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ABSTRACT

Four design tool procedures are examined to create improved neural network architectures for

forecasting runoff from a small catchment. Different algorithms are used to remove nodes and

connections so as to produce an optimised forecasting model, thereby reducing computational

expense without loss in performance. The results also highlight issues in selecting analytical

methods to compare outputs from different forecasting procedures.
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INTRODUCTION

Neural networks have been applied to a variety of hydro-

logical forecasting tasks. They include the use of back-

propagation networks to model synthetic rainfall-runoff

data (Minns & Hall 1996), the use of self-organizing

maps for data sub-division to facilitate integrated multi-

network modelling (Abrahart & See 1998), and the

adoption of neural network solutions as embedded

functions within stand-alone programs and traditional

program code (Abrahart 1998). Despite significant compu-

tational and methodological advances, fundamental

problems remain in the selection of optimal network

architectures.

There are no strict rules governing the design of a

neural network. More complex problems generally require

a more complex solution. When there are many free

parameters, the network will be slower to train and more

susceptible to overfitting. Factors such as the number of

inputs, the number of hidden nodes, and their arrange-

ment into layers, are often determined using systematic

‘trial and error’ (Fischer & Gopal 1994) or based on

reasonable but subjective opinion (Cheng & Noguchi

1996). Testing for optimum inputs and architectures can be

a time-consuming process, and the end result may be

neither informative nor convincing.

This paper reports the results of some computational

experiments using automated neural network design

tools. The experiments were designed to investigate the

power, modelling possibilities and application potential

associated with computer-based algorithms to:

• find a more suitable network architecture;

• reduce computational overheads;

• improve generalisation capabilities;

• locate non-essential inputs and provide evidence of

input relevance.

The forecasting application was a ‘one-step-ahead predic-

tion’ of river flow records. Four network model-building

strategies were implemented. The first used standard pro-

cedures to create a set of neural network models. The second

and third were similar but incorporated simple pruning algor-

ithms to create more efficient architectures. The fourth em-

ployed a genetic algorithm package to breed optimised neural

network solutions based on random mutation and survival of

the fittest. The initial network architecture and 6 hour his-

torical predictive record had earlier been found sufficient for

experimental modelling (Abrahart & Kneale 1997).

The study catchment was the upper River Wye, Wales

(Figure 1). This basin covers an area of 10.55 km2,
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elevations range from 350–700 m, and average annual

rainfall is 2,500 mm. Previous hydrological modelling of

this catchment includes Beven et al. (1984), Bathurst

(1986) and Quinn & Beven (1993). Data for the Cefn

Brwyn gauging station (number 55008) comprised rainfall

(RAIN), potential evapotranspiration (PET), and river

flow ordinates (FLOW) on a 1 hour time step. The data

were processed into 23 variables: two annual hour-counts

(CLOCK), transformed into their sine and cosine equiva-

lents, RAIN t, RAIN t-1 to t-6, PET t, PET t-1 to t-6, FLOW

t-1 to t-6, and FLOW t. All variables were normalised,

between zero and one, then split into annual data sets:

1984, 1985 and 1986. Flow values are reported here in

normalised flow units (nfu).

METHODS

Initial network architecture

The starting point for each investigation was a two-

hidden-layer feed-forward network with a 22:16:14:1

architecture. All between-layer connections were

enforced and no cross-layer connections were permitted

(Figure 2). The input nodes correspond to sin[CLOCK],

cos[CLOCK], current and previous RAIN [t, t-1 to t-6],

current and previous PET [t, t-1 to t-6], and the FLOW

ordinates [t-1 to t-6]. The output node was for current

FLOW [t].

Optimisation methods

Two methodologies were examined.

1. Pruning algorithms that remove inconsequential

links or nodes. Two procedures were investigated:

magnitude-based pruning, which eliminates

unwanted links; and skeletonization, which

eliminates unwanted nodes.

2. Genetic algorithms that manipulate links and nodes

according to the principles of evolution. This

allowed deletion of links and nodes, replacement of

deleted items, and the addition of new ones.

