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Abstract

We describe our efforts on using Python, a powerful intepreted language for the signal processing and

visualization needs of a neuroscience project. We use a Python-based approach to put together complex

data processing and advanced visualization techniques into a coherent framework.

1 Introduction

An ever-increasing number of scientific studies are generating larger, more complex, and multi-modal

datasets. This results in data analysis tasks becoming more demanding. To help tackle these new chal-

lenges, more disciplines now need to incorporate advanced visualization techniques into their standard data

processing and analysis methods. While many systems have been developed to allow scientists to explore,

analyze, and visualize their data, many of these solutions are domain specific, limiting their scope as general

processing tools. One way to enhance their flexibility is to built on top of an interpreted language.

The Python programming language [9] provides a development environment suitable to both compu-

tational and visualization tasks. One of the key advantages of Python is that packages can be used to

extend the language to provide advanced capabilities such as array and matrix manipulation [5], image

processing [12], digital signal processing [5], and visualization [7]. Several popular data exploration and

visualization tools have been built in Python, including VisIt (www.llnl.gov/visit), Paraview (www.paraview.org),

CDAT (esg.llnl.gov/cdat) and VisTrails (www.vistrails.org). In our work, we use VisTrails; however, nearly any

Python-enabled application would be capable of producing similar results.

A Neuroscience Example

The field of Neuroscience often uses both multi-modal data as well as computationally complex algorithms

to analyze data collected from participants in a study. Here we investigate a study in which Magnetic

Resonance Imaging (MRI) is combined with Electroencephalography (EEG) to examine working memory.

The MRI provides a three-dimensional depiction of the structure of the brain and presents a natural spatial

organization for the EEG sensors. EEG data is collected from 64 sensors placed on the scalp. These sensors

measure the voltages at the scalp generated by brain activity.

Working memory is generally thought of as the neural assemblies governing short-term retention of in-

formation and the integration of this data into the executive decision making process. It has been shown that

brain activity regarding working memory is spectrally and spatially organized [10]. Specifically, working

memory performance can be assessed by measuring changes to the energy densities, phase relationships,

and frequency shifts in the alpha band of frequencies (7–13 Hz), located in the dorsal-lateral pre-frontal
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Figure 1: (Top) A plot of a single sensor’s raw data trace. (Bottom) The S-Transformed representation of the

sensor’s raw data. Since this visualization shows all representable frequencies at each timestep, this view

allows the time series’ frequency evolution to be analyzed.

cortex. To analyze the temporal and spectral organization of working memory, advanced signal process-

ing techniques are employed to transform the time series gathered from EEG sensors in specific locations

into Fourier-based representations. As the sensor locations are known, spatial representations of various

EEG-based quantities are implied, but difficult to see.

The use of MRI data with the known EEG sensor locations highlights spatial relationships between the

sensors and the brain activity they measure. During more complex analysis, MRI data is often used to de-

termine participant-specific finite element meshes for use in solving the inverse problem, assigning scalar

values to the cortical surface based on data collected at sensor locations more robustly than interpolation

schemes. Solving the inverse problem in this way is useful for tasks such as source localization for epilep-

togenic regions of the brain. Fortunately, for determining spatial relationships between active brain regions

and EEG sensors, radial basis function interpolation has proven to be a good approximation [4]. Regardless

of the method by which scalars are mapped from discrete point locations to a surface representation, data

collected from different acquisition methods must be fused into a coherent representation. However, for this

type of data fusion to be performed, the MRI data must first be registered with the EEG sensor locations.

Furthermore, segmentation of the MRI to extract the brain surface onto which scalar values derived from

the EEG will be mapped must be performed.

The study discussed here culminates in a visualization depicting the spectral power at the alpha band

of frequencies (7–13Hz) across the entire cortical surface. Additionally, the time-frequency representation

for each sensor’s data must be selectable to provide details when queried. This task requires the use of

signal processing techniques to decompose the EEG data, image processing techniques to segment the brain

surface from the MRI, interpolation techniques to approximate the brain surface activity responsible for the

EEG data, as well as 1-, 2-, and 3-D rendering techniques for the presentation of the data.
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Figure 2: Registering sensor locations with MRI-based data reveals the spatial relationships between the

EEG sensors and the structures evident in the MRI volume.

2 EEG Signal Processing

In order to process EEG data for interpretation and further analysis, Fourier-based transforms can be used

to determine spectral properties of brain activity. Determining how spectral properties change over time is

important to the study of working memory. The need for these techniques stems from the assessment of

working memory performance through the change in specific spectral properties of the EEG signals mea-

sured at the scalp. When working memory is tasked, alpha-band power increases while simultaneously

shifting to slightly higher frequencies. Fast Fourier Transforms (FFTs), various filters, and some wavelet

implementations are distributed with the Scipy Python package to help accomplish this goal. FFT computa-

tion is fast within Scipy as it makes use of the FFTW libraries [2]. However, standard FFTs are not adequate

when analyzing the evolution of spectral content over time.

