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Abstract

Difference-in-difference (DD) methods are a common strategy for evaluating the effects of 

policies or programs that are instituted at a particular point in time, such as the implementation of 

a new law. The DD method compares changes over time in a group unaffected by the policy 

intervention to the changes over time in a group affected by the policy intervention, and attributes 

the “difference-in-differences” to the effect of the policy. DD methods provide unbiased effect 

estimates if the trend over time would have been the same between the intervention and 

comparison groups in the absence of the intervention. However, a concern with DD models is that 

the program and intervention groups may differ in ways that would affect their trends over time, or 

their compositions may change over time. Propensity score methods are commonly used to handle 

this type of confounding in other non-experimental studies, but the particular considerations when 

using them in the context of a DD model have not been well investigated. In this paper, we 

describe the use of propensity scores in conjunction with DD models, in particular investigating a 

propensity score weighting strategy that weights the four groups (defined by time and intervention 

status) to be balanced on a set of characteristics. We discuss the conceptual issues associated with 

this approach, including the need for caution when selecting variables to include in the propensity 

score model, particularly given the multiple time point nature of the analysis. We illustrate the 

ideas and method with an application estimating the effects of a new payment and delivery system 

innovation (an accountable care organization model called the “Alternative Quality Contract” 

(AQC) implemented by Blue Cross Blue Shield of Massachusetts) on health plan enrollee out-of-
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pocket mental health service expenditures. We find no evidence that the AQC affected out-of-

pocket mental health service expenditures of enrollees.

Keywords

Mental health spending; policy evaluation; natural experiment; non-experimental study; causal 
inference

Policymakers and program administrators are often interested in the effects of interventions 

such as new provider payment mechanisms, policies such as mental health parity, and 

clinical interventions such as new disease screening tools. In many health services settings, 

randomization to these programs or policies is unfeasible, and researchers and policymakers 

are left with the need to use non-experimental studies to estimate the effects of those 

programs or policies. The fundamental challenge in such non-experimental studies is 

selection bias -- the individuals or groups experiencing the program or policy of interest may 

be different from those not exposed to it. For example, physician practices that choose to 

participate in a new payment system may be quite different (and serve patients quite 

different) from those that do not participate.

A common non-experimental design used to estimate the effects of policies or programs 

instituted at a particular point in time is a “difference in differences” (DD) model. DD 

models compare changes over time in a group unaffected by the policy change to changes 

over time in a group affected by the policy change, and attributes the “difference-in-

differences” to the effect of the policy. DD methods provide unbiased effect estimates if the 

trend over time would have been the same between the treatment (intervention) and 

comparison groups in the absence of the intervention. Because of the existence of 

information on temporal trends from the comparison group, DD methods are sometimes 

preferred over interrupted time series designs that do not necessarily have a comparison 

group. However, a concern with DD models is that the program and intervention groups 

may differ in ways that are related to their trends over time, or their compositions may 

change over time. Propensity score methods are another non-experimental study design that 

is commonly used to handle this type of confounding in other non-experimental studies. 

However, the particular considerations when using propensity scores in the context of a DD 

model have not been well investigated. As detailed below, a particular complication in 

applying propensity score methods in the context of DD models is that there are no longer 

just two groups (treatment and comparison); there are essentially now four groups: treatment 

pre, treatment post, comparison pre, and comparison post. This paper illustrates the use of 

propensity score weighting to ensure the comparability of all four of these groups. The 

method is particularly relevant for DD settings where the composition of each group may 

change over time, such as if the patient population served by physician practices changes 

systematically across time, or if the composition of physician groups changes differentially 

over time due to turnover or consolidation.

This work is motivated by an evaluation of a new payment and delivery system innovation, 

in particular an accountable care organization model called the “Alternative Quality 

Contract” (AQC) implemented by Blue Cross Blue Shield of Massachusetts (BCBSMA) in 
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2009. The AQC was an initiative aimed at reducing spending and improving quality by 

paying providers a global budget and bonuses for meeting quality benchmarks; participation 

in the AQC was voluntary. Song et al. (2012) found that the AQC led to lower medical 

spending and improved performance on quality measures in the first two years of 

implementation. The current paper is concerned with the effects of the AQC on mental 

health care spending, and in particular, out-of-pocket mental health expenditures. 

Companion papers detail the substantive results (work in progress); the current paper is 

meant to illustrate the DD and propensity score methods, not to provide effect estimates of 

the AQC. We first describe the details of the approach and proposed method, followed by a 

simulation study to illustrate the ideas, and finally application of the methods to estimating 

the effects of the AQC.