Training and testing

Stuttgart Neural Network Simulator (SNNS) was used to

perform the basic neural network modelling operations. It

also implemented both pruning algorithms. Training was

based on enhanced backpropagation (BPROP). The initial

22:16:14:1 network was trained on one annual data set

and then tested with the other two. This operation was

repeated for each of the three data sets and an optimal

solution, for each model-building scenario, selected.

Statistical and graphical analysis of the preferred neural

network solutions followed. Multiple training and testing

with data from three different time periods facilitated

several informative comparisons: 1984 was a drought

year; 1985 had a few intermediate events; and 1986

contained a higher proportion of major flood occurrences.

Three standard training runs were undertaken to pro-

vide a benchmark. Each annual data set was used to train

the initial network. Low rates of learning and momentum

were used throughout. Sum-squared error statistics were

computed at 100 epoch intervals and translated into a

combined graph from which the best overall modelling

solution for each annual data set could be selected. Each

optimal model was selected at that point where the error

associated with one or other of the two validation data sets

began to increase in a continuous manner and with no

subsequent fallback (Figure 3). With magnitude-based

Figure 1 | Upper Wye Catchment (after Beven et al. 1984).
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pruning after each period of 100 epochs the five lowest

weighted connections were deleted. With skeletonization

after each period of 100 epochs the node that produced

the least overall change in the global sum squared error

statistic, when omitted, was deleted. Both elimination

procedures were run until the network could no longer

function and the best solution selected from an inspection

of the training graphs.

ENZO is a genetic algorithm (GA) tool adapted for

use with SNNS. All global optimisation procedures must

balance the level of exploration and the level of exploita-

tion, because full exploration is computation-expensive,

and the exploitation of additional derived information

carries the risk of becoming trapped in a poor local

minimum. Evolution-based algorithms avoid becoming

trapped in local minima by using a parallel search process.

This procedure is, however, biased towards exploitation

because the fittest ‘parents’ are selected to create future

generations. GA tools are problem independent, and

therefore neglect vital problem knowledge, such as

gradient information relating to the solution surface. So

the use of a pure evolution-based GA should at best

produce modest results compared with those that can

exploit additional factors. But a neural network is also

capable of moving down the solution gradient, so the

application of a hybrid evolution-based method will allow

us to restrict the search space to a set of local optima.

Hence each network was also trained. The batch-learning

algorithm Resilient Propagation (RPROP) provided a fast

mechanism that was suitable for training many networks.

The starting pattern of hidden nodes was based on random

selection and weak connections were deleted on a regular

basis. Training stopped when the mean error was

0.0005 nfu or when 100 epochs had been reached. The

total number of neural network models that were gener-

ated and evaluated in this manner was 2,400. Each

Figure 2 | Initial network architecture for all models. Each layer has been folded in half to produce a more compact diagram.
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solution was constructed from one annual data set and

fitness evaluated with another. Low mutation probabilities

were maintained throughout.

RESULTS

Tables 1 and 2 summarise the architectural results for each

different procedure. Both pruning algorithms reduced the

original network architecture (Table 1). Marked differences

were created in the number and distribution of nodes. The

input layer saw the greatest variation (3–15). The total

number of connections in each solution ranged from 64 to

258, with mixed relationships between the number of nodes

in each layer and the total number of connections. Magni-

tude based pruning maintained several input links (Figure

4). The most recent past river flow value (FLOW t-1) had the

most connections. These three networks maintained several

input links with current rainfall (RAIN t). The situation for

other input links associated with earlier FLOW and RAIN

data is less clear-cut and there is some degree of variation

from network to network—although the 1984 model had

more RAIN and FLOW links. Models built with 1985 and

1986 data had no input connections with CLOCK or PET,

while the 1984 network maintained minor links with both.

Skeletonization created networks with similar or fewer in-

puts but more connections (Figure 5). In all cases, several

links were maintained with FLOW t-1 and t-2. The 1985 and

1986 models have various links with FLOW t-3 to t-6,

whereas the 1984 model does not. The models for 1985 and

1986 maintained links with current rainfall (RAIN t), 1986

also with RAIN t-1. The 1984 and 1985 models have links to

CLOCK, and the 1986 model has links with past PET values.

