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For operational planning it is important to provide information about the situation-depen-

dent uncertainty of a wind power forecast. Factors which influence the uncertainty of a

wind power forecast include the predictability of the actual meteorological situation, the

level of the predicted wind speed (due to the non-linearity of the power curve) and the fore-

cast horizon. With respect to the predictability of the actual meteorological situation a

number of explanatory variables are considered, some inspired by the literature.The article

contains an overview of related work within the field. An existing wind power forecasting

system (Zephyr/WPPT) is considered and it is shown how analysis of the forecast error can

be used to build a model of the quantiles of the forecast error. Only explanatory variables

or indices which are predictable are considered, whereby the model obtained can be used

for providing situation-dependent information regarding the uncertainty. Finally, the

article contains directions enabling the reader to replicate the methods and thereby extend

other forecast systems with situation-dependent information on uncertainty. Copyright ©

2005 John Wiley & Sons, Ltd.
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Introduction

In recent years a growing interest in information about the uncertainty of wind power forecasts in different

weather situations has emerged. Based on wind speed measurements and standard meteorological forecasts,

Bremnes1 estimates the power curve of a small wind farm and then models the relation between the actual and

forecasted wind speed with respect to both the mean and the covariance. Considering the same wind farm,

Bremnes2 uses local linear quantile regression to obtain a probabilistic model based on meteorological fore-

casts and on observations of power. Pinson and Kariniotakis3–5 use consecutive forecasts and, based on these,

define a quantity called the ‘meteo-risk index’. This quantity measures the agreement between the consecutive

forecasts and is used to predict the uncertainty of the wind power forecast. Lange and Heinemann6 identify

relations between typical weather situations and the magnitude of the forecast error. In a research project carried

out with Eltra (the transmission system operator (TSO) in western Denmark), Nielsen and Madsen7 have devel-

oped a stochastic model of the forecast errors when using WPPT Version 2.8 The model describes the variance

and correlation within and between the daily forecasts.

Over the last decade, much effort has been spent on developing wind power forecasting systems supplying

a point forecast of the wind power production of a farm or a region. For this reason it is desirable to be able

to extend existing point forecast systems to probabilistic forecast systems. In this article we consider forecast

errors from an existing system (WPPT Version 4)9,10 and use linear quantile regression11 together with spline
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bases12 in order to obtain a model for the 25% and the 75% quantiles of the forecast errors. The methods are

easily applicable and can be applied to any forecasting system using the free software called ‘R’ (http://www.r-

project.org) with the add-on package ‘quantreg’, which can be downloaded from the same homepage. The

meteorological forecasts used by WPPT in the particular set-up considered are the wind speed and direction

10 m above ground level (10 m a.g.l.) from DMI-HIRLAM,13 and we consider a few other forecasted variables

from DMI-HIRLAM as candidates for the quantile model. Furthermore, for each of these variables we con-

sider risk indices inspired by the meteo-risk index mentioned above. It was decided to focus on the horizons

relevant for reporting to NordPool (http://www.nordpool.com). Considering timing and calculation times, we

have therefore focused on the 06Z DMI-HIRLAM forecast for horizons 18–42 h. However, in order to be able

to calculate the risk indices for each of the meteorological variables, we consider only 18–36 h (see the begin-

ning of Risk Indices of Meteorological Variables).

The outline of the article is as follows. The data, including training and test periods, are described in section

two. The methods used in the article, i.e. quantile regression and parametric additive models, are briefly

described in section three. Also in section three it is described why we have chosen to use additive models.

Sections four and five describe the model building process and the evaluation on test data respectively. Finally,

in section six we give conclusions. In the Appendix it is outlined how the models can be fitted and visualized

and how forecasts can be produced using ‘R’.

Data

The data used in this study consist of the following.

• 15 min power averages from the Tunø Knob offshore wind farm consisting of 10 Vestas V39 turbines (500

kW nominal); location 55° 58′ 08″ N, 10° 21′ 10″ E.

• Forecasts of the wind power production of the farm based on WPPT Version 4; time step 15 min, with a

maximum horizon of 48 h.