Details of the approach

Estimand of interest

We first introduce some notation and clarify the estimand of interest. Informally, we are 

interested in the effect of an intervention or program, the “treatment” (in our motivating case 

study, the AQC), on an outcome (in the AQC example, out-of-pocket mental health 

spending) in a “post” period (following implementation of the intervention of interest), 

comparing the (potential) outcome if a group of individuals were subject to the AQC to the 

(potential) outcomes we would see if that same group of individuals were not subject to the 

AQC.

Formally, adapting notation from Abadie (2005), denote the potential outcome under 

treatment (exposure E) for individual i at time p (pre vs. post) as YE(i, p), with p=0,1 and 

E=0,1. To be specific, Y0(i,1) denotes the outcome that would be observed for individual i at 

time 1 (“post”) if she does not receive the treatment (exposure); Y1(i,1) denotes her outcome 

at time 1 if she does receive the treatment. Since at time p=0 no treatment has yet been 

applied, Y0(i, 0) and Y1(i, 0) are essentially pre-treatment covariates and generally one 

would assume that Y0(i, 0)=Y1(i, 0); that an individual’s pre-treatment “outcome” is not 

affected by their subsequent treatment assignment. We use the outcome (Y) notation for 

these values to reflect their status as a “special” covariate that reflects the baseline (pre-

period) value of the outcome of interest, and because of convention in the DD literature. 

Moving forward, for simplicity, we drop the individual argument i and write the potential 

outcomes as YE(p). Causal inference is interested in comparing outcomes under the 

treatment and comparison conditions, such as Y1(1)−Y0(1). We refine this further below, 

but for now assume that interest is in estimating the average treatment effect: 

Δ=E[Y1(1)−Y0(1)]. What has been called “the fundamental problem of causal inference” 

(Holland, 1986) is that we only observe one of these two potential outcomes for each 

individual. For people with Ei=1 we observe their potential outcome under treatment; for 

people with Ei=0 we observe their potential outcome under control.

Standard Difference-in-Differences Designs

In its simplest form, the DD design can be illustrated in a 2×2 table, with the observed data 

illustrated in Table I. The DD estimate is the quantity in the lower right hand box, which can 
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be thought of either as the change in the difference between groups across time, or the 

change across time in the difference between groups. The intuition for the DD estimate can 

be explained by thinking of the pre-post difference in outcomes for the program group as 

including both the effect of the AQC (what we want) but also any secular time trends from 

pre to post (what we don’t want). However, the pre-post difference in the comparison (non-

AQC) group gives us an estimate of those secular trends, which we can subtract off from the 

time trend observed in the treatment group comparison to isolate the effect of the AQC, 

removing (subtracting) the secular time trend. Shadish, Cook, and Campbell (2002) provide 

a nice introduction to the DD design and its properties. Classic examples employing a DD 

design include Card and Krueger (1994) and Card (1990).

For clarity later, define a variable, Group, as follows, which relates to the four cells in Table 

I:

To obtain standard errors and significance levels for the DD estimate, a parametric model is 

usually fit using a “long” dataset with each observation reflecting a person at a particular 

time point, with the model of the general form:

(1)

where Yit is the value of the outcome observed for person i at time t, Ei is an indicator of 

person i being in the Exposed (treatment) group (vs. comparison group) and P reflects the 

time period (pre (0) vs. post (1)). The parameter δ is the DD estimator; the point estimate of 

δ from this model is equivalent to a non-parametric approach that takes the difference in the 

changes over time between the two groups (the change in differences in Table I, Δ ̂). This 

model can be adapted for non-continuous outcomes or correlated error terms; for illustration 

purposes we focus on the simple continuous case here.

In its basic form, the DD model relies on an assumption that in the absence of the program 

or policy of interest, the treatment and comparison groups would have had the same trends 

across time. In other words, that the comparison group serves as a valid reflection of the 

trends over time that the treatment group would have experienced had they not been exposed 

to the program of interest. Using the potential outcome notation from above this assumption 

can be expressed as:

(A-1)

As stated above, Y0(0) is the pre-treatment value of the outcome (i.e., it is a baseline 

covariate that happens to be the same measure as the outcome of interest, just measured at 

the earlier time point), and thus its value is observed for everyone: those in the treatment 

group and in the control group (E=0 and E=1). In addition, Y0(1) is observed for the control 
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group. In contrast, however, Y0(1) is an unobserved counterfactual for individuals in the 

treatment group (E=1). This assumption represented by Equation (2) is thus not testable. 

However, as discussed below, the assumption can be made more reasonable through careful 

selection of the comparison group, and appropriate adjustment for covariates.