The GA-RPROP combination also produced extensive

reductions in network architecture (Table 2). The most

striking result is that the fittest networks all contained a

full set of input nodes. Some input node mutation

occurred but these features were not passed on to subse-

quent generations. It is unclear whether this is the result of

low mutation probabilities, improved fitness performance

from multiple inputs, or a spurious artefact associated

with the training programme and node insertion pro-

cedure. Both hidden layers experienced a massive

reduction in the number of hidden nodes, ranging from

2 to 12 in the first hidden layer, and from 2 to 5 in the

second. The total number of connections varied from 49 to

269. There also appeared to be no explicit relation

between the number of nodes in each layer and the total

number of connections. These experiments are more diffi-

cult to interpret, and input relevance must be determined

from an examination of the connection patterns.

Statistical interpretation

Because there was no definitive test to evaluate the

success of each forecast a multi-criteria assessment was

Figure 3 | Selection of optimal networks based on standard procedures using (a) 1984

(b) 1985 and (c) 1986 training data. Each vertical line indicates the chosen

model.
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carried out. Eight global evaluation statistics were applied

to each output:

• minimum and maximum: the largest negative error

(under-prediction) and largest positive error

(over-prediction);

• Standard Error of the Estimate (SEE);

• Sum-Squared Error (SSE);

• Higher-Order Error Function (S4E): to examine the

model fit at peak flows, error values were raised to the

fourth power and summed (Blackie & Eeles 1985);

• Mean Absolute Error (MAE): this is a global average

where all deviations from the original data, positive

or negative, are treated on an equal basis. Variations

in sample size are accounted for and the statistic is

not weighted towards high flow events.

• Root Mean Squared Error (RMSE)

• Coefficient Of Efficiency (COE)

Table 1 | Number of components in optimal pruned networks [percentage of original].

BPROP
training data

Number of
nodes in input

layer

Number of
nodes in 1st
hidden layer

Number of
nodes in 2nd
hidden layer

Total number
of connections

Initial network — 2 16 14 590

Magnitude based pruning 1984 15 [68.2] 14 [87.5] 8 [57.1] 104 [17.6]

Magnitude based pruning 1985 9 [40.9] 13 [81.3] 7 [50.0] 65 [11.0]

Magnitude based pruning 1986 8 [36.4] 13 [81.3] 6 [42.9] 64 [10.8]

Skeletonization 1984 3 [13.6] 11 [68.8] 9 [64.3] 141 [23.9]

Skeletonization 1985 8 [36.4] 13 [81.3] 11 [78.6] 258 [43.7]

Skeletonization 1986 9 [40.9] 9 [56.3] 11 [78.6] 191 [32.4]

Table 2 | Number of components in fittest genetic algorithm networks [percentage of original].

GA fitness
evaluation
data

RPROP
training data

Number of
nodes in input

layer

Number of
nodes in 1st
hidden layer

Number of
nodes in 2nd
hidden layer

Total number
of connections

Initial network — 22 16 14 590

1984 1985 22 [100] 6 [37.5] 4 [28.6] 150 [25.4]

1986 22 [100] 8 [50.0] 5 [35.7] 119 [20.2]

1985 1984 22 [100] 8 [50.0] 2 [14.3] 116 [19.7]

1986 22 [100] 12 [75.0] 5 [35.7] 269 [45.6]

1986 1984 22 [100] 7 [43.8] 4 [28.6] 117 [19.8]

1985 22 [100] 2 [12.5] 2 [14.3] 49 [8.3]

107 Robert J. Abrahart et al. | Optimised neural network rainfall-runoff modelling Journal of Hydroinformatics | 01.2 | 1999

Downloaded from http://iwaponline.com/jh/article-pdf/1/2/103/392026/103.pdf
by guest
on 20 August 2022



Figure 4 | Selected optimal network architectures from magnitude-based pruning using

(a) 1984 (b) 1985 and (c) 1986 testing data.

Figure 5 | Selected optimal network architectures from skeletonization using (a) 1984

(b) 1985 and (c) 1986 testing data.
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The results (Tables 3 and 4) show no one best overall

solution. The best result in each table is shaded. Compar-

ing the pattern of best performing statistics revealed the

following.

