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Abstract

Identifying inaccurate data has long been regarded as a signi�cant and di�cult prob-
lem in AI. In this paper, we present a new method for identifying inaccurate data on the
basis of qualitative correlations among related data. First, we introduce the de�nitions of
related data and qualitative correlations among related data. Then we put forward a new
concept called support coe�cient function (SCF ). SCF can be used to extract, represent,
and calculate qualitative correlations among related data within a dataset. We propose an
approach to determining dynamic shift intervals of inaccurate data, and an approach to
calculating possibility of identifying inaccurate data, respectively. Both of the approaches
are based on SCF . Finally we present an algorithm for identifying inaccurate data by
using qualitative correlations among related data as con�rmatory or discon�rmatory evi-
dence. We have developed a practical system for interpreting infrared spectra by applying
the method, and have fully tested the system against several hundred real spectra. The
experimental results show that the method is signi�cantly better than the conventional
methods used in many similar systems.

1. Introduction

In many problems of arti�cial intelligence, inferences are drawn on the basis of interpretation
or analysis of measured data. However, when measured data are inaccurate, interpreting
or analyzing them is very di�cult. In diagnosis or signal analysis, for example, the general

reasoning method is to compare measured data with reference values (Reiter, 1987; Shortli�e
& Buchanan, 1975). When measured data are not accurate due to noise or other unforeseen
reasons, the comparison between measured data and reference values can not lead to any
useful conclusion. A rule like \if there is a strong peak in 3000 cm�1- 3100 cm�1 on the

infrared spectrum of an unknown compound, then the unknown compound may contain at
least one benzene-ring" may work in ideal cases. However, the rule can not work in general
cases. For example, when the spectral data are inaccurate, e.g., the measured peak in 3000

cm�1- 3100 cm�1 is not a strong peak but a medium one, or a measured strong peak is
not exactly located in 3000 cm�1- 3100 cm�1 but is slightly shifted, the rule may not be
applied.

In practical problems, especially in data rich problems such as diagnosis and interpre-
tation, measured data are often inaccurate. One reason is that the measuring methods are
error-prone. For example, a patient's temperature or blood-pressure may be inaccurately
measured or entered, and a witness may inaccurately describe the features of a criminal.

The other reason is that the real data are not noise-free. For example, among the received
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signals, there may be some noise mixed up, and what is worse, infrared spectral data (peaks)
themselves may be noisy, i.e., some peaks may be a�ected by noise or other factors.

Identifying inaccurate data has long been regarded as a signi�cant and di�cult problem
in AI. Many methods have been proposed to deal with the problem. Fuzzy logic provides
a mathematical framework for representation and calculation of inaccurate data (Zadeh,

1978). By fuzzy logic, reference value x0 is associated with a fuzzy interval 4x. If a
measured data item falls into [x0 �4x; x0 +4x], then it can be identi�ed as the reference
value with a corresponding membership degree. Probability theory and possibility theory
are also widely used for handling inaccuracy and uncertainty (Dempster, 1968; Duda, Hart,

& Nilsson, 1976; Pearl, 1987; Shafer, 1976; Shortli�e & Buchanan, 1975). The above
methods are commonly used in AI systems. The way of applying them, however, depends
on the nature of domain problems, and there is not yet a standard and generally accepted

method thus far.
We present a method for identifying inaccurate data on the basis of qualitative corre-

lations among related data. The method is based on the essential consideration that some
data items within a dataset are qualitatively dependent: a set of data may describe the same
phenomenon, or refer to the same behavior. For example, a patient's temperature, blood

pressure and other symptomatic data reect the patient's disease, and a couple of peaks on
an infrared spectrum indicate the presence of a partial component. We call the dependency
among data within a dataset qualitative correlations among related data1. By considering
qualitative correlations among related data, we can obtain con�rmatory or discon�rmatory

evidence to identify inaccurate data. In general, related data should be simultaneously
present or absent, so if most of the related data have been completely identi�ed, these data
will enhance the identi�cation of the rest. For example, a benzene-ring can create many
other peaks besides the strong peak in 3000 cm�1- 3100 cm�1. All the peaks created by the

benzene-ring are related data which have qualitative correlations. If all the peaks except
that in 3000 cm�1- 3100 cm�1 have been completely identi�ed, the benzene-ring is quite
likely to be contained by the unknown compound. Therefore, the inaccurate peak around

3000 cm�1- 3100 cm�1 may still be identi�ed. In fact, spectroscopists frequently use the
following knowledge in addition to the rules given at the beginning of this section:

If there is a strong peak around 3000 cm�1- 3100 cm�1, then the spectrum may
be partially created by benzene-rings |{ check peaks around 1650 cm�1, 1550
cm�1 and 700 cm�1- 900 cm�1 to make sure because a benzene-ring may have

other peaks there at the same time.

The central idea of our method is to �nd evidence for identifying inaccurate data by

considering qualitative correlations among related data. The idea is very common in human
thinking. When all the data except blood pressure of a patient show that the patient
has a certain disease, we would naturally suspect that the blood pressure of the patient

was inaccurately entered. Similarly, when all the peaks except one indicate that a partial
component is present, we would naturally suspect that the unmatched peak was inaccurately

measured or the peak was a�ected by noise or something else. If acceptable solutions can
be made by assuming an inaccurate data item to be a reference value based on qualitative

1. Detailed de�nitions will be given later.
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correlations between the data item and its related data, the inaccurate data item may be
compensated and hence identi�ed.

Our contributions include: (1) a method which assumes an inaccurate data item to be
a certain reference value based on the qualitative correlations between the inaccurate data

item and all of its related data, (2) an algorithm which crystallizes the method, and (3) a
practical system which uses the algorithm to interpret infrared spectra.

The key point is a new concept called support coe�cient function (SCF ) for extracting,
representing, and calculating qualitative correlations among related data. When measured
data are inaccurate, the qualitative correlations among related data can provide evidence

for con�rming or discon�rming the hypothesis that the measured data are the same as the
reference values. An approach to determining dynamic shift intervals of inaccurate data,
an approach to calculating possibility of identifying inaccurate data, and an algorithm for
identifying inaccurate data are proposed on the basis of SCF , respectively.

The method requires few assumptions in advance, so it can avoid inconsistency in knowl-

edge and data bases. The method identi�es inaccurate data by considering qualitative cor-
relations among related data, so it is quite e�ective and e�cient, especially in the case
of problems where dependencies among data apparently exist. In general, qualitative cor-

relations among data can always, more or less, be extracted. In the worst case where
qualitative correlations are not known a priori, the method degenerates to a conventional
fuzzy method2.