There are two types of selection bias that are of concern in DD studies: across time and 

across group. Selection bias across time occurs when the groups themselves change in 

composition across time. In fact, standard DD estimation as well as a newer non-parametric 

method called “changes-in-changes” (Athey & Imbens, 2006) rely on the group composition 

not systematically changing. However, changes in group composition are common with data 

that comes from repeated cross sections rather than longitudinal data on individuals. For 

example, in the AQC study, the patients being served by a particular physician practice may 

change, patients may switch physicians and thereby between treatment and control groups, 

or individuals may enroll or disenroll from their BCBSMA health plan entirely. Selection 

bias across group occurs when the groups themselves differ, for example, if the types of 

providers that choose to enter the AQC are different from and/or serve different patients 

than providers who do not. Selection bias across groups can also occur if providers 

consolidate across time, both potentially changing practice patterns as well as price 

negotiation leverage with providers. In DD contexts, the crucial aspect is if the groups differ 

with respect to variables that are also related to their trends across time (Abadie, 2005; 

Imbens & Wooldridge, 2009). That is, it is okay if the groups differ in their levels of the 

outcomes in the pre period (e.g., if the AQC and non-AQC groups have different levels of 

mental health out-of-pocket spending in the pre period). A problem would arise if their 

spending trends over time – in the absence of the AQC – were different, as this would 

violate Assumption A-1.

Current approaches for minimizing these selection biases in DD models are somewhat 

limited. Straightforward adjustment for covariates in the DD regression model does not 

generally work, although some approaches have been proposed (e.g., Abadie, 2005). To 

limit the potential for selection bias across groups, researchers try to be clever about 

selecting a comparison group that is likely to reflect the unobserved trends that the program 

group would have experienced, but this selection is often ad hoc. In the interrupted time 

series setting (which can be thought of as a DD model but with more time points), an 

approach has been developed that weights the comparison group to make the baseline trends 

similar in the program group and the (weighted) comparison group (Linden & Adams, 

2011). However, that approach is not feasible in the standard DD setting with only one pre-

period time point, and does not account for changes in group composition over time.

To limit selection bias due to changes in group composition across time, researchers can 

sometimes restrict the sample in a way that avoids this type of selection bias. In the 

motivating example, the sample could be restricted to individuals who are continuously 

enrolled for two years, i.e., present in both the “pre” and “post” years. This is not always 

feasible, however, and may result in large power losses or a loss of generalizability if there 

is high turnover from year to year. This is true in particular in studies of rare outcomes or 

when interest is in the effects of a program on a small subgroup of individuals, such as 

individuals receiving substance abuse treatment or those with serious mental illness. 
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Another example where restriction to continuously enrolled individuals is problematic is 

when studying treatments or interventions that change substantially across different ages, 

such as studying services for children with autism. Restricting to, say a four-year 

continuously enrolled sample would mean, for example, that if the children were on average 

10 years old at the beginning of the study period, they would be 14 years old on average at 

the end. This change in the age distribution over time may lead to difficulties in interpreting 

any changes in services received over that same time period as being due to any policy 

change versus simply due to the aging of the sample.

Propensity score methods

Propensity score methods are commonly used to minimize selection bias in non-

experimental studies. First introduced by Rosenbaum and Rubin (1983), propensity scores 

are used to “balance” program and comparison groups on a set of baseline characteristics; 

i.e., to make the groups as similar as possible with respect to those observed baseline 

characteristics. The propensity score itself is defined as the probability of receiving the 

program of interest as a function of those covariates, and is commonly estimated using 

logistic regression. Common ways of using the propensity score to balance the groups 

include matching, weighting, and subclassification (Stuart, 2010). There are arguably three 

main benefits of using the propensity score. First, using these propensity score approaches 

reduces extrapolation and subsequent dependence on the outcome model specification (Ho 

et al., 2007), leading to more robust inferences. Second, the propensity scores condense the 

full set of covariates (potentially a large number) into a scalar summary, making those 

balancing approaches more feasible. And finally, the propensity score process is done 

without use of the outcome variable, thereby separating the “design” of the study from the 

“analysis,” and thus reducing the potential for bias (Rosenbaum, 2010; Rubin, 2007).

Propensity score methods have traditionally been used with two treatment groups, but there 

has been some work extending to multiple groups. Imai and van Dyk (2004) and Imbens 

(2000) formalized the “generalized propensity score” for multilevel treatments and 

McCaffrey et al. (2013) extended weighting methods to multiple treatment groups.