1. All models produced good results. The overall level

of prediction is similar, with no strong evidence of

overfitting, which validates the selection method.

2. There is no outright statistical winner. Different

models appear to have different qualities; so in all

cases the criteria for selection must be determined

according to the application, and the use of

alternative objective functions should be considered,

e.g. specific to reservoir management, flood

forecasting, or habitat preservation purposes.

3. The different training sets contained different types

or amounts of information, which produced different

levels of generalisation, for each situation. This will

have strong repercussions on the use of individual

modelling solutions built for one period and then

applied to another.

The level of variation for each data set, exhibited between

the different neural network solutions, was also investi-

gated. High levels of variation reflect marked differences

in the test statistic, which is indicative of dissimilar gener-

alisation or poor modelling capabilities. This might be

applicable on an annual basis, on a localised event basis,

or on a combination of both. Table 5 compares between-

model variation measured using the Coefficient of Deter-

mination (standard deviation expressed as a percentage of

the mean).

Hydrograph interpretation

Plots of actual and predicted flows were inspected for bias

in network performance. This is vital because it is possible

to get significant statistical relationships on long time

series, where the low flows are modelled accurately, but

high flows are wrong. These plots were also used to check

for a consistent temporal response. It was anticipated, for

example, that there could be greater errors in forecasts

involving winter snowmelt, which are rare occurrences in

the training data.

Figure 6 shows hydrographs for three 50 hour periods

in 1986. These illustrate (a) low flow, (b) medium flow and

(c) high flow events. The three periods are discontinuous

but occurred in the same hydrological season. The fore-

casting models were those that produced the best overall

performance in the model building exercise.

DISCUSSION

Pruning algorithms and genetic algorithms provided

multiple solutions of a similar, but not identical, nature.

The simpler architectures were effective and this research

has produced evidence to show which inputs were the

most influential. The trial and error element is reduced.

Despite producing reasonable results, major variation

in network complexities existed. This is both of scientific

interest and a possible cause for concern. With no consist-

ent outcome, it is possible to deduce that no optimal

solution exists, and that what appear to be improved

architectural solutions are in fact manifestations of a

random sampling process with no real meaning in the

arrangement of the network nodes and weights. However,

it is also possible to conclude that the exact intricacies of

the architecture are not that important, which in turn

suggests that less effort should be expended on searching

for an optimal solution when, for most practical purposes,

a simple sub-optimal solution would be sufficient for

forecasting and much quicker to obtain. More radical and

extensive analytical experimentation, coupled with more

detailed internal inspection of the final models, is required

to test this hypothesis.

Statistical assessment showed no ‘winning’ solution.

The magnitude-based pruning model trained on 1985 data

was the overall leader, in terms of collective performance.

The best genetic model was built from a combination of

1986 (training) and 1984 (fitness evaluation) data. This

successful use of the 1984 data is controversial because

these data are known to be ‘information poor’ and, all

other things being equal, should therefore have given the

weakest performance. In Table 5, high values for a particu-

lar method indicate variable results. S4E, in all but one

instance, exhibited the greatest degree of variation, which
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Table 3 | Statistical evaluation of optimal network forecasting based on (a) 1984, (b) 1985 and (c) 1986 data. Best results obtained from independent validation data shaded.

Network trained with
standard procedures

Network trained with
magnitude based pruning

Network trained with
skeletonization

(a) BPROP training data BPROP training data BPROP training data

1984 1985 1986 1984 1985 1986 1984 1985 1986

Min. − 0.0276 − 0.1212 − 0.2800 − 0.0251 − 0.0958 − 0.0780 − 0.3021 − 0.0574 − 0.0694