• Meteorological forecasts of air density, friction velocity, 10 m wind speed and direction from DMI-

HIRLAM;13 time step 60 min, with a maximum horizon of 48 h.

• Data from 1 January to 31 May 2003 are used for developing and training the models. Data from 1 June to

31 October, 2003 are used to test the forecast results. Measurements of power production are available back

to 1 July 1999; these are used as a climatological reference.

Interpolation is used to obtain meteorological forecasts for all time points at which power forecasts and obser-

vations are available. It is noted that on 2 September 2003 a model change was introduced into DMI-HIRLAM

which is expected to have a large influence on the forecasted 10 m wind. Over time, WPPT will adapt to this

change and will use the meteorological forecasts in an optimal way within the framework of the system.

However, the distributional properties of the error may change permanently.

Figure 1 shows the observed power plotted against the forecasted power for the training and test data and

for the data split at 2 September 2003. The plots of the training and test data differ qualitatively. In particular,

the saturation at high levels of production occurs much more frequently in the training data than in the test

data. The other plots in the figure indicate that this could be related to the change in DMI-HIRLAM on 2 Sep-

tember 2003. For this reason the evaluation on the test data will be performed on the total test set and on the

test set split on the date just mentioned.

Methods

Quantile Regression

Considering a random variable Y, the median is the most well-known quantile and is characterized as the value

Q(1/2) for which the probabilities of obtaining values of Y above or below Q(1/2) both equal 1/2. Generally,
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Q(t) is defined as the value for which the probability of obtaining values of Y below Q(t) is t. In quantile

regression,11,14 Q(t), 0 < t < 1, is expressed as a linear combination of some known regressors and unknown

coefficients, exactly as the mean is modelled in (multiple) linear regression. Thus the t-quantile is modelled

as

(1)

where x. are the p known regressors, also called explanatory variables, and b.(t) are unknown coefficients,

depending on t, to be determined from observations (yi, xi,1, . . . , xi,p), i = 1, . . . , N.

Given the check function
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Figure 1. Observed versus forecasted power (horizons 18–36 h since 06Z) for the training and test data (top row) and
before and after a model change in DMI-HIRLAM which is expected to have a large influence on the forecasted 10 m
wind (bottom row). Note that the lengths of the training and test periods are both 5 months. Also, the two plots in the

bottom row contain the same number of points; to achieve this, a random subset of the points before the model change
is selected
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the sample t-quantile can be found by minimizing with respect to q (Reference 15, p. 417).

Figure 2 shows the check function for two values of t. Replacing q with the right-hand side of (1) leads to the

estimates

(3)

where b(t) is a vector containing the unknown coefficients. The estimates can be obtained by use of linear

programming techniques.14 Here we have used the add-on package ‘quantreg’ for ‘R’ (see section one and

Appendix). It is noted that, if the check function is replaced with squared loss, i.e. if rt(e) = e2, then equation

(3) leads to least squares estimates.

Parametric Additive Quantile Models

To simplify the discussion, we start by considering models for the mean of a random variable and later we

consider models for the quantiles. Generally, when the dependence of y on x1, . . . , xp is not known, a very

general model is

(4)

where g is an unknown function and e represents independent identically distributed errors with mean zero

and variance s2. In principle, it is possible to estimate g, e.g. by use of local regression.16 However, when

investigating many explanatory variables, i.e. more than two or three, the curse of dimensionality17 makes prac-

tical application of (4) problematic (Reference 18, pp. 83–84). To circumvent this problem, additive models18

are used in this article. Models of this type can be expressed as

(5)

The constant a and the functions f.(·) can be estimated based on data using non-parametric methods together

with backfitting.18 However, note that, unless the levels of functions are restricted, the estimates are non-unique,

e.g. a constant can be added to one function and subtracted from another. Hastie and Tibshirani18 impose the

restriction that each of the function estimates has zero mean over the data.

As described by Hastie and Tibshirani18 (Section 9.3), each of the functions can be approximated by linear

combinations of known basis functions of the corresponding explanatory variable, i.e.