Integration of propensity scores and DD models

We propose the use of multiple group propensity score weighting in the context of 

parametric DD models. In particular, we propose the use of weighted regression models, 

where the estimated effects are obtained using a parametric model such as in Equation (1), 

but with a weighted regression, where observations are weighted to ensure similarity on 

some observed characteristics. This is similar to Inverse Probability of Treatment Weighting 

(IPTW) and its extension to multiple treatments in McCaffrey et al. (2013), but in the DD 

context the “groups” to be weighted reflect both treatment status as well as time (pre vs. 

post). Given concern about potential changes in group composition over time, we first refine 

the estimand of interest, clarifying that we are interested in the effect of the program on the 

individuals in Group 1: those who are untreated at time 0 but subsequently become treated at 

time 1. Denoting “Group” by G, we can denote this estimand as 

ΔG=1=EX|G=1E[Y1(1)−Y0(1)|X=x].
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In particular, we propose a weighting strategy that will weight the 4 groups (treatment pre, 

treatment post, comparison pre, comparison post) to be similar on a set of key 

characteristics; this can be thought of as weighting each of the four cells in Table I to reflect 

the covariate distribution in the treatment group during the pre period, thus removing biases 

due to differences in covariate distributions between the four groups in Table I. Importantly, 

this approach does not require longitudinal data on individuals; rather, it can be 

implemented with data from repeated cross-sections.

In this setting, the propensity score is defined as the probability of being in Group 1 (versus 

Groups 2, 3, or 4). To estimate the propensity scores, fit a multinomial logistic regression 

predicting Group as a function of a set of observed covariates X. Each individual will have 

four resulting propensity scores, ek(Xi): the probability of being in Group k, for k=1 to 4. 

(Note that these four will sum to one for each individual). The weights are then created in 

such a way that each of the four groups is weighted to be similar to Group 1, the treatment 

group in the pre period. This is accomplished using the following weight for individual i:

(2)

where g refers to the group that individual i was actually in. Thus, individuals in Group 1 

will receive a weight of 1, while individuals in other groups receive a weight that is 

proportional to the probability of their being in Group 1 relative to the probability of their 

being in the group they were actually in.

To think through how this approach works, we can decompose the estimand of interest, 

using the assumptions detailed below, and denoting the observed outcome as Y:

The second of these terms is observed (from Group 1); the other 3 can be estimated from the 

observed data, by reweighting Groups 2 (the first term), 3 (the fourth term), and 4 (the third 

term) to reflect the covariate distribution of Group 1. In particular, using the weights wi 

defined in Equation (2), standard propensity score theorems (Rosenbaum & Rubin, 1983), 

and the assumptions detailed below a consistent estimate of each of the four terms can be 

obtained using:

(3)
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Thus, by fitting a weighted parametric model such as Equation (1) but using weights defined 

in Equation (2), we can obtain a consistent estimate of the treatment effect of interest, even 

in the presence of selection bias due to observed covariates across the four groups. See 

McCaffrey et al. (2013) for a similar idea applied in a somewhat different context and 

Appendix A.1 of Lechner (2011) for a formal proof.

This approach relies on three primary assumptions:

Propensity score overlap (common support/positivity):

(A-2)

(A-3)

(A-4)

Assumption (A-2) assumes that all individuals have a positive probability of being in each 

of the four groups. Assumption (A-3) can be thought of as a slight relaxation of Assumption 

(A-1) above; it assumes that membership in the treatment group is not related to the trend 

over time that would be observed under the control condition, conditional on the observed 

covariates X. Assumption (A-4) formalizes the premise that the covariates X are truly 

covariates, in that they are not affected by the treatment (Lechner, 2011). A final assumption 

is the standard causal inference assumption of the Stable Unit Treatment Value Assumption 

(SUTVA; Rubin, 1977), which assumes that each individual’s potential outcomes are not 

affected by the treatment assignments of any other subjects, and that there is only one 

“version” of the treatment and one “version” of the control.

To provide additional intuition for these weights, individuals who look very similar to those 

in Group 1, and very different from the individuals in their own group, will receive higher 

weights; those who look dissimilar from those in Group 1, and more similar to individuals in 

their own group, will receive lower weights since they are somewhat over-represented when 

trying to represent Group 1. These weights are very similar in spirit to Inverse Probability of 

Treatment Weights (IPTW), which weight each individual by the inverse probability of 

being in the group they are in (one over the probability of being treated for the treatment 

group; one over the probability of being control for the control group; Lunceford and 

Davidian, 2004). The difference is that IPTW weights weight each sample (treatment and 

control) up to the combined sample of treated and control groups, whereas in our application 

we weight each group to Group 1.