We have developed a practical system for interpreting infrared spectra by using the
method (Zhao & Nishida, 1994). The primary task of the system is to identify unknown

compounds by interpreting their infrared spectra. We have fully tested the system against

several hundred real spectra. The experimental results show that the method is signi�cantly
better than the traditional methods used in many similar systems. The rate of correctness
(RC) and the rate of identi�cation (RI) which are two important standards for evaluating

the solutions of infrared spectrum interpretation are near 74% and 90% respectively, and
the former is the highest among known systems.

In the following sections, we �rst describe the problem of identifying inaccurate data in
Section 2. In Section 3 we give some de�nitions including the concept of support coe�cient

function (SCF ) and other concepts based on SCF . In Section 4 we introduce our method
for identifying inaccurate data by considering qualitative correlations among related data.
Section 5 demonstrates the application of the method to a knowledge-based system for

infrared spectrum identi�cation, and shows the experimental results of the system. Related

work is discussed in Section 6. Conclusions are addressed in Section 7.

2. Problem Description

In practical problems, measured data can be represented as a �nite set:

2. We refer to the fuzzy methods which use an empirical fuzzy interval for each inaccurate data item as
conventional fuzzy methods.
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MD = fd1; d2; :::; dng;

and reference values can also be represented as a �nite set:

RV = fr1; r2; :::; rNg:

Suppose interpreting or analyzing measured data is carried out on the basis of so-called
\if-then" rules in which the premises are comparisons betweenMD and RV like \if di = rj
then ...", or \if (ri 2 MD) ^ (rj 2 MD) then ...". When MD is accurate, the main
operation implied by these premises is usually to �nd a corresponding reference value from
RV for each data item in MD. However, when MD is inaccurate, the operation becomes
complicated. In this case, it is di�cult to determine which reference value an inaccurate

data item corresponds to, e.g., for some measured data no reference value may be simply
identi�ed, while for others more than one may be available.

For example, if received signals are known to be accurate, and an expected signal (refer-

ence value) can not be found from the signal series (measured data), then we can conclude
that the expected signal does not appear. However, if received signals are inaccurate, and
an expected signal can not be identi�ed from the signal series, it is hard to decide whether
the expected signal does not appear or appears but looks di�erent due to the inaccuracy.

Most currently known approaches for dealing with inaccurate data such as fuzzy logic
and probabilistic reasoning are mainly based on quantitative similarity or closeness between
measured data and reference values. In some cases, however, the identity of qualitative
features is more e�ective and reliable than quantitative similarity or closeness.

Consider signal analysis again. If an inaccurate signal has the same qualitative features
as the expected one such as the interval of frequency, the signal may still be identi�ed even
though its quantitative features are slightly di�erent from those of the expected one such

as strength etc.; conversely, an inaccurate signal may not be identi�ed if it is quantitatively
similar to an expected signal but does not have the same qualitative features as the expected
one.

We discussed the following points in Section 1, (1) some data items within a dataset are

qualitatively dependent (i.e., they are related data), (2) there are qualitative correlations

among related data, and (3) qualitative correlations among related data enable us to con�rm
or discon�rm the identity of qualitative features.

Therefore, RV and MD can be, explicitly or implicitly, divided into �nite groups on

the basis of qualitative dependencies among data, and the data in each group are related
to each other. For example, RV can be divided into R1, R2, ... and Rk:

RV = R1 [R2 [ ::: [ Rk;

where

Rj = frjl j rjl 2 RV; 1 � l � mg:

The qualitative correlations among related data in Rj include: (1) data in Rj should be

simultaneously present or absent which means that all reference values in Rj should have
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corresponding data in MD, (2) the presence of rjp may enhance the presence of rjq , and
the absence of rjp may depress the presence of rjq . Considering the qualitative correlations
among related data will lead to evidence for the identi�cation of inaccurate data.

The problem of interpreting/analyzing inaccurate data is to make qualitative hypotheses
for MD, or in other words, to �nd a subset of RV for MD, which is corresponding to MD:

IN(MD); (IN(MD) � RV ):

The problem can be briey represented as the following predicate calculus:

8di8Rj((di@Rj) ^ (Rj@MD)! Rj � IN(MD))3;

where \di@Rj" and \Rj@MD" are two essential qualitative predicates in our method which

represent that di possibly (qualitatively) belongs to Rj (i.e., ? di 2 Rj), and Rj possibly
(qualitatively) belongs to MD (i.e., ? Rj � MD), respectively. Determining \A@B" is
based on qualitative correlations among related data. The work presented in this paper

is mainly concentrated on determining \di@Rj" and \Rj@MD", and realizing the above
predicate calculus.

3. Preliminaries

Before introducing our method, we �rst put forward and explain several new concepts in

this section.

3.1 Qualitative Correlations among Related Data

De�nition 3.1 Related data: If data d1, d2, ..., and dm describe a common phenomenon,
or they refer to the same behavior simultaneously, then they can be treated as related data.

For example, a patient's temperature, blood pressure and other symptomatic data are
related data, and all the features for describing a criminal are also related data. The phe-
nomenon that some data within a dataset are related data is more apparent in engineering.
For instance, there are two types of related data in infrared spectrum interpretation as

shown in Figure 1. First, as far as a single peak is concerned, the frequency (position) fi,
strength (height) si, and width (shape) wi of the peak are related data. Second, a partial
component may create numerous peaks at the same time. If we consider all the peaks that
a partial component may create, all of these peaks are related data.

De�nition 3.2 Qualitative correlations among related data: If di and dj are two related data
items, then the presence of di enhances the presence of dj, and the absence of di depresses
the presence of dj. This kind of e�ect is called qualitative correlations among related data.

3. Conicts (overlaps) in IN(MD) should be eliminated. We will not discuss conict-resolving in this
paper, but will concentrate on the method for identifying inaccurate data, i.e., ? di@Rj and ? Rj@MD.
Interested readers may refer to the paper by Zhao (1994) for speci�c discussion concerning the problem
of conict resolution.
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Figure 1: Example of related data in spectrum interpretation

Consider the above example of spectrum interpretation again. If spectral data are in-

accurate (i.e., some measured peaks look like but are not exactly the same as reference
peaks), considering qualitative correlations among related data may lead to qualitative ev-
idence for the identi�cation of inaccurate data. For example, suppose the frequency of a
peak is slightly di�erent from the reference value, and both the strength and width of the

peak are the same as the reference values. Then the frequency of the peak may still be
identi�ed since both of its related data support it. Similarly, if peaks at low frequency sec-
tions are inaccurate, considering related peaks at high frequency sections may help identify
these peaks, and vice versa.