When examining the temporal aspects of a time series’ frequency-based representations, several dif-

ferent transformations are applicable. One time frequency decomposition, Short-Time Fourier Transforms

(STFTs) use time windows to examine spectral evolution. STFTs suffer from a uniform packing of the time-

frequency space. Alternatively, wavelet-based approaches use an adaptive resolution scheme to pack the

time-frequency space, but lack a direct mapping from scale to frequency. On the other hand, the Stockwell

Transform [8] uses an adaptive resolution scheme similar to Wavelet Transforms, but still maintains a direct

mapping to the frequency domain. Figure 1 shows the results of a Stockwell transform representing the

energy density between 1 and 250 Hz during the course of an experiment.

We have chosen to use Stockwell Transforms throughout our analysis. Since other time-frequency

representations can be used to analyze this dataset, the processing pipeline must be easily changeable to

accomodate different Fourier-based decompositions. This type of flexibility is important when exploring

not just time series data, but the different data products resulting from processing and analysis. Using
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Figure 3: Registering sensor locations with MRI-based data reveals the spatial relationships between the

EEG sensors and the structures present in the MRI volume.

Python as the underlying framework for data analysis provides an easy way of changing analyses on-the-fly

using a range of implementations from user-created specifications to robust, compiled libraries.

Unfortunately, Stockwell Transforms are computationally intensive and compiled languages generally

perform better than interpreted languages in this situation. To accelerate the computation of the transform,

it was implemented in optimized C (available at http://kurage.nimh.nih.gov/meglab/Meg/Stockwell). This small C li-

brary is made accessible to Python by the use of compiled bindings. Using compiled Python bindings allows

methods written in C or C++ to be usable by Python. These bindings can also be generated in Python directly

using the ctypes package (http://docs.python.org/library/ctypes.html). Wrapping methods with Python bindings al-

lows code execution to be performed in faster compiled languages lending additional speed to Python-based

applications. This execution method makes computationally intense algorithms tractible inside an inter-

preted language environment.

3 Volume Segmentation and Registration

Once EEG data is processed and analyzed, structural information must be extracted from the MRI volume

collected. Segmentation of such volumes is a difficult task, best suited for specialty libraries and algo-

rithms [11]. We have employed the Insight Toolkit (ITK) [12] to extract the brain area from the MRI data.

ITK is a collection of image processing algorithms implemented in C++ that provide volumetric opera-

tions from smoothing to segmentation. As with many other libraries, ITK is distributed with a collection of

Python bindings. In the case of ITK, this is done automatically by Kitware’s CableSwig, which provides a

mechanism to wrap highly templated C++ libraries for use with Python. Without CableSwig, the templated

nature of ITK would generate an unnecessarily large number of bindings, complicating its use in Python.

We are using ITK here because we need to segment the MRI volume. To simplify this procedure,

we decided to use the automatic cortical extraction method of Prastawa et al. [6]. After segmentation,
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Figure 4: Data processing and visualization performed in Python results in interactive viusalizations of

multi-modal data. Here we see alpha-band activity (7–13 Hz) in the frontal regions of the brain (left).

Specific time-frequency representations are determined by the user-driven selection of EEG sensors (right).

This is consistant with known patterns described in literature [3].

an iso-surface of the cortex was extracted to augment the MRI visualization by embedding the surface in a

traditional volume rendering. Figure 2 shows the result of this automatic segmentation. Spatial relationships

between different structures are revealed by combining the clipped MRI volume with the extracted cortical

surface.

Visualizations of this nature make it easier to analyse the data. In particular, correlations between spatial

relationships of brain structures and brain activity measured by EEG are highlighted by this type of multi-

modal visualization. One way spatial relationships are visualized is through the use of topographic maps

(topomaps). This method uses a surrogate representation of the scalp and places values on it based on the

EEG data collected. Figure 5 shows two timesteps in the experiment, but does not take into account the three

dimensional nature of the MRI data. By registering the MRI volume, cortical surface, and sensor locations

provided by the EEG manufacturer, a cohesive representation of the entire dataset is formed respecting the

individual structures measured by the MRI. Figure 3 shows the dataset after the 3D registration of the MRI

volume and sensor locations is performed.

4 Visualization

We use the VTK library for our visualization tasks. This C++ library provides advanced visualization

capabilities to Python programs. In this way, we are able to combine volume rendering, surface rendering,

and point rendering for the MRI volume, cortical surface, and registered sensor locations, respectively.

