼TF$ � �\&½;uTF$ � ��& .

Proof: Without loss of generality, let
� ��� � V�¾�� and� �7� �²¿ ¾ � , where

� V and
�²¿

aresomedisjunctionsof
literals. Then

� � � V�¾ �²¿
, TF$ � ��&£� � � V and TF$ � ��&£�� �"¿ . Thus TF$ � &9� � VdÀ �²¿ ³Á$ � � V�&�;Â$%� �"¿ & .

6An assignmentwhich setsonemoreliterals in a clauseto Ã is saidto
restrictthatclause.

7Thededucedconflict clausesmayor maynotbeaddedto theCNF.



Theorem5.2 If the right branch of a variable � is eligi-
ble for pruning under NCB, then the subspaceunder the
left branch of � (without lossof generality ��� �

) cannot
containany � -essentialpoints.

Proof: From Fact 3, theremustexist an implicate
�

, de-
ducedthroughconflict analysiswhich doesnot containlit-
erals � or � and which subsumesthe subspaceunderthe
unexploredright branch,�µ��� . Since

�
doesnot contain

literals of � it mustalsosubsumethe sub-spaceunderthe
left branch�¼� �

. Moreover, from Fact2 theremustexist
clauses

� ��� � � ������� �dÄ of the currentCNF which form the
leavesof theresolutiontreesimulatingthedeductionof

�
.

Fromtherecursiveapplicationof Proposition5.1 it follows
that TF$ � &"³¼TF$ � ��&�;6TF$ � ��&�;¶������;6TF$ �dÄ & . Thus,clauses� ��� � � ������� �dÄ collectively coverthesubspaceundertheleft
branchof � . Alsosincetheresolutioncouldonly bedoneon
deducedvariablesclauses

� ��� � � ������� �dÄ cannothave vari-
able � . Thereforenoneof the pointscoveredby themcan
be � -essential.

5.3 Conflict ClauseRecording

Conflict clauserecording[6] is apowerful pruningtech-
niquethatis employedin severalsuccessfulSAT solvers[6,
7, 11]. The basicidea is to deducean implicate (through
conflict analysis)responsiblefor the current conflict and
add it to the clausedatabasewith the aim of avoiding fu-
tureoccurancesof thesameconflict.

Although not apparentfrom the above statementof the
notion, the recordedconflict clausesdo in fact effect sym-
metry basedpruning. Considerthe following situation. In
theleft branchof variable� , say �4� �

, aconflict - occurs
onwhichaconflictclause

� 5J$.-/& is learned.Now, suppose� 5J$.-/& doesnot containliteral � (it cannotcontain � ). Let
thesetof assignments,preceding� begivenby cube+ . Let+/�²��+ � � � TF$ � 56$.-/&�& and +u�a��+ � � � TF$ � 56$.-/&�& .
Notethat +u� is preciselythesub-spacepotentiallyprunable
by

� 56$.-7& in theright branch�,�°� of � .
As shown below, thepruningof sub-space+u� by clause� 5J$.-/& can be accountedfor by the theory of essential

points.Dueto spacelimitationswestatetheresultswithout
proof. Theinterestedreaderis referredto [8] for theproofs.

Theorem5.3 The symmetrybasedpruning afforded by a
recordedconflict clause

� 5J$.-/& with respectto a variable� is subsumedby the pruning potentially realizableusing
essentialpointbasedpruning(Theorem4.1).

Interestingly, the entire pruning potentially accom-
plishedby a recordedclause,subsequentto its recording,
canbe broken down into a seriesof right-branchprunings
like theabovesituation8.

8providedthesearchis organizedasa singletreei.e. without restarts.

Theorem5.4 The search space pruning provided by a
recordedclause

� 5 , canbedividedinto a setof sub-spaces
such that each sub-spacelies under the right branch of a
variable Å , which doesnot appearin

� 5 , where
� 5 was

recordedin theleft branch of Å .