3.2 Support Coe�cient Function

De�nition 3.3 Support coe�cient function (SCF): If there are m � 1 data related to di,

then the support coe�cient function of di calculates the total e�ects from the related data
by considering the qualitative correlations between di and each of its related data.

Suppose �(di; dj) represents the qualitative correlation between di and dj, then the
support coe�cient function of di can be de�ned as:

SCFi = �(
mX

j=1;j 6=i

�(di; dj);m):

SCFi should directly depend on how many and how much related data support di.

When SCFi is greater than a certain value given by domain experts, the related data tend
to support di; otherwise, the related data tend to depress di.

3.3 Evidence Based on SCF

In Section 2, we used \di@Rj" to express that di can be qualitatively identi�ed from Rj.

Realizing \di@Rj" requires a de�nition of a shift interval 4 for Rj such as:
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Rj �4 = f(rjl �4) j l = 1; 2; :::;mg;

and a de�nition of the possibility of \di 2 Rj �4".

The above formula is similar to that in fuzzy logic, but contains completely di�erent

meanings. The primary di�erence is that the shift intervals are dynamically determined by
SCFi, while in fuzzy logic, the fuzzy intervals are usually provided by domain experts in
advance or calculated with quantitative criteria.

De�nition 3.4 Shift interval: Shift interval is a dynamic region for inaccurate data. Given
a standard fuzzy interval for inaccurate data, the shift interval of di varies around the
standard fuzzy interval on the basis of SCFi. When SCFi shows that the related data

support di, the shift interval of di becomes wider than the standard fuzzy interval. On the
other hand, when SCFi shows that the related data do not support di, the shift interval of
di becomes narrower than the standard fuzzy interval.

De�nition 3.5 Evidence based on SCFi: SCFi determines the shift interval of di, that is,
SCFi determines how widely di is allowed to shift. The wider the shift interval, the more
easily di is identi�ed. Therefore, SCFi provides con�rmatory or discon�rmatory evidence
for identifying di.

4. Making Qualitative Hypotheses for Inaccurate Data

In this section, we introduce and analyze our method for identifying inaccurate data. We
�rst discuss the processes of realizing two essential predicates in our method, \di@Rj" and
\Rj@MD" respectively. Then, we present an algorithm for making qualitative hypotheses

for inaccurate data (i.e., for realizing the predicate calculus described in Section 2).

4.1 Predicate \di@Rj"

When di is accurate, \di@Rj" is equal to \di 2 Rj". If there is a reference value in Rj which

corresponds to di (i.e., rjp 2 Rj and rjp = di), then di@Rj = T . If there is no reference
value corresponding to di, then di@Rj = F . When di is inaccurate, however, it is not sure
whether rjp corresponds to di. In this case, \di@Rj" means that di possibly (qualitatively)
belongs to Rj , or in other words, rjp possibly (qualitatively) corresponds to di. The value

of \di@Rj" is not T or F , but the possibility of \rjp = di" or \di 2 Rj".

We discussed in Section 2 that in some cases the identity of qualitative features is more

robust and reliable than quantitative similarity or closeness. We have also discussed that
qualitative correlations among related data can lead to evidence for the identity of qualita-
tive features in diagnosis or interpretation. So if rjp (rjp 2 Rj) is assumed to correspond to

di, and there are m�1 reference values (rj1 , rj2 , ..., rjp�1 , rjp+1 , ..., rjm) related to rjp , then
each of the m�1 reference values should correspond to a certain data item in MD, and the
m� 1 data items in MD are also related to each other. Therefore, qualitative correlations
between di and its m� 1 related data items in MD should be considered.

Our method �rst determines the possibility of \rjp = di" by calculating the similarity

or closeness between rjp and di like conventional fuzzy methods, then considers qualitative
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correlations among related data to obtain evidence for updating the possibility. When the
qualitative correlations show that the related data support \rjp = di", the possibility of
\rjp = di" will increase. When the qualitative correlations show that the related data do
not support \rjp = di", the possibility will decrease.

4.1.1 Defining Support Coefficient Function

Suppose rjq (rjq 2 Rj) corresponds to dt. Because rjq is related to rjp , dt is related to di.
As we have discussed, the qualitative correlation between di and dt means that if dt exists,

then di is enhanced; otherwise, di is depressed.

We �rst de�ne the qualitative correlation between two related data items, di and dt, as:

ci(dt) =

(
1 if dt can be found from MD which satis�es: rjq � do � dt � rjq + do
0 if dt can not be found from MD which satis�es: rjq � do � dt � rjq + do

where do is a standard fuzzy interval of inaccurate data, and ci(dt) expresses the qualitative

correlation between di and dt. ci(dt)=1 means that di is enhanced since its related data
item dt can be found from the measured dataset, and ci(dt)=0 means that di is depressed
since its related data item dt can not be found from the measured dataset. The de�nition
of ci(dt) is simply based on the consideration that if a data item is identi�ed, then the data

item will support its related data items (i.e., the coexisting data items).

As there are m reference values in Rj, we can de�ne the support coe�cient function
SCFi for di based on ci(dt) (t = 1; 2; :::;m; t 6= i):

SCFi =
1 +
Pm

t=1;t6=i ci(dt)

m

where 0 < SCFi � 1, and SCFi expresses the total qualitative correlations between di
and all of its related data. In other words, SCFi reects the support coe�cient of rjp
corresponding to di.

If m = 1, then SCFi = 1. When m > 1, SCFi is in the direct ratio to the number of

the related data which may be identi�ed from MD.

4.1.2 Determining Dynamic Shift Interval

Suppose do is a standard fuzzy interval of inaccurate data, we de�ne the dynamic shift

interval of di based on SCFi as:

4di =
(2m� 1)do

m
� SCFi

where 0 < 4di < 2do, and 4di is in the direct ratio to SCFi.

If m = 1, then SCFi = 1, and 4di = do. In other words, when qualitative correlations
among data are not known a priori, SCFi = 1 and 4di = do. In this case, the method

degenerates to a conventional fuzzy method.
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When m is �xed, the more the related data are identi�ed, the greater SCFi is, therefore
the greater 4di is. When SCFi is �xed, 4di depends on the number of related data.

Table 1 shows the relation among 4di, m and SCFi.