As illustrated further below in the simulation study, another strategy could be to estimate 

separate propensity score models at each time point, weighting the treatment group to the 

control group at each time point. While this accounts for differences between treatment 

groups at each time point, it does not account for changes that may happen in each group 

(treatment and control) over time; the four-group weighting adjusts for those temporal 

changes in case-mix within each group in addition to the differences between groups.
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There are two important points to make here about the four-group weighting. First, to avoid 

“post treatment bias” (Rosenbaum, 1984), it is important not to balance on (weight by) any 

variables that may have been affected by the program. For example, if the program leads 

physician practices to change their patient pool pre to post, for example, by enrolling 

healthier patients only, then balancing on health status would condition away part of the 

treatment effect. It is important to only balance characteristics that are likely not affected by 

the program of interest. In the AQC example, where limited covariates are available in any 

case, we balance on age, sex, co-occurring substance abuse, and a risk score, under the 

assumption that practices were unlikely to change their patient pool as a result of the AQC 

(and based on empirical evidence that there was little change in the risk score over time; 

Song et al., 2012). Another way to think about this in the context of the AQC evaluation is 

that we do not want patient case mix changes to be part of the “AQC effect” on spending or 

quality. The goal of the AQC is to lower costs and improve quality by changing the way 

care is delivered and financed, not by a physician group simply attracting healthier enrollees. 

So by adjusting for these variables associated with case mix, we can essentially “net out” 

case mix changes from impact estimates, in the absence of the ability to use a continuously 

enrolled sample.

Second, the choice of group to weight to is not necessarily straightforward. In the procedure 

detailed above, we chose to weight to the treatment “pre” group. In the AQC example this 

asks the question “What is the effect of the AQC on mental health out-of-pocket costs as 

compared to usual practice, among those individuals who were in physician’s practices in 

the year before those practices entered the AQC?” Another possibility would have been to 

weight to the combined AQC and non-AQC groups in the pre period, which would ask a 

slightly different question: “What is the effect of the AQC on mental health out-of-pocket 

spending as compared to usual practice, among all individuals served by this health plan in 

the pre period?” This could be done by modifying the weights such that the numerator 

would be the probability of being in Group 1 or 2; see McCaffrey et al. (2013) for a 

discussion of a similar strategy in an analogous setting with multiple treatment groups.

Simulation study

We now present a small motivating simulation study to illustrate the setting and approach. 

Consider a setting with 500 individuals in each group (treatment and comparison, pre and 

post) and a single normally distributed covariate X. (Of course the real benefits of 

propensity scores come in with multiple covariates but to illustrate concepts we use a single 

covariate here). We do not assume longitudinal measures on the same individuals; rather we 

have repeated cross-sections from the treatment and control groups.

Assume the following simple model for the “outcome” Y (which includes pre-treatment 

measures of the outcome variable), expressed as a function of Treatment (exposure) E, Pre/

Post status P, and the covariate X:

(4)
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We compare six methods of estimating the effect of the treatment on the outcome Y, among 

the individuals in the treatment group in the pre period (ΔG=1; the estimand of interest 

defined above):

1. A simple naïve DD model: Y = α + βEE + βPP + βEPEP + u,u ~ N(0,1), where the 

estimate of βEP is taken as the DD estimate.

2. A DD model that also includes the covariate X: Y = α + βEE + βPP + βEPEP + βXX 

+ u,u ~ N(0,1), where the estimate of βEP is again taken as the DD estimate

3. A weighted version of the outcome regression model in Approach (1), with 

propensity score weights estimated separately at each time point.

4. A weighted version of the outcome regression model in Approach (2), with 

propensity score weights estimated separately at each time point.

5. A weighted version of the outcome regression model in Approach (1), with the four 

group propensity score-based weights defined in the previous section.

6. A weighted version of the outcome regression model in Approach (2), with the four 

group propensity score-based weights defined in the previous section.

For each method we calculate the bias in estimating ΔG=1, as well as the actual confidence 

interval coverage of nominal 95% confidence intervals. Note that the outcome DD models 

themselves are inherently misspecified, in particular leaving out some interaction terms. 

However, they reflect the common models that would be run, without knowledge of the true 

model specified in Equation (4). If the outcome model (the DD model) were correctly 

specified then it would yield unbiased effect estimates, without need for the propensity score 

approach.

We consider four simulation settings that vary in how the four groups differ in the covariate 

X: one where the groups differ at baseline but do not change in composition over time, one 

where they do not differ at baseline but change in composition in different ways, and two 

with both complications. The size of these differences are described in Table II, and are on 

the order of .2–.3 standard deviations, which reflect moderate-size covariate imbalances 

across groups (Stuart, 2010). The other parameters are set at βE = .3,βP = .1,βX = .2,βEP = .