Max. 0.0232 0.2748 0.3073 0.0244 0.2113 0.2798 0.1063 0.1518 0.1529

SEE 0.0022 0.0096 0.0108 0.0020 0.0073 0.0091 0.0079 0.0073 0.0090

SSE 0.0431 0.8393 1.0244 0.0345 0.4924 0.7760 0.5617 0.4938 0.7300

S4E 0.0000 0.0154 0.0257 0.0000 0.0057 0.0137 0.0100 0.0022 0.0032

RMSE 0.0022 0.0098 0.0108 0.0020 0.0075 0.0094 0.0080 0.0075 0.0091

MAE 0.0016 0.0047 0.0041 0.0013 0.0039 0.0046 0.0044 0.0043 0.0059

% COE 99.75 95.04 93.75 99.80 97.17 95.53 96.63 97.17 95.69

(b) BPROP training data BPROP training data BPROP training data

1984 1985 1986 1984 1985 1986 1984 1985 1986

Min. − 0.2998 − 0.17660 − 0.1299 − 0.2327 − 0.1713 − 0.1435 − 0.2298 − 0.1919 − 0.1621

Max. 0.0949 0.1250 0.2482 0.1978 0.1727 0.2424 0.1812 0.1322 0.1792

SEE 0.0153 0.0062 0.0072 0.0098 0.0069 0.0069 0.0096 0.0075 0.0078

SSE 2.1447 0.3345 0.4516 0.8526 0.4234 0.4205 0.8098 0.4933 0.5347

S4E 0.0355 0.0021 0.0068 0.0098 0.0032 0.0054 0.0101 0.0036 0.0042

MAE 0.0088 0.0030 0.0027 0.0048 0.0032 0.0031 0.0041 0.0035 0.0043

RMSE 0.0157 0.0062 0.0072 0.0099 0.0070 0.0069 0.0096 0.0075 0.0078

% COE 88.33 98.09 97.44 95.18 97.59 97.65 95.39 97.19 96.95

(c) BPROP training data BPROP training data BPROP training data

1984 1985 1986 1984 1985 1986 1984 1985 1986

Min. − 0.4307 − 0.3703 − 0.1740 − 0.2534 − 0.3148 − 0.1885 − 0.3238 − 0.3139 − 0.1946

Max. 0.1031 0.1408 0.1127 0.1940 0.1583 0.1839 0.1674 0.1866 0.2165

SEE 0.0218 0.0120 0.0068 0.0135 0.0118 0.0093 0.0152 0.0126 0.0104

SSE 4.2554 1.2682 0.4129 1.5940 1.2254 0.7818 2.0234 1.3978 0.9414

S4E 0.1892 0.0435 0.0028 0.0253 0.0275 0.0092 0.0569 0.0316 0.0114

MAE 0.0096 0.0043 0.0027 0.0056 0.0043 0.0039 0.0055 0.0048 0.0050

RMSE 0.0220 0.0120 0.0069 0.0135 0.0118 0.0095 0.0152 0.0126 0.0104

% COE 90.35 97.06 99.05 96.32 97.16 98.23 95.32 96.76 97.82
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Table 4 | Statistical evaluation of fittest network forecasting based on (a) 1984, (b) 1985 and (c) 1986 data. Best results obtained from non-fitness-

evaluation data shaded.