4di m
1 10 50 100 500 1000

1 do 1.9000do 1.9800do 1.9900do 1.9980do 1.9990do
0.8 / 1.5200do 1.5840do 1.5920do 1.5984do 1.5992do

SCFi 0.5 / 0.9500do 0.9900do 0.9950do 0.9990do 0.9995do
0.3 / 0.5700do 0.5940do 0.5970do 0.5994do 0.5997do
0.1 / 0.1900do 0.1980do 0.1990do 0.1998do 0.1999do

Table 1: Relation among 4di, m and SCFi

We can draw the following properties from the above formulas.

Property 1: With the same m, the more the related data are identi�ed, the greater SCFi

is; otherwise, the smaller SCFi is.

Property 2: With the same m, the greater the SCFi, the greater is 4di. In other words,

the more the related data support di, the more widely di is allowed to shift.

Property 3: With the same SCFi, the greater the m, the less 4di varies along with m. In

other words, the greater the number of related data, the less a single related data item can
a�ect di.

Property 2 and Property 3 are illustrated in Figure 2.

do

do2

0
m

SCFi = 1

SCFi = 0.5

SCFi = 0.3

SCFi = 0.1

d i

Figure 2: 4di versus m with di�erent SCFi

Property 4: 4di is in linear relation to SCFi. The slope is equal to, or greater than 1.5,

which means that 4di heavily depends on SCFi.
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Property 5: Along with the increase of m, the slope increases very slightly. In other
words, 4di depends on the number of the related data which support di, rather than the
total number of related data.

Property 4 and Property 5 are illustrated in Figure 3.

0 1
SCFi

0

do

do2

m=2

m=100

m=10

di

Figure 3: 4di versus SCFi with di�erent m

4.1.3 Calculating Value of Predicate \di@Rj"

The value of \di@Rj" is equal to the possibility of \rjp = di" which can be calculated by

using the following formula:

�i = 1�
j di � rjp j

4di

where �i � 1.

At a glance, the representation of �i looks like the membership degree of \rjp �4di �
di � rjp +4di" in fuzzy logic. However, the meaning is completely di�erent, for 4di is
neither provided by domain experts nor determined by quantitative similarity or closeness.

Here 4di is determined on the basis of qualitative correlations among related data. When
qualitative correlations among related data are not considered, 4di is do, and the possibility

is 1�
jdi�rjp j

do
. With the consideration of qualitative correlations, the possibility is updated.

Two new properties can be drawn from the above formula for calculating �i.

Property 6: With the same di, the greater the 4di, the greater is �i. In other words, the

wider the dynamic shift interval, the greater is the value of \di@Rj". Formally, if 4d00i�
4d0i�4di, then �00i��

0
i��i.

Property 7: SCFi provides qualitative evidence for accepting or rejecting di as rjp since

�i is in the direct ratio to 4di, and 4di is in the direct ratio to SCFi.
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Property 6 and Property 7 are illustrated in Figure 4.

1

0

ui

ui

ui

di

di

didi

rjp

Figure 4: Value of \di@Rj" versus various 4di

The above process of realizing \di@Rj" and calculating the value of \di@Rj" can be
expressed by the following procedure.

Procedure di@Rj

select rjp from Rj;

SCFi = 0;

if di = rjpf

SCFi = 1;

�i = 1;

g

elsef

for each rjl 2 Rj (l = 1; :::;m; l 6= p)f

calculate ci(dt)
4;

SCFi = SCFi + ci(dt);

g

SCFi = (1 + SCFi)=m;

4di = do � SCFi � (2m� 1)=m;

�i = 1� j di � rjp j =4di;

g

4. dt stands for the data item in MD which corresponds to rjl .
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if �i > 0
return �i;

else
return NIL

end procedure

When di can be identi�ed with a certain possibility (i.e., �i > 0), the procedure returns
T (i.e., the value of �i); otherwise, the procedure returns F .

4.2 Predicate \Rj@MD"

When MD is accurate, \Rj@MD" is equal to \Rj �MD". If all the m reference values in

Rj can be identi�ed from MD, then Rj@MD = T ; otherwise Rj@MD = F . When MD is
inaccurate, however, \Rj@MD" means that Rj is possibly (qualitatively) a subset of MD.
The value of \Rj@MD" is not T or F , but the possibility that all the reference values in

Rj can be identi�ed from MD.
If �l > 0 (l = 1; 2; :::;m), then Rj can be regarded as a subset of MD with a certain

possibility. Let s1, s2, ..., and sm be the priorities of the reference values in Rj, then the
value of \Rj@MD" can be calculated based on �1, �2, ..., and �m by using the following

formula:

Rj@MD =

Pm
l=1 sl � �lPm

l=1 sl
; sl > 0; �l > 0:

Suppose �i has been calculated by using procedure di@Rj, then the process of realizing
\Rj@MD" and calculating the value of \Rj@MD" can be expressed by a simple procedure.

Procedure Rj@MD

P = si � �i;

S = si;
for l = 1 to m (l 6= p)f

�l = dt@Rj;
if �l > 0f

P = P + sl � �l;

S = S + sl;
g
elsef

P = 0;

exit;
g

g
if P > 0

return P=S;
else

return NIL

end procedure
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When Rj can be identi�ed as a subset of MD with a certain possibility (i.e., P=S), the
procedure returns T (i.e., the value of P=S); otherwise, the procedure returns F .

4.3 Algorithm for Making Qualitative Hypotheses for Inaccurate Data

We give the following algorithm for interpreting/analyzing measured data based on pro-

cedure di@Rj and procedure Rj@MD. When measured data are not accurate, the

algorithm can identify inaccurate data items by considering qualitative correlations among
related data.

Algorithm Making-Qualitative-Hypotheses

IN(MD) = ;;

for i = 1 to n f

for j = 1 to k f

P (Rj) = 0;

if di@Rj (i:e:; Procedure di@Rj)

if Rj@MD (i:e:; Procedure Rj@MD) f

Rj ! IN(MD);

P (Rj) = Rj@MD;

g

end if

end if

g

end for

g

end for

end algorithm

In the algorithm, P (Rj) represents the value of \Rj@MD". The algorithm is actually
the realization of the predicate calculus: 8di8Rj((di@Rj) ^ (Rj@MD)! Rj � IN(MD)).

For each measured data item in fd1, d2, ..., dng, the algorithm searches fR1, R2, ...,
Rkg once. For each Rj (Rj = frj1 ; rj2 ; :::; rjmg), the algorithm checks other n� 1 measured

data items for m times, and other m�1 reference values for n times. Therefore, with blind
search, the number of operations is about (at worst): n� k� [m� (n� 1)+n� (m� 1)] =
2� k �m� n2 � k � n2 � k �m� n. Since k and m are two constants, the complexity of
the algorithm is O(n2).