FromTheorems5.3and5.4it followsthatconflictclause
recordingis aspecialcaseof essentialpointpruning.

6 Supercubing-BasedPruning

In this sectionwe develop a simple new pruning rule
basedon exploiting problemsymmetry. This rule is called
the supercubing rule after the supercubeoperatordefined
below, which is thecoreoperationusedin implementingit.

Definition 6.1 Supercubing Operator ( Æ ): Given two
cubesrÇ� and r\� over the

( � Booleanspace, Æ�$2rÇ���]r���& com-
putesthe smallestcubecontainingboth r�� and r\� , i.e. the
supercubeof r�� and r\� .
6.1 Supercubing Procedure& Pruning

Thealgorithmmaintainsacubecalledthesupercubefor
eachdecisionvariablecurrentlyon thedecisionstack.The
supercubeof variable� (denotedÆ�¬ ) is initializedto È when� is first chosenfor branching.In the left branchof � (say�,� �

) Æ�¬ is updatedoneachconflict - where�¶¢4+656$.-/&
( +656$.-/& is computedconsideringFDAs as decisionvari-
ables)asfollows:

Æ�¬I��ÆH$ÉÆ�¬©��r�Ê�& where r�Ê¶� Ë>@?�MPOQB@R9E # (4)

After the algorithmhasexploredthe left branch�:� �
andfoundnosolution,it wouldhavecomputedsomesuper-
cubefor � , denotedÆdÌ�Í �ÏÎ >¬ . SayÆdÌ�Í �ÏÎ >¬ � � � #2� � #É� � ����� � # Ä
Then in the right branch, ���K� we immediatelyassert#2�¹� TRUE ��#É�:� TRUE ��������# Ä � TRUE i.e. the region� � $ #2�P¾ #É��¾¡������¾ # Ä & is pruned.

Note that the assertedassignmentsare treatedas con-
scious assignmentsfor the purpose of future conflict
analysisand supercubingi.e. it is as though thesevari-
ables Ð >DÑ �)Ð >ÓÒ �������½�)Ð >DÔ were consciouslybranchedon and
the branches#2��� #É� ��������� # Ä were pruned, while the other
brancheswereexplored.

6.2 Proof of Corr ectness

Theproof of correctnessof thealgorithmrequiresprov-
ing two propositions:

1. Everysupercube-basedpruningis legal, i.e. thepruned
spacecannotcontainasolution.



2. At any point in the algorithm the following property
holdfor eachpoint(minterm)in theBooleansub-space
thatthealgorithmhasalreadyexplored(andfoundun-
satisfiable).

Definition 6.2 A point ' satisfies Property A if there ex-
ist a cube r�Õ such that '�³�r�Õ and r�Õ wasprocessedby
supercubing(Equation4) undersomepreviousconflict.

Proof: The algorithmprunesoff (explores)regionsof the
Booleanspacethroughtwo kindsof pruningevents, namely
1.) regularconflictsand2.) supercubebasedpruning.

We prove theabove two propositionssimultaneouslyby
inductionon the sequenceof pruningevents. The overall
ideais to prove that if all thepointsprunedby all previous
pruningeventssatisfyPropertyA then:
a.) Pointsprunedby thecurrentpruningeventsatisfyProp-
erty A, andb.) supercube-basedpruningis legal.
BaseCase: Sincepruningoccursonly in theright branch
of a variable,thefirst pruningeventmustbea conflict and
by definition,thealgorithmwouldgenerateaconflictclause
coveringtheprunedregionanddosupercubingon it. Soall
prunedpointssatisfyPropertyA.
Induction hypothesis: Supposepointsprunedby thefirstÖ

pruningeventssatisfypropertyA andarelegal prunings.
Induction proof : Considerthe