GA fitness evaluation data

1984 1985 1986

(a) RPROP training data RPROP training data RPROP training data

1985 1986 1984 1986 1984 1985

Min. − 0.3319 − 0.0740 − 0.2717 − 0.1797 − 0.4381 − 0.3800

Max. 0.2466 0.2538 0.1431 0.2167 0.0989 0.1567

SEE 0.0154 0.0165 0.0175 0.0154 0.0158 0.0142

SSE 2.1328 2.4306 3.9664 2.0891 2.3532 1.8277

S4E 0.0419 0.0451 0.0236 0.0145 0.1073 0.0564

MAE 0.0106 0.0025 0.0168 0.0010 0.0094 0.0086

RMSE 0.0156 0.0167 0.0213 0.0155 0.0164 0.0145

% COE 87.28 85.41 83.54 87.23 86.57 89.15

(b) RPROP training data RPROP training data RPROP training data

1985 1986 1984 1986 1984 1985

Min. − 0.5087 − 0.2534 − 0.4460 − 0.2472 − 0.6106 − 0.5540

Max. 0.1267 0.1761 0.1421 0.1605 0.1034 0.1462

SEE 0.0173 0.0124 0.0276 0.0145 0.0246 0.0195

SSE 2.6134 1.3399 6.8210 1.8493 5.3159 3.3369

S4E 0.1779 0.0159 0.2078 0.0193 0.4621 0.2722

MAE 0.0078 0.0067 0.0190 0.008 0.0123 0.0084

RMSE 0.0173 0.0124 0.0279 0.0145 0.0246 0.0195

% COE 85.08 92.36 61.98 89.50 69.77 80.94

(c) RPROP training data RPROP training data RPROP training data

1985 1986 1984 1986 1984 1985

Min. − 0.6847 − 0.4238 − 0.6684 − 0.3692 − 0.7737 − 0.7122

Max. 0.1419 0.1738 0.1581 0.1702 0.1035 0.1572

SEE 0.0350 0.0199 0.0359 0.0236 0.0433 0.0381

SSE 10.7149 3.4832 11.6565 4.9099 16.4931 12.7187

S4E 2.1035 0.1782 1.3823 0.1922 4.1816 2.7851

MAE 0.0114 0.0084 0.0189 0.0106 0.0143 0.0117

RMSE 0.0350 0.0199 0.0365 0.0237 0.0434 0.0381

% COE 75.21 91.93 73.82 88.71 61.89 70.58
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is interesting because it is this statistic that places particu-

lar emphasis on the model fit at peak flows. This means

that it is the fit of the various neural network models to

such phenomena that exhibits the greatest level of vari-

ation across the numerous different solutions. Percentage

COE produced the least amount of variation per test data

set. It was therefore unable to offer sufficient differen-

tiation between the numerous neural network models.

Some important between-method comparisons can also

be made for various statistical measures related to each

annual data set. In various instances, marked similarities

can also be observed between the results obtained from

testing with 1985 and 1986 data, and marked differences

likewise observed between these two results and those

obtained for 1984, the drought year.

The three hydrographs, Figure 6 a–c, contain a wealth

of additional information about the underlying func-

tions. Most low flow situations have been modelled well.

Pruning and genetic algorithms produced similar, accu-

rate results that are sufficient for this section of the sol-

ution surface. But the genetic model still generates a

noticeable number of underpredictions at low flow levels,

and when the level of flow is falling. Small to medium

events are also modelled in an acceptable manner, but

there are problems in the timing and magnitude of peak

predictions. Pruning generates greater peak flow errors

and these predictions are all late. The genetic model is

better in medium event situations. The high flow event

illustrates the principal differences between these models.

Table 5 | Coefficient of determination (%).

Standard procedure and pruning experiments Genetic algorithm experiments

Test data 1984 1985 1986 1984 1985 1986

Min. 87.84 27.45 31.03 48.12 35.30 27.52

Max. 62.67 29.45 23.28 33.59 17.87 17.08

SEE 43.45 32.65 33.42 7.05 30.38 27.52

SSE 61.14 78.43 72.41 31.01 59.85 49.25

S4E 102.14 115.35 129.13 67.98 87.12 86.33

MAE 38.17 44.82 37.39 70.81 43.80 29.04

RMSE 43.14 33.65 33.68 14.45 30.75 27.55

% COE 2.10 3.17 2.62 2.20 14.79 14.72

Figure 6 | Three 50 hour hydrograph plots taken from Autumn/Winter 1986: actual flows

(solid line); best performing pruning model predictions (solid line with circles);

and best performing genetic algorithm model predictions (solid line with

triangles).
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Pruning was the better of the two with reasonable timing

but poor level prediction. The genetic model seriously un-

derpredicted peak flow. These observations confirm the

statistical results. Low flow and limited change situations

are modelled quite well. Peak flow event forecasts could be

improved, and considerable variation exists between the

different modelling solutions and the manner in which

these items are modelled. It must be remembered that

direct comparison between the pruned and genetic models

is limited because one model was produced from a desire

to create an optimal solution, whereas the other model was

produced from a desire to create an optimal architecture

based on a fixed level of error. The question remains as to

what extent these various differences in output can be

attributed to differences in the method of model creation.

For example, did the use of a batch update procedure and a

fixed stopping condition prevent the genetic model from

producing more accurate high flow prediction? Questions

of this nature are the subject of further research.