However, additional processing must be performed to properly map scalar values onto the cortex.

We use Radial-Basis Function (RBF) interpolation that is available in SciPy to help us with this task.
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Figure 5: Topographic maps generated from EEG data projected onto a surrogate head provide some spa-

tial indications of brain activity. Here, the topomaps are colored based on average alpha power when a

participant is in a resting state (left) and during a working memory task (right). The surrogate head model

represents only data collected and interpolated onto the scalp making no attempt at mapping values to the

cortical surface.

In this way, we are able to approximate scalar values on the cortical surface given values at each sensor

location. While this method is not equivalent to a solution of the inverse problem, it provides a good estimate

of the spatial organization of brain activity. Figure 4 shows the results of applying RBF interpolation for the

average power in the alpha band of frequencies (7–13 Hz) measured at each sensor location.

VTK also provides functionality for selection and on-the-fly updates to enhance interaction. It is through

this mechanism that we are able to select individual sensors and display their unique time-frequency rep-

resentations. Instead of displaying the 2D time-frequency planes using VTK, use the Pylab plotting func-

tionality distributed with SciPy. Pylab specializes in 1- and 2-dimensional plotting techniques, and proves

to be an ideal rendering library for time-frequency data. While the left portion of Figure 4 shows 3D data

rendered using VTK, the right side uses Pylab to visualize the time-frequency planes of the selected sensors.

5 Discussion

Tools allowing rapid exploration of large and multi-modal datasets are more important than ever in scientific

research. Interpreted languages, like Python, provide a solid foundation for the development of powerful,

yet flexible data analysis and visualization tools. However, flexibility of analysis and visualization must be

combined to enhance the exploration process. Our Python system was implemented as a series of VisTrails

Python Modules [1]. The VisTrails system is a visual programming paradigm in which computational

elements are represented by drag-and-drop modules that are connected together to form programs. The

drag-and-drop system makes replacing functionally equivalent computations, such as replacing an STFT

with a Stockwell Transform, easy to do.

Providing a tool that supports flexible visualization and analysis allows scientists to draw more insightful

conclusions. Additionally, the ability to change analysis techniques enables important insights to be gained

more quickly. Using visual programming paradigms, like VisTrails, makes changing analysis techniques

easier for non-programmers, facilitating the use of the tool for insight generation.

In addition to making changes to analysis techniques easier, Python has also proven to be excellent at

combining related, yet disparate data into a single, useful representation. This data fusion is exemplified in

Figure 4 which has successfully combined structural volumetric data with processed time series data. When
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Figure 6: Rendering multiple time-steps of this data depicts the underlying neural circuit associated with

working memory. In this case, activity spreads throughout the cortex moving between the dorso-lateral pre-

frontal cortex (left), the temporal region (middle), and the parietal areas (right). This series of images taken

from an animation highlights not just the spectral and temporal organization of working memory, but also

it’s spatial coherence. Without adequate visualization techniques, the link between memory and specific

regions of the brain would be more difficult to determine.

animated, visualziations (Figure 6) show not just the activity of the brain, but how it evolves spectrally

and spatially throughout the cortex. Analysis taking spatial data into account is common in neuroscience;

however, most of these techniques respect spatial relationships by scientists selecting groups of sensors

located at specific places to focus their analysis efforts. Providing methods to neuroscientists the ability to

examine their dataset as a whole allows insightful analysis to be performed more quickly. The efficiency

gained by better utilizing visualization as a tool stems from new and unexpected behavior being identified

more easily.

6 Conclusions

We have presented a small case-study of the use of Python as a foundation for the exploration and analysis of

multi-modal data. Python’s large user community and array of libraries enhance the language by providing

new functionality useful in every aspect of data processing and management. The availablity, flexibility,

and ease of use of this language facilitates scientific endeavors from computationally intense applications to

colalborative analysis.

The Python programming language provides a strong foundation on which flexible applications are built.

Leveraging optimized C, C++, and even FORTRAN libraries through wrapping them for use in Python

allows applications to be both flexible and powerful. Additional open-source libraries supported by Python,

such at Qt (http://qt.nokia.com), provide powerful user interface capabilities for any application to use.

Python is not alone in its use of compiled libraries. Other interpreted languages also take advantage

of external libraries to overcome execution speed barriers. Probably the most notable of these languages

is MATLAB. While MATLAB and Python are largely equivalent in terms of their capabilities, Python is

open-source, making it quite an attractive solution to many applications. Applications developed in Python
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can be widely distributable, making it easier to enable collaboration between scientists at various locations.
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