Ö Y��\×%Ø pruning event.
If this is a regular conflict the proof trivially follows as
per the basecase. So considerthe casewhen it is super-
cubebasedpruningperformedin the right branch �°�Ù�
of somevariable � . The region prunedby supercubingÆ »�Ú ª �ÏÛ¬ ��� � Ü �/À\Æ Ì�Í �ÏÎ >¬ Considerany point 'd H¢,Æ »�Ú ªÇ�ÏÛ¬
andpoint ' , which is � -symmetricto '   . Obviously ' was
examinedby thealgorithmin theleft branchof � . Further,'Ý´¢[Æ�Ì�Í �NÎ >¬ . Also, by the inductionhypothesisthereex-
ists cube r�Ê suchthat '=¢pr�Ê and r�Ê was processedby
supercubing.Thus,since r�Ê�´³�Æ Ì\Í �NÎ >¬ cube r�Ê mustnot
havevariable� whichmeansthatit coverspoint 'd  aswell.
Henceall pointsin Æ »\Ú ªÇ�yÛ¬ arecoveredby conflict clauses
thathave alreadybeendiscoveredandprocessedby theal-
gorithm. This alsomeansthatthecurrentpruningis a legal
one(sincetheprunedspaceis obviouslyunsatisfiable).

Notethatin reality thereis a third kind of pruningevent,
namelyBCPdeductions.However, thesub-spaceprunedby
themis completelyaccountedfor by theconflict clausesof
the conflicts lying below this deduction.A simpleway to
prove this is to take the currentbranchingtreeand“push”
all BCPdeductionsto theleavesof thetreei.e. afterall the
consciousassignmentsin eachbranch.Sincein our proce-
dureall conflictclausesarecomposedentirelyof conscious
assignmentsthesameconflictswill still occur, but therewill
benoBCP-prunedareasthistime. Here,theconflictclauses
canbetrivially seento cover theentireprunedareas.Also
we have not consideredpure-literalrule basedpruning in

BestOrder WorstOrder
Benchmark # Nodes # Nodes

Orig. With SC Orig. With SC

SSA-0432-003 1371 1050 3316 1074
SSA-2670-130 44039 38812 109766 66142
BF-0432-007 11487 10811 27298 9099
Queueinvar8 3211 2983 5842 5842
Aim-50-1 6-no-2 27 26 150 84
Aim-100-1 6-no-1 120 64 881 455
Aim-200-1 6-y-1-4 291 193 1155 354
Aim-200-1 6-no-3 457 559 6671 1252
Par-16-1-c 6543 6543 6543 6543
Hole 6 719 719 817 817

Table 1. Supercubing: Experimental results

this proof sincethis rule is a specialcaseof Supercubing
(seeProposition6.1).

6.3 Supercubing and Other Pruning Techniques

Proposition6.1 The pure-literal rule is a specialcaseof
supercubingbasedpruning.

Thereaderis referredto [8] for theproof. Theessential
ideais thatin someof theinstanceswherea null supercube
is computedfor a decisionvariable � , supercubingbased
pruningof theright branchof � is synonymouswith anap-
plication of the pure-literalrule on � . In othersuchcases
thebehavior of thealgorithmis identicalto NCB. Thus,su-
percubingoverlapswith someinstancesof NCB. In fact,we
conjecturethatsupercubingsubsumesNCB. All our exper-
imentsthusfar have not yieldeda singlecasewhereNCB,
implementedin the conventional fashion, could prune a
sub-spacethatsupercubingcouldnot. However, theopera-
tionaldefinitionof NCB givenin theliteratureis notprecise
enoughto prove or challengeour conjecture.This couldbe
aninterestingproblemfor futureresearch.

7 Experimental Results

This sectionpresentspreliminary experimentalresults
validatingtheefficacy of thesupercubingpruningrule. The
pruning rule has been implementedin a prototypeSAT
solver modeledon the linesof theGRASPSAT solver [6].
The prototypesolver implementsall the algorithmic fea-
turesof GRASPincludingconflict analysis,NCB, conflict
basedlearningand variousorderingheuristics. However,
the solver hasnot yet beensoftware engineeredfor effi-
ciency sinceits purposeis simply to evaluatethe first or-
derefficacy of somepruningtechniques.Thereforethere-
portedresultsarein termsof numberof nodesin the SAT
searchtree, ratherthan CPU runtimessincereportingthe
latterwould beunfair andnot particularlyinformative.