5. Application to Infrared Spectrum Interpretation

We have developed a knowledge-based system for interpreting infrared spectra by applying
the proposed method, and have fully tested the system against several hundred real spectra.
The experimental results show that the proposed method is signi�cantly better than the

conventional methods used in many similar systems.
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5.1 Infrared Spectrum Interpretation

The primary task of infrared spectrum interpretation is to identify unknown objects by
interpreting their infrared spectra. In this paper, we will limit the problem to interpretation
of infrared spectra of compounds to determine composition of unknown compounds without

loss of generality.

Selecting infrared spectrum interpretation as the domain of application is out of the
following reasons:

1. Interpreting infrared spectra is a very signi�cant problem in both academic research

and industrial application. For example, in chemical science and engineering, inter-

preting infrared spectra of compounds is the most e�ective way to identify unknown
compounds, and to analyze the composition and purity of compounds (Colthup, Daly,
& Wiberley, 1990).

2. Interpreting infrared spectra is a very di�cult problem. First, spectral data are huge

in quantity, and complex in representation. Second, both symbolic reasoning and

numerical analysis are needed to interpret infrared spectral data (Puskar, Levine, &
Lowry, 1986; Sadtler, 1988).

3. Interpreting infrared spectra is a typical problem dealing with inaccurate data since

spectral data are often inaccurate. They often shift from their theoretical values due to
various reasons. For example, the following is an assertion for spectrum interpretation:

The high frequency peak of partial component PC� is located at Fi.

In practice, however, the peak of PC� may irregularly shift around Fi due to noise or

other unforeseen reasons. When the above assertion is used to identify real spectra,

uncertainty arises.

5.2 Applying the Proposed Method to Infrared Spectrum Interpretation

Interpreting infrared spectra is a special problem of diagnosis. Suppose the infrared spec-

trum of an unknown compound can be thresholded and represented as a �nite set of peaks
(i.e., the measured dataset MD):

Sp = fp1; p2; :::; png;

where every peak consists of the frequency (position) f , strength (height) s, and width
(shape) w, respectively:

pi = (fi; si; wi) i = 1; 2; :::; n:

Because fi, si and wi refer to the same peak pi, they are related data. This is the �rst

kind of related data in infrared spectrum interpretation.
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Suppose there are �nite partial components (i.e., reference values RV ):

PC = fPC1; PC2; :::; PCkg

= ffpj1 ; pj2 ; :::; pjmg j j = 1; 2; :::; kg

= ff(fjp; sjp ; wjp) j p = 1; 2; :::; mg j j = 1; 2; :::; kg.

Because fjp , sjp and wjp also refer to the same reference peak pjp , they are the �rst kind

of related data as well.
The spectroscopic knowledge for interpreting infrared spectra is usually expressed as \if

pi is equal to pjp , then pi may be created by partial component PCj". Here \pi is equal to

pjp" represents that fi, si, and wi are equal to fjp, sjp , and wjp respectively.
The �rst kind of related data has the following qualitative correlations:

1. fi, si and wi should be identi�ed simultaneously, that is,

� if fi is fjp , then si is sjp and wi is wjp , and

� if si is sjp , then fi is fjp and wi is wjp , and

� if wi is wjp , then fi is fjp and si is sjp .

2. related data support each other. For example, if both fi and si have been identi�ed,
then they will enhance the identi�cation of wi. Conversely, if fi and si have not been
identi�ed, then they will weaken the identi�cation of wi.

Our method for identifying fi, si and wi based on the qualitative correlations among
them can be formalized as the following predicate calculi, respectively:

8fi8pjp((fi@pjp) ^ (pjp@pi)! pi is created by PCj), and

8si8pjp((si@pjp) ^ (pjp@pi)! pi is created by PCj), and

8wi8pjp((wi@pjp) ^ (pjp@pi)! pi is created by PCj),

where \pi is created by PCj" means that fi, si and wi can be qualitatively identi�ed to be
fjp , sjp and wjp .

In general, each partial component may create �nite peaks at the same time. So if pi is

created by PCj, then Sp is partially created by PCj; if Sp is partially created by PCj , then
all the peaks that PCj may create should be contained by Sp simultaneously. Therefore,
all the peaks created by a partial component are also related data. This is the second kind
of related data in infrared spectrum interpretation.

The second kind of related data has the following qualitative correlations:

1. all the peaks of a partial component should be identi�ed simultaneously, that is,

if pi is pjp , then pjl 2 Sp (l = 1; 2; :::;m; l 6= p).

2. the peaks created by the same partial component support each other. For example,
if most of the peaks of a partial component have been identi�ed, these peaks will
enhance the identi�cation of the rest peaks. Conversely, if most of the peaks of a
partial component can not be identi�ed, then the identi�cation of the rest peaks will

be depressed.
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Our method for identifying related peaks based on the qualitative correlations can be
formalized as the following predicate calculus:

8pi8PCj((pi@PCj) ^ (PCj@Sp)! PCj � IN(Sp)).

5.3 System for Interpreting Infrared Spectra

Our system is implemented with C and MS-WINDOWS. Figure 5 shows the data ow
diagram of the system.

INFERENCE ENGINE

Knowledge
Base

Data
Base

PCa PCb

H

C

H

H

PCc

−C−O−C−

spectroscopic
knowledge

reference
values

input solution

IN(Sp): Interpretation of SpSp: Unknown Infrared Spectrum

Figure 5: Data ow diagram of the system

The input data of the system are infrared spectra of unknown compounds, and the
solutions are partial components that the input spectra may contain. Because inferences
are based on qualitative features of spectral data and qualitative correlations among related
data, the system can gain high correct interpretation performance with noisy spectral data.

As we mentioned before, there are two types of related data in infrared spectrum in-
terpretation: all the features of a single peak (i.e., fi, si and wi of pi), and all the peaks

of a single partial component (i.e., p1, p2, ... and pm). The inference engine of the system
employs the proposed method to both types of the related data when inaccuracy arises.

5.4 An Example

We discuss the performance of the system through the following example. Figure 6 shows

an infrared spectrum of an unknown compound. The spectrum is very hard to interpret
since the peak with an arrow (named p1) shifts substantially. Our system correctly identi�es
that p1 is created by partial component benzene-ring.