In these studies, development overheads and appli-

cation run times were not considered to be the most

important issue. Inclusion of the pruning algorithms did

not make a significant difference to the overall modelling

process although the genetic algorithm investigations did

take somewhat longer to run. To provide a more objective

assessment, computational performance-related evalu-

ation criteria will be established in the next stage of this

research. These criteria will consider whether or not the

additional computational effort associated with the imple-

mentation of pruning algorithms and genetic algorithms is

worthwhile, given that improvement in prediction was at

best slight, and in certain instances prediction was worse.

These measures would also need to discriminate between

the extra time that is taken to develop a less complicated

architecture and the benefits of faster simpler neural net-

work solutions. The tools and algorithms in these initial

investigations were applied to a simple function and

resulted in massive architectural savings. It is therefore

anticipated that the application of these automated

model-building procedures to larger and more compli-

cated problems will generate parsimonious solutions, with

a lower computational burden, which could be orders of

magnitude faster. Faster solutions would be important for

bootstrapping statistical population distributions and

producing confidence limits, or where the modelling sol-

ution is applied to large data sets for long periods of time,

for example in the prediction of detailed surface impacts

related to global warming.

Placing a reduced a priori knowledge-based starting

point on the modelling solution was considered inappro-

priate for the purposes of this research. Instead, the initial

architecture that was adopted comprised a large network

that had been used in previous empirical experimentation

and which was thought to contain numerous redundant

components. This initial structure also had full connec-

tion, which is the prevalent default condition, with all

nodes in each layer being connected to all nodes in the

adjacent layers. So removal of superfluous connections

would also demonstrate that the standard setup is often a

sub-optimal solution with non-essential items that handi-

cap computational performance. More efficient starting

points might be obtained using structures based on first

principles but this would also create an imposed solution,

that might not exist within the data set, or be supported to

a great extent, or could be at an inappropriate level of

generalisation for transfer to other data sets. Moreover,

pruning algorithms require an excess from which items

can be removed over time, and with the genetic package it

is important to have a broad set of starting conditions in

order to search for optimal solutions in all regions of the

solution space. It would, however, be possible in the latter

case to perform a limited amount of pre-training and thus

generate a semi-trained starting point from which a fitter

initial population could then be created. This procedure

would help to speed up the convergence process and the

software provides for various options. The science of

neural network hydrological modelling is still new and

with information gained from greater experience on net-

work behaviour and architectures it might nevertheless be

feasible at some later date to relate the starting con-

ditions to match a specified hydrological problem, e.g.

using information gained from saliency analysis.

CONCLUSIONS

From a hydrological perspective these experiments

showed that simple neural network models can be
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produced and evaluated using automated techniques. Sev-

eral thousand models were created and tested using batch

programs and overnight runs, a cost–benefit advantage for

model development and application times. Acceptable

results were produced from a limited number of input

measurements. These experiments also showed that the

procedures effectively fused different types of data from

various sources for different temporal periods. Many

hydrological models focus on peak flow prediction. The

neural network approach offers a complete hydrological

modelling solution, and provides excellent low flow pre-

dictors. This has potential advantages for water resource

applications in drought regions, reservoir management in

drought periods, and river balance planning and supply

operations.

Iterative learning was extended in this research to

create a more complex procedure that focused on the

progressive removal of ‘unimportant components’ in a

destructive cycle of training and pruning. Network

reconstruction sequences and fitness testing were

then investigated within an automated model-building

environment. In some cases the evidence suggests that a

more suitable network architecture, with improved gener-

alisation capabilities, was found. In all cases there was a

substantial reduction in the network architecture, produc-

ing simpler neural network models, with fewer compu-

tational overheads. The removal of non-essential inputs,

another characteristic of the pruned networks, has

clear implications for data collection and information

processing times.

These experiments also highlighted the fact that there

is still no reliable scoring system that overcomes the

difficulties of measuring peaks and troughs, or performs

event-based separation of appropriate statistical descrip-

tors. Heterogeneous evaluation, with appropriate weight-

ings based on specific end-user requirements, offers one

possible method to achieve this goal. But the potential

application of all such subjective approaches must be

examined in a rigorous and comprehensive manner. There

is also a pressing need for the creation of dedicated

software programs that can perform multi-criteria assess-

ment, perhaps in an interactive manner, and with direct

links to a data analysis toolbox.
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