(6)

where bj.(xj) are the basis functions and qj. are unknown coefficients. The resulting model, i.e. the model con-

sisting of (5) and (6), is a linear regression model. However, the price paid for the simplicity obtained by using
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Figure 2. The check function ρt (e) for τ = 0.25 (left) and 0.75 (right)



the approximation (6) is that the resulting estimates of the functions generally have larger bias than those based

on non-parametric approximations and backfitting (Reference 18, Section 9.3).

To obtain unique estimates, a restriction must be imposed on (6) and the resulting basis functions derived.

If e.g. it is required that fj(0) = 0, it follows from (6) that Plugging this qj1 into

(6) results in the expression

(7)

where the term in front of the coefficients qjk defines the nj − 1 new basis functions. Note that the basis func-

tion to be eliminated can be chosen with some freedom as long as it is non-zero for the value at which the

function fj is zero. Likewise, if some of the functions in (5) are known to be periodic, this restriction can 

be imposed on the basis functions. Using e.g. cubic B-spline basis functions,12 the functions in (5) have 

continuous derivatives up to order two. This property should also be imposed when constructing the periodic

basis. The resulting model is a linear regression model for which the least squares estimates of a and qjk are

unique.

Comparing with (1), it is seen that this can be generalized to quantile regression by modelling Q(t) as

(8)

with the basis functions constructed under appropriate restrictions on fj(·), j = 1, . . . , p, as outlined above.

In this article, focus will be on the 25% and 75% quantiles. As mentioned above, the levels of the functions

are arbitrary, e.g. fj(0) = 0. Hence the effect of xj should be quantified by plotting the sum of the correspond-

ing estimated function and the estimated intercept. To centre the plots around zero, we subtract the average of

the intercepts estimated for the 25% and 75% quantiles. Thus the effect of xj is quantified by plotting

for t = 0.25, 0.75. Otherwise, differences in â (0.25) and â (0.75) may cause apparent crossings of the 25%

and 75% quantiles. The ‘hat’ denotes estimated values.

Building the Quantile Model

In this section, models for the 25% and 75% quantiles are developed. First a model considering the explana-

tory variables

pow.fc forecasted power from WPPT (kW)

horizon number of hours since 06Z (h)

ad forecasted air density from DMI-HIRLAM (g m−3)

fv forecasted friction velocity from DMI-HIRLAM (m s−1)

wd10m forecasted wind direction 10 m a.g.l. from DMI-HIRLAM (°)

ws10m forecasted wind speed 10 m a.g.l. from DMI-HIRLAM (m s−1)

is developed. Hereafter, risk indices based on the meteorological forecast variables are considered.

Basic Model

Owing to the non-linearity of the power curve, it is natural to require that the forecasted power production

(pow.fc) is included in the quantile model of the forecast error. Figure 3 shows all pairwise scatter plots of
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the potential explanatory variables. Owing to the close relations between some of the variables (pow.fc, fv

and ws10m), it is seen that, with the requirement just stated, the friction velocity (fv) and the 10 m wind

speed (ws10m) cannot be included in the model.

For each of the remaining explanatory variables (pow.fc, horizon, ad and wd10m) a spline basis with

10 degrees of freedom is constructed.12 For the wind direction (wd10m) a periodic cubic spline basis with

equidistant knots is used. The periodic basis is constructed so that it integrates to zero over the period (360°).

For the non-periodic variables, natural spline bases without intercepts are used; this implies that the functions

are restricted to be zero at the lower boundary knot. The boundary knots are placed at the limits of the data

and the internal knots are placed according to the quantiles of the individual explanatory variables. In this way

the model allows for more flexibility where the observations are relatively dense. Note that for prediction it is

important to use the same actual knots. Since none of the bases allows for a free intercept, this is handled by

an intercept in the model. The intercept is expected to vary with the quantile considered.
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Figure 3. All pairwise scatter plots of the explanatory variables (training data)
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The resulting model for each of the quantiles (25% and 75%) is depicted in Figure 4, which shows the effect

of each variable. For each pair of estimates the difference in estimated intercepts is visible for the minimal

value of the explanatory variable. It is seen that the effect of horizon is small (almost flat curves) and there is

some increased uncertainty for westerly winds. The dependence on air density seems to be minor. Overall, the

most important explanatory variable is the forecasted power. For the training data, crossings of the 25% and

75% quantiles occur in 111 out of 10,658 cases.