In contrast, many similar systems can not correctly identify the peak (Clerc, Pretsch,
& Zurcher, 1986; Hasenoehrl, Perkins, & Gri�ths, 1992; Wytho�, Buck, & Tomellini,
1989) since the peak of a benzene-ring at this frequency position (named pb1) should be

a strong peak (i.e., sb1 > 1:000) according to spectroscopic knowledge, not a medium one
(s1 = 0:510) as the case in this example. Systems based on conventional fuzzy methods
usually assume a fuzzy interval for each inaccurate peak, then determine the membership
degree that the inaccurate peak is in the fuzzy interval. Suppose the reference value for

a strong peak is 1:000, and the fuzzy interval for a strong peak is 0:300 (Colthup, Daly,
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& Wiberley, 1990), then only peaks with strength of 1 � 0:300 can be regarded as strong
peaks. Obviously, by conventional fuzzy methods, the possibility of p1 being a strong peak
is zero, i.e., �benzene�ring(s1) = 0.

Inferring on the basis of qualitative correlations among related data, our system makes

a correct interpretation of the spectrum. Through the following two cases, we introduce the
inference process of the system, and at the same time demonstrate the use of our method
for identifying inaccurate data.

S
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(A
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or
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0.000

1.200
6004000 Frequency(cm−1)

Figure 6: An example of infrared spectrum

5.4.1 Case I: Considering the First Kind of Related Data

Because the frequency (position) and width (shape) of p1 are both the same as those of

benzene-ring, the possibility of f1 being identi�ed as fb1 is 100% (i.e., �benzene�ring(f1) = 1),

and the possibility of w1 being identi�ed as wb1 is also 100% (i.e., �benzene�ring(w1) = 15.
As we have discussed before, f1, s1 and w1 are related data, so we can obtain con�rm

evidence for identifying s1 by considering qualitative correlations among s1, f1 and w1:

�benzene�ring(f1) = 1,

so, cs1(f1) = 1 (cs1(f1) represents the qualitative correlation between s1 and f1),

�benzene�ring(w1) = 1,

so, cs1(w1) = 1 (cs1(w1) represents the qualitative correlation between s1 and w1)

so, SCFs1 =
1+2
3 = 1, and

4s1 =
(6�1)�0:300

3 � 1 = 0:500, and

s1@pb1 = 1� 1�0:510
0:500 = 0:02.

5. ��(d) means the possibility of d being identi�ed by conventional fuzzy methods, i.e., SCF is not
considered.
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By considering SCFs1, the possibility of p1 being regarded as a strong peak of benzene-
ring increases from 0 to 0:02. As possibility, 0:02 may not be di�erent from 0:04 or 0:06, but
0:02 is signi�cantly di�erent from 0. Many near-misses may be handled by the negligible
possibility. For example, in most systems based on fuzzy and other methods (Clerc, Pretsch,

& Zurcher, 1986), it is impossible to identify p1 to be \strong" (i.e., �benzene�ring(s1) = 0),
but considering qualitative correlations among related data makes it possible although the
possibility is only 0:02.

As mentioned before, f1 and w1 are both the same as the reference values, so f1@pb1 = 1,
and w1@pb1 = 1.

Suppose the priorities of f1, s1 and w1 are 2, 1 and 1 respectively, then the possibility
of p1 being identi�ed as pb1 is:

�1 = pb1@p1 =
2� 1 + 0:02 + 1

4
= 0:755:

5.4.2 Case II: Considering the Second Kind of Related Data

The process of considering the second kind of related data is quite similar.

We have got that the possibility of p1 being created by a benzene-ring is �1 (�1 = 0:755).

Suppose the benzene-ring can create m peaks: fpb1 , pb2 , ..., pbmg, then the m peaks are
related to each other. If p1 is created by the benzene-ring, then Sp is partially created
by the benzene-ring, i.e., the benzene-ring is contained by the unknown spectrum; if Sp
is partially created by the benzene-ring, then the other m � 1 peaks of the benzene-ring

should also be identi�ed.

By using the same procedure as obtaining �1, we can get �2, �3, ... and �m as well.
According to our method, the qualitative correlation between two related peaks, pi and pj,

is de�ned as:

ci(pj) =

(
1 if �j � 0:5
0 if �j < 0:5:

So

SCFi =
1 +
Pm

j=1;j 6=i ci(pj)

m
; 0 < SCFi � 1:

Let do = 1, then

4di =
2m� 1

m
� SCFi; 0 < 4di < 2;

and

pi@benzene� ring = 1�
1� �i
4di

; pi@benzene� ring � 1:
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Roughly, when SCFi > 0:5, related peaks tend to support pi. When related peaks
support pi, 4di > 1. When 4di > 1, pi@benzene� ring > �i.

Table 2 shows the relation among pi@benzene� ring, �i and 4di.

pi@benzene� ring �i
1 0.8 0.5 0.3 0

1.3 1 0.846 0.615 0.462 0.231
1.1 1 0.818 0.545 0.364 0.091

4di 1 1 0.8 0.5 0.3 0

0.9 1 0.778 0.444 0.222 -0.111
0.7 1 0.714 0.286 0 -0.429

Table 2: Relation among pi@benzene� ring, �i and 4di

In the above example, SCF1 = 0:850, and 4d1 = 1:658, so

p1@benzene� ring = 1�
1� 0:755

1:658
= 0:852:

Therefore, the possibility of p1 being identi�ed as pb1 increases from 0:755 to 0:852 due
to qualitative correlations among related peaks. The process is similar to the probability
propagation in probabilistic reasoning. Here identifying p1 is a hypothesis, and qualitative

correlations among related data of p1 are pieces of evidence.

After all the peaks of the benzene-ring are identi�ed, the possibility that the benzene-
ring is contained by Sp can be �nally calculated by employing the same method as described
in Section 5.4.1.

5.5 Analysis of Experimental Results

We compare two methods in the experiments. The �rst method (called \AF") is a conven-
tional fuzzy method which is used by most similar systems (Clerc, Pretsch, & Zurcher, 1986;
Wytho�, Buck, & Tomellini, 1989). To use AF , each reference value must be associated

with a fuzzy interval for dealing with inaccuracy. Both reference values and fuzzy intervals
are empirically determined (Colthup, Daly, & Wiberley, 1990).

Table 3 lists some reference values and their fuzzy intervals used by AF .
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CH3 2960� 15cm�1 strong � 0:3 sharp� 1

2870� 15cm�1 strong � 0:3 sharp� 1
1450� 10cm�1 medium� 0:3 sharp� 0:5
...

benzene� ring 3055� 25cm�1 strong � 0:3 sharp� 1:5

1645� 10cm�1 medium� 0:3 sharp� 0:5
1550� 30cm�1 medium� 0:3 sharp� 1
1450� 3cm�1 medium� 0:3 sharp� 0

...
�CH2 � OH 3635� 5cm�1 strong � 0:3 broad� 1

3550� 25cm�1 strong � 0:3 sharp� 1

...