1,βEX = .1,βPX = .2,βEPX = .15, although their particular values do not especially matter for 

the general conclusions presented here.

Table III presents the simulation results for bias and confidence interval coverage, 

respectively. In Setting 1 all six models work well, because there is no selection bias across 

groups or across time. However, with any type of selection bias (across group or across 

time) the performance of the naïve method degrades. The naïve DD models lead to higher 

bias and lower confidence interval coverage than the propensity score weighted models, 

particularly when the groups change in composition over time. Approaches (3) and (4), 

which fit separate propensity score models at each time point, thus equating treatment and 

control at each time point (but not across time), perform relatively well in terms of 

confidence interval coverage across all four settings, but have higher bias than the four 

group weighting approach when the treatment and control group composition changes over 
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time (Settings 3 and 4), and even when there is just a difference at baseline (Setting 2). The 

four group propensity score weighting eliminates the covariate differences across the four 

groups in all four settings (details not shown, but the covariate means are in fact equal across 

groups after weighting) and thus leads to accurate effect estimates in all settings considered. 

With different values for the regression coefficients in Model (4) the exact size of the bias 

and under-coverage of the naïve DD models varies, however the story remains the same—

that simple regression adjustment for X does not suffice, while the four-group propensity 

score weighting approach we consider yields unbiased effect estimates with good coverage 

rates.

Application to the Alternative Quality Contract

Payment and delivery system reforms are being considered by many payers to address 

longstanding concerns about health care spending growth and to improve the efficiency and 

quality of care. Global budget contracts, which compensate providers through a risk-

adjusted prospective payment for all primary and specialty care for a defined population in a 

set period, gives providers flexibility in allocating resources. When combined with 

performance incentives (such as quality metrics), global payment holds providers 

accountable for both the quality and the costs of care. The Alternative Quality Contract 

(AQC) was one such initiative launched by Blue Cross Blue Shield of Massachusetts 

(BCBSMA) in 2009. The AQC combines global payment with performance incentives in a 

way that resembles the Pioneer accountable care organization (ACO) models authorized 

under the Affordable Care Act, although the two programs also differ on several dimensions. 

Implementation of the AQC model was associated with lower medical spending as measured 

by claims submitted by providers (driven primarily by shifting outpatient facility care to 

providers with lower fees, but also by lower utilization starting in year 2) and improved 

ambulatory care quality in its initial phase, particularly among organizations that had 

previously been paid only by fee-for-service (FFS; Song et al., 2012). However, no 

information is available on how this model affected care for mental illnesses, which often go 

undetected or undertreated in primary care and for which care across the primary and 

specialty care sectors is often poorly coordinated under existing financing approaches 

(Edlund et al., 2004).

By 2011, 12 provider organizations caring for approximately 430,000 enrollees were 

covered under the AQC contract. AQC enrollees are largely BCBSMA health maintenance 

organization (HMO) members, all of whom designated a primary care physician (PCP) 

affiliated with an AQC provider organization. AQC provider organizations include large 

physician-hospital organizations and umbrella organizations combining smaller independent 

practices.

In this paper we are interested in estimating the effects of the AQC on mental health care 

spending, and in particular the out-of-pocket expenditures borne by patients. This paper 

focuses on the enrollees who were served by physician groups that entered the AQC in the 

second year (2010); companion papers will consider multiple AQC cohorts. The sample 

consists of individuals 18 – 64 years old who were enrolled in BCBSMA for all 12 months 

of either 2009 or 2010, and who received at least one mental health service. An enrollee is 
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considered to be in the Treatment (AQC) group if her primary care provider belongs to an 

organization that entered the AQC in 2010. In fact, there were two types of AQC 

organizations: those that did bear risk for mental health and substance abuse treatment 

spending in their risk contracts with BCBSMA, and those that did not. For the illustrative 

study here, we combine the two into one “AQC” group. The comparison group consists of 

patients served by primary care providers whose organizations did not enter the AQC by the 

end of 2010. We observe a “pre” (2009) and “post” (2010) time point for both the treatment 

and comparison groups, thus making this a typical DD design. The total sample sizes in each 

group, as well as basic descriptive statistics, are presented in Table IV.