Preliminary resultson selectedSAT benchmarksfrom
theDIMACSsuiteandboundedmodelchecking[1] arere-
portedin Table1. Thebenchmarkexampleshavebeencho-
sento berepresentative of theexamplesthatwe ran,rang-
ing from the oneswheresupercubinggave the maximum
improvementto oneswhereit wasnot soeffective.

For eachbenchmarkthesolver wasrun in two configu-
rationswith four possibleorderings,DLCS, DLIS, MSTS,
MSOS9 (i.e. eight configurations)1.) ORIG: without su-
percubingbut with NCB andclauserecording,and2.) With
SC: sameas ORIG exceptsupercubingis also used. For
eachbenchmarkthe bestand the worst ORIG results(in
terms of numberof nodesin the searchtree) were cho-
senandarereportedin columns2 and4 respectively. The
correspondingresultswith SC (i.e. with thesameordering
heuristicastheORIG result)arereportedin columns3 and
5 respectively.

As shown in Table 1 the searchtree size decreasesin
mostcases,sometimesquite significantly. In the odd case
(in ourexperiencelessthan1%of thecases)e.g. Aim-200-
1 6-no-3thereis a slight increase.This is becausesuper-
cubingdisturbsthe numberof recordedclausesandhence
the variableorder slightly. However, overall supercubing
provedbeneficialfor boththebestorderandtheworstorder.
The improvementsin the caseof the worst orderingwere
moresignificantsuggestingthatthis pruningtechniquecan
partially correcta poor ordering. The supercubingitself
addedvirtually nothing to the runtimessincemost of the
book-keepingrequiredfor it was being done by conflict
analysis. The additionalsupercubingoperationswere ef-
ficiently implementedby bit-vectoroperations.Thusgains
in numberof searchtreenodestranslatedirectly to runtime
gains. Also, sincesupercubingbasedpruningpartly over-
laps with the pruning provided by conflict-basedlearning
usingsupercubingfrequentlyled to fewer recordedclauses.
This featureof supercubingcanbe usedto partly alleviate
theclausedatabasememoryproblemsthatarebecomingan
issuein currentSAT solvers[7].

8 Conclusions& Futur e Dir ections

In this paperwe have introducedandformalizedtheno-
tion of problemsymmetryin search-basedSAT algorithms.
Wehavedevelopedthetheoryof essentialpointsto formally
characterizethepotentialsearch-spacepruningthatcanbe
realizedby exploiting problemsymmetry. We have unified
severalpowerful searchpruningtechniquesusedin modern
SAT solvers undera single framework, by showing them
to be specialcasesof the theory of essentialpoints. We
have alsoproposeda new pruningrule exploiting problem
symmetryandshown it to provide additionalsearchspace
pruningover thepruningrealizedby currenttechniques.

9Referto theGRASPusermanualfor detailson theseheuristics.

CurrentSAT solversintegratefairly sophisticatedsearch
pruning techniquesin a very tightly and efficiently engi-
neeredsoftware framework. However, thereis very little
fundamentalunderstandingof how thesetechniquesinter-
act,whatsearchspacethey pruneandwhat themargin for
improvementis. Ourcurrentwork is asteptowardsanswer-
ing thesequestions.We believe that it is possibleto derive
a whole family of searchpruningtechniqueswith varying
cost-power tradeoffs, underthegeneralpurview of thethe-
ory of essentialpoints. The supercubingrule presentedin
Section6 is a simplecasein point. It is quite obviously a
very weakandcheaprealizationof essentialpoint pruning.
However, it still improvesover thestate-of-the-art,demon-
stratingthe immensepotentialfor improvement. Our cur-
rentandfutureresearchefforts areaimedat realizingsome
of thispotential.
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