Table 3: Some reference values and their fuzzy intervals

The membership function of AF is:

�r(d) = maxf0; 1�
j d� r j

4d
g;

where d is a measured data item, r is a reference value, 4d is the fuzzy interval of r, and
0 � �r(d) � 1.

The second method (called \AF �") is the proposed method. AF � uses the same ref-

erence values and fuzzy intervals as AF , but the fuzzy intervals in AF � are only used as
standard fuzzy intervals based on which dynamic shift intervals are determined by consid-

ering qualitative correlations among related data.

AF and AF � use the same reference values and empirical fuzzy intervals. The formula
for calculating membership degrees in AF (i.e., �r(d) = maxf0; 1� jd�rj

4d
g) is also similar to

the formula for calculating possibility in AF � (i.e., �i = 1�
jdi�rjp j

4di
). However, in AF , 4d

is simply an empirical fuzzy interval, while in AF �, 4di is a dynamic shift interval based
on qualitative correlations among related data.

We have tested the system against several hundred real infrared spectra of organic
compounds. The experimental results show that AF � is signi�cantly better than AF .

Table 4 lists part of the experimental results in which the �rst column indicates the
solutions obtained by AF ; the second column indicates the solutions obtained by AF �; and

the third column shows the correct solutions.
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: identified PC set is the same as the PC set in the correct solution(in this case, RI=1)

n : identified PC set is not the same as the PC set in the correct solution(the number indicates the RI)

AF (Without SCF) AF* (With SCF) Correct Solutions

Table 4: Experimental results with AF and AF �
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There are two important standard metrics for evaluating solutions of infrared spectrum
interpretation:

De�nition 5.1 Rate of correctness (RC): the rate that the identi�ed partial component set
is exactly the same as the partial component set in the correct solutions.

De�nition 5.2 Rate of identi�cation (RI): the rate that the partial components in the

correct solutions are identi�ed.

Table 5 shows the comparison between AF and AF � with the two standard metrics.

RC (error-rate) RI (error-rate)

AF 0.455 (0.545) 0.812 (0.188)

AF � 0.736 (0.264) 0.894 (0.106)

Table 5: Evaluation of AF & AF � with RC and RI

Table 5 demonstrates that both the RC and RI increase by integrating SCF , but the

RC increases more signi�cantly. The reason is that although AF can identify most partial
components of unknown compounds, the rate that it can identify all partial components
of unknown compounds is low because there are always some partial components whose
measured peaks seriously shift from the reference values.

5.6 Comparison with Related Systems

Related systems mainly fall into the following four categories: (1) Systems based on Y/N
classi�cation, (2) Systems based on fuzzy logic, (3) Systems based on pattern recognition,
and (4) Systems based on neural networks.

5.6.1 Systems Based on Yes/No Classification

The method commonly used by spectroscopists in practice is numerical analysis (Colthup,

Daly, &Wiberley, 1990). Numerical analysis is primarily based on comparison between spec-
tral data and reference values. Reference values are usually some regions like frequency :

3615�5cm�1 or strength : 1:000�0:300. If spectral data are in certain regions, the answer
of classi�cation is yes; otherwise, the answer is no.

Most systems for interpreting infrared spectra use this method (Hasenoehrl, Perkins, &
Gri�ths, 1992; Puskar, Levine, & Lowry, 1986; Wytho�, Buck, & Tomellini, 1989). For

example, in Wytho�'s system, rules for comparing spectral data are in the following forms.

ANY PEAK(S) FREQUENCY:1700-1707 STRENGTH:0.7-1.0
WIDTH:SHARP TO BROAD

ANSWER -YES-
ACTION - ***

The advantage of these systems is that they are very easy to develop because they
can directly use spectroscopic knowledge, and do not need further computation. However,
the problem is that each of these systems is only applicable to a class of compounds, or
pure compounds because in the case of seriously inaccurate spectral data, the reference

values (regions) can not reect the inaccuracy. For example, Hasenoehrl's system is only
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for distinguishing compounds containing at least one carbonyl functionality from other
compounds, although the RI of the system is about 98% (naturally, the RC is not available),
and Puskar's system is only for identifying hazardous substances.

In fact, spectroscopists also use qualitative analysis in some speci�c cases in addition to

the formal spectroscopic knowledge, such as \if the peaks in 600 cm�1- 900 cm�1 look like
the peaks of benzene-rings, then the peaks in 3000 cm�1- 3100 cm�1 are quite likely to be
created by a benzene-ring". Unfortunately, the qualitative analysis was hardly applied to
these systems since it can not be used in usual ways. In contrast, our system can successfully

use the qualitative analysis like spectroscopists. The way of using it is the method proposed
in this paper. As a result, our system is applicable to all compounds which exhibit high
performance with respect to correctness.

5.6.2 Systems Based on Fuzzy Logic

Since spectral data are always inaccurate, and the representation of spectroscopic knowledge

is quite like that in fuzzy logic, some systems naturally use fuzzy logic or some techniques
similar to fuzzy logic (Clerc, Pretsch, & Zurcher, 1986). In these systems, fuzzy intervals
which are similar to the regions described in Section 5.6.1 are given for reference values,
and memberships of inaccurate data are calculated on the basis of the degrees that the

inaccurate data are in the fuzzy intervals. These systems are better than those described in
Section 5.6.1 in some cases, but the degrees that inaccurate data are in fuzzy intervals do
not necessarily reect the possibility of the inaccurate data being the reference values. For
example, in Figure 7, it is di�cult to determine which peak is closer to the reference value

only by considering the degrees that peak a and peak b are in the fuzzy interval.

peak a

peak b 
reference value

(fuzzy interval)

Figure 7: Two peaks in a fuzzy interval

However, by applying the method proposed in this paper, the above problem can be

easily solved. As we discussed in Section 5.6.1, in practice spectroscopists also frequently
use knowledge about correlations among peaks in addition to the formalizable spectroscopic
knowledge. This kind of knowledge is essential to our method which enables us to use
qualitative correlations among related data as evidence for the identi�cation of inaccurate

data.

We have compared the fuzzy method used by these systems with our method in Section
5.5. So far as we know, the RC of our system is the highest among the similar systems,
and the RI of our system is higher than that of most of the systems.