A challenge in estimating the effects of the AQC is that patient panels change over time due 

to changes in insurance coverage or changes in affiliations of primary care providers. Thus, 

the treatment and comparison groups are defined as the groups of patients served by AQC or 

non-AQC providers in a given year; those individual patients may change, and we do not 

necessarily have two-year longitudinal data on individuals. As discussed above, one 

alternative would be to restrict attention to individuals who are continuously enrolled over 

the two-year time frame. However, that approach becomes less feasible when there is 

interest in small subgroups (such as individuals with more severe mental health conditions 

or those with mental health and co-occurring substance use disorders) or in longer time 

periods (e.g., if interest is in the longer-term effects of the AQC). We thus use the four-

group propensity score weighting approach described above to adjust for differences both 

across the types of patients served by AQC and non-AQC providers as well as for possible 

case-mix changes in both groups over time (from 2009 to 2010). In part due to limited 

characteristics available in the data, but also because of the concerns described above about 

not adjusting for “post-treatment” variables, in the propensity score models we adjust for 

age group, sex, co-morbid substance abuse disorder, and a risk score calculated by 

BCBSMA from current-year diagnoses, claims and demographic information using the 

diagnostic-cost-group (DxCG) scoring system (Verisk Health), which is similar to the 

Medicare Advantage plan risk adjustment approach (Pope et al., 2004). It was thought 

unlikely that the case mix of enrollees served by providers with respect to these 

characteristics would change as a result of the AQC and thus it would be safe to include 

them in the propensity score adjustment. Empirical analyses also indicated little change in 

the risk score as a result of the AQC (Song et al., 2012).

Table IV presents descriptive statistics on the four groups of interest. We see that the 

enrollees in AQC organizations had slightly higher risk scores than non-AQC enrollees and 

were slightly younger. There were also some changes in group composition across time, 

with more younger enrollees in both groups (AQC and non-AQC), and particularly in the 

non-AQC group. A common metric indicating group similarity is the standardized 

difference in means, defined as the difference in means of the covariate divided by the 

(unweighted) standard deviation (Stuart, 2010). Columns 5–7 and 8–10 show the 

unweighted and weighted standardized differences in means, respectively, for each covariate 

when comparing each of the groups to Group 1 (the AQC enrollees in the pre period; our 

target population). A common standard in the propensity score literature more generally is 

that a standardized difference in means greater than 0.1 or 0.2 represents a substantial 

difference between groups, such that standard regression adjustment for that covariate may 
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be unreliable (Stuart, 2010). A few of the unweighted standardized differences in means rise 

to this level, particularly when comparing the non-AQC group in the post period to the AQC 

group in the pre period. However, the weighting was fully successful in removing these 

covariate differences, as indicated by the weighted standardized differences in means equal 

to 0. Figure 1 shows boxplots of the standardized differences in means for each of the 

covariates as well as all of the two-way interactions between covariates, and indicates that 

excellent balance (very small standardized differences in means) on all of these variables 

and interactions was obtained for all three comparisons (2 vs. 1, 3 vs. 1, and 4 vs. 1) 

following the weighting. Although extreme weights can be a problem with inverse 

weighting approaches, the distribution of weights is reasonable in this data, without extreme 

outliers, and with minimum and maximum weights across all groups of 0.03 and 2.64, 

respectively.

The effects of the AQC on out of pocket expenditures are shown in Table V, for both 

unweighted and propensity score-weighted models. Because approximately 25% of 

individuals had no out of pocket costs we fit a two-part model that first models the 

probability of having any out-of-pocket costs, and then, conditional on costs being greater 

than 0, models log(costs) (Buntin & Zaslavsky, 2004). (The log transformation is used to 

make the distribution of costs more normally distributed). As seen by the coefficients on the 

AQC by post interaction term, there is no evidence that the AQC increased the probability of 

having out-of-pocket costs whether or not an individual had some nor the level of those 

costs on average if an individual had some, in either the unweighted or weighted models. 

We chose to examine out-of-pocket spending as an illustrative outcome; in practice, we 

would expect the ACQ to affect total spending among enrollees with mental health 

conditions but not enrollee out-of-pocket spending since the intent of this innovation is to 

lower spending by changing how providers practice medicine rather than by simply shifting 

costs from the health plan to consumers. Comparing the standard errors and confidence 

intervals there is a slight price paid in variance from using the propensity score weights: 

looking at the coefficient on the AQC by post interaction, the standard errors when using the 

weights are 35% and 67% larger than the standard errors from unweighted models for any 

OOP costs and log(costs), respectively. However, as illustrated in the simulations, the bias 

should be lower in the weighted models, thus indicating a bias-variance tradeoff.