5.6.3 Systems Based on Pattern Recognition

Some systems use pattern recognition techniques to interpret infrared spectra (Jalsovszky &

Holly, 1988; Sadtler, 1988), of which Sadtler is the most popular commercial system. The
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system compares known patterns with unknown ones, and determines the possibility of an
unknown pattern being a known one by calculating the quantitative similarity or closeness
between the two patterns.

Unlike fuzzy techniques, pattern recognition considers a group of data (i.e., a pattern)
at the same time. However, pattern recognition is primarily based on quantitative analysis.
We have discussed that in many cases especially when the inaccuracy of spectral data is not

slight, qualitative features of spectral data are much more important than quantitative ones.
For example, Figure 8 shows two simple cases. The di�erence between the two patterns in
(a) is smaller than that in (b). From the viewpoint of Sadtler, the two patterns in (a)

are closer than those in (b). However, the two patterns in (b) may be the same in some
cases, while the two patterns in (a) may not be the same in any case. The reason is that the
qualitative features (frequency positions of peaks) of the two patterns in (a) are di�erent.

(a) (b)

difference difference
pattern 1

pattern 1

pattern 2
pattern 2

Figure 8: Quantitative di�erences between patterns

Because quantitative similarity and closeness are not always sound, most systems based
on pattern recognition including Sadtler can not give concrete solutions. In general, the

solutions of these systems are only a series of candidates from which users have to �nally

decide the possible one by themselves. It is di�cult to compare these systems with ours
because the solutions of these systems are quite loose, and neither the RC nor the RI is

available. Sadtler, for example, usually gives the list of all known patterns associated
with the values of quantitative di�erences between the unknown patterns and these known
ones.

5.6.4 Systems Based on Neural Networks

Recently, neural networks have been applied to infrared spectrum interpreting systems
(Anand, Mehrotra, Mohan, & Ranka, 1991; Robb & Munk, 1990). In Anand's system, a
neural network approach is used to analyze the presence of amino acids in protein molecules.
To this speci�c classi�cation, the RI of Anand's system is about 87%, and the RC is not

available. In Robb's system, a linear neural network model is developed for interpreting
infrared spectra. The system is for general purpose like our system. Without prior input of
spectrum-structure correlations, the RC of Robb's system is equal to 53.3%.

Although the RC and RI of our system are both higher than those of the two systems,
we still think that using neural networks is very promising, especially when model training
or system learning is a must. The research concerning applying neural networks to our

system is left for the future.
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6. Related Work and Discussion

Identifying inaccurate data has long been regarded as a signi�cant and di�cult problem in

AI. Many methods and techniques have been proposed.

Fuzzy logic provides the mathematical fundamentals of representation and calculation

of inaccurate data (Bowen, Lai, & Bahler, 1992; Negoita & Ralescu, 1987; Zadeh, 1978).
Our method is primarily based on fuzzy theory. But compared with conventional fuzzy
techniques, the advantages of our method include: (1) fuzzy intervals of inaccurate data
are dynamically determined so that dynamic information can be used; (2) fuzzy intervals

are based on qualitative features of data and qualitative correlations among related data so
that the solutions are more robust. The limitation of our method is that when qualitative
correlations among related data are not known in advance, the method degenerates to a
conventional fuzzy method. For instance, if SCF is unavailable, the two methods described

in Section 5.5 become the same.

Pattern recognition provides the techniques for interpreting measured data in group

(Jalsovszky & Holly, 1988). By pattern recognition methods, related data and connections
among data can be considered. However, there are two preconditions which must be satis�ed
for complex data analysis by pattern recognition to be successful. The �rst precondition
is that we have to obtain adequate data bases from which we can derive the patterns we

need to recognize, and the second precondition is that we have to demonstrate that there
are suitable metrics of similarity between patterns. When patterns explicitly exist, and
measured patterns are not seriously noisy (e.g., �ngerprint recognition), pattern recognition

methods are e�ective. However, if patterns are not explicit, or patterns change irregularly
which implies that there is not a stable metrics for determining the similarity between
patterns (e.g., spectrum interpretation), our method is more practical and robust.

In identifying inaccurate data, the roles of \di@Rj" and \Rj@MD" are quite similar
to the role of subjective statements or prior probabilities in other systems (Duda, Hart,
& Nilsson, 1976; Shortli�e & Buchanan, 1975). However, the essential di�erence is that

our method dynamically calculates the values of \di@Rj" and \Rj@MD" from qualitative
correlations among related data so that it does not need many assumptions beforehand,
and can avoid inconsistency in knowledge and data bases. Our method can also handle
possibility propagation among inference networks. Readers may have noticed it from the

process of considering the second kind of related data in spectrum interpretation (see Section
5.4.2).

When statistical samples are su�cient, or subjective statements can be consistently ob-
tained, probabilistic reasoning methods can be applied to inaccurate data identi�cation.
When statistical samples of inaccurate data are not enough and consistent subjective state-
ments are not available, our method is very e�ective.

Our ongoing research related to probabilistic reasoning is to consider the interaction
among identi�ed partial components. As we discussed before, spectroscopists frequently

use the knowledge such as \if C6H6 coexists with CH3, then the peaks of CH3 around
2900 cm�1 may shift", or \if -C-O-C- has been identi�ed, then the strength of the peaks of
CH3 may change". Therefore, it is possible to update the possibilities of identi�ed partial
components by considering the interaction among them. Using probabilistic reasoning to

analyze the e�ects among identi�ed partial components would not only help us identify
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inaccurate data, but also provide us with the reason why the data are inaccurate. The
research and experiments will be the subject of our sequel paper.

7. Conclusions

In this paper, we have presented a new method for identifying inaccurate data on the

basis of qualitative correlations among related data. We �rst introduced a new concept
called support coe�cient function (SCF ). Then, we proposed an approach to determining

dynamic shift intervals of inaccurate data based on SCF , and an approach to calculating
possibility of identifying inaccurate data, respectively. We also presented an algorithm
for using qualitative correlations among related data as con�rmatory or discon�rmatory
evidence for the identi�cation of inaccurate data. We have developed a practical system

for interpreting infrared spectra by applying the proposed method, and have fully tested
the system against several hundred real spectra. The experimental results show that the
proposed method is signi�cantly better than the conventional methods used in many similar

systems. In this paper we have also described the system and the experimental results.

Briey, our novel work includes:

1. A method which assumes an inaccurate data item to be a certain reference value on
the basis of qualitative correlations between the inaccurate data item and all of its

related data.

2. An algorithm which crystallizes the method.

3. A practical system which uses the algorithm to interpret infrared spectra.
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