Conclusions

This paper has introduced the use of four group propensity score weighting in DD models as 

a way to control for confounding due to observed covariates that differ either across groups 

in the pre period, or even over time due to changes in group composition. The method 

weights each of the four groups to be similar to some common group, such as the treatment 

group in the pre period. Using simulation we saw that the four group weighting approach 

can accurately recover treatment effects, and in an applied example it successfully balanced 

the four groups with respect to observed baseline characteristics. Although in our motivating 

example the unweighted and weighted outcome regression models yielded similar 

conclusions, this would not necessarily always be the case.
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A key assumption underlying the four group propensity score weighting is that the changes 

in group composition over time are not affected by the program of interest. In the motivating 

example care was taken to only balance on covariates believed to be unaffected by the AQC. 

A second key assumption is that, given the observed covariates, the trends across time seen 

in the control group reflect the trends the treatment group would have experienced in the 

absence of the treatment. The propensity score reweighting proposed here allows for 

adjustment due to observed covariates, but cannot account for potential unobserved 

differences that would lead to different trends. In addition, a potential drawback of the 

proposed weighting approach is increased standard errors; this is the common bias-variance 

trade-off, where the goal is to obtain less biased effect estimates, but it may be at the cost of 

increased variance. This is a particular concern if there are extreme weights, and thus the 

distribution of weights should be checked for outliers.

Future work should further investigate these methods and alternative approaches. For 

example, Werner et al. (2009) used a propensity score matching approach to adjust for 

changing case mix in a DD-type model, but where the matching was done across time 

(matching pre to post), separately within the treatment and control groups. Similarly, Song 

et al. (2012) fit separate propensity score models for each time point, equating the treatment 

and control groups at each time point. That strategy may be particularly appealing when in a 

difference-indifference type framework with a treatment group and a comparison group, but 

where there are more than two time periods available (also known as a comparative 

interrupted time series design). The approach proposed in this paper has the advantage of 

simultaneously adjusting both across time and group, equating the four groups. However, 

future work should further investigate the benefits and drawbacks of this four group 

weighting in comparison to other approaches, including in more general settings.

In conclusion, both DD models and propensity scores are seen as strong non-experimental 

study design options when randomization is not feasible. However, by combining them we 

may be able to make even more robust inferences, taking advantage of the important study 

design elements of both.
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Figure 1. 
Boxplots of absolute standardized differences in means of each covariate and all two-way 

interactions between covariates, for the three comparisons of interest. “Unwtd.” reflects 

standardized differences before propensity score weighting; “Wtd.” reflects standardized 

differences after the four-group propensity score weighting.
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Table I

Illustrative DD design (observed data)

Treatment Group
(AQC)

Comparison Group
(non-AQC)

Difference

Pre ӯ1,pre ӯ0,pre ӯ1,pre−ӯ0,pre

Post ӯ1,post ӯ0,post ӯ1,post−ӯ0,post

Change ӯ1,post−ӯ1,pre ӯ0,post−ӯ0,pre Δ̂ = (ӯ1,post−ӯ1,pre)−(ӯ0,post−ӯ0,pre) = (ӯ1,pre−ӯ0,pre)−(ӯ1,post−ӯ0,post)
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Table II

Simulation settings

Setting Label Covariate
difference at

baseline

Change in
× in

control
group

Change in
×in

treatment
group

1 No Diff 0 0 0

2 Group Diff 0.3 0 0

3 Group and Time Diff 0.3 0.2 0.2

4 Group by Time Diff 0.3 0.1 −0.2
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Table V

Effects of the AQC on out of pocket (OOP) costs. 95% confidence interval in square brackets. Standard error 

in parentheses.

Intercept AQC Post AQC*Post

Unweighted

  Any OOP costs 1.10 *** [1.08, 
1.11] (0.0071)

0.38 *** [0.33, 0.43] (0.025) −0.17 *** 

[−0.19,−0.15] 
(0.010)

0.043 [−0.025, 0.111] (0.034)

  log(costs) if costs > 0 4.40 *** 

[4.39,4.41] 
(0.0046)

−0.012 [−0.040,0.016] (0.014) 0.070 *** 

[0.057,0.083] 
(0.0066)

0.024 [−0.016,0.064] (0.020)

Weighted

  Any OOP costs 1.38 *** 

[1.33,1.43] (0.023)
0.098 *** [0.03,0.16] (0.033) −0.057 * 

[−0.12,0.01] (0.032)
−0.019 [−0.10,0.07] (0.046)

  log(costs) if costs > 0 4.42 *** 

[4.41,4.43] 
(0.0062)

−0.027 *** [−0.044,−0.0096] 
(0.0087)

0.083 *** 

[0.065,0.101] 
(0.0088)

0.014 [−0.010,0.038] (0.012)

*/**/***
p-value < .05/.01/.001
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