The estimates describing the dependence on the air density do not seem to have any reasonable interpreta-

tion and the differences for low and high densities are supported by very few data points. For this reason it is

decided to exclude it from the model. The number of crossings decreases to 46 for the resulting model. The

estimates are depicted in Figure 5. Since the curves are close when pow.fc is zero, it is seen that the inter-

cepts of the 25% and 75% quantile models are very close.
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Risk Indices of Meteorological Variables

The European Centre for Medium-range Weather Forecasts (ECMWF, http://www.ecmwf.int), which runs the

global model supplying boundary conditions for DMI-HIRLAM, performs data assimilation based on 12 h

intervals (00Z and 12Z). For the assessment of the forecast risk the two DMI-HIRLAM forecasts which are

based on the two latest global data assimilations are compared. Since the primary interest is in the 06Z fore-

cast (please refer to the Introduction), this is compared with the preceding 18Z forecast. Since the maximum

forecast horizon of DMI-HIRLAM is 48 h, risk indices can only be calculated for the 06Z forecast up to a

horizon of 36 h.

Following Pinson and Kariniotakis,5 the differences in the two forecasts are squared and summed over the

entire range of horizons for a particular 06Z forecast. The square root of this number is used as the risk index

of each variable, corresponding to each 06Z meteorological forecast. Figure 6 shows histograms of the risk

indices. It is seen that the risk indices generally only show a few high values and therefore it will only be pos-

sible to detect simple relationships; for this reason it is decided only to investigate linear relationships between

the quantiles and the risk indices.

When adding the risk indices one at a time to the model shown in Figure 5, i.e. without air density, the

results shown in Figure 7 are obtained. Generally the risk indices seem to be of minor importance for the quan-

tiles and it is chosen to use only the one with the clearest signal, i.e. fv. Figure 8 shows the estimates obtained

for this model. It is seen that the effect of the risk index is comparable to the effect of the horizon. For the

training data the number of crossings of the 25% and 75% quantiles decreases to 39 for this model.

Evaluation on Test Data

The following models are fitted to the training data and evaluated on the test data:

• basic—a model using only the forecasted power productions as explanatory variables;

• full—the model corresponding to Figure 4;

• w/o density—the model corresponding to Figure 5;

• incl. risk—the model corresponding to Figure 8.
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The number of crossings on the test data ranges from 60 to 82 of 11,168 cases. In the case of crossing of the

two quantiles, these have been set to their common average. The actual frequencies with which the prediction

error is below the 25% quantile or above the 75% quantile in the test data are listed in Table I. A marked dif-

ference is seen when splitting the data according to the date at which a presumably important change was intro-

duced into DMI-HIRLAM. For this reason we focus on the part of the test period up to 2 September 2003.
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The model termed ‘full’ seems to result in some problems for the forecasted 75% quantile, since this fore-

cast is exceeded in only 10% of the cases. For the model termed ‘basic’, the forecast intervals seem to be sym-

metric but too wide. The two remaining models both perform well (52%–53% change to be between the

forecasted quantiles), but the forecast intervals seems to be shifted upwards corresponding to approximately

5%. Random variation may account for some of these differences, but such variations are difficult to quantify

owing to the inherent and presumably complicated correlation of the data.

Given quantiles which are correct in a probabilistic sense, the quality of these depends on (i) the ability to

distinguish between situations with low and high uncertainty and (ii) the sharpness of the distributions. Here

the sharpness is measured as the inter quartile range (IQR), i.e. the difference between the forecasted 75% and

25% quantiles.

Qualitatively, (i) is fulfilled if both low and high values of the IQR occur, and with respect to (ii) the IQR

should be smaller than the IQR obtained from historic production data. These aspects are addressed in Figure

9. Results are shown for three models, where the basic model is included for reference, although it is not very

precise with respect to the observed frequencies. It is seen that the basic model differs from the other two

models. Also, since the plots for the other two models do not differ markedly, it does not seem very important

to include the particular risk index.

The relatively large difference between the 5% and 95% quantiles of the IQR indicates high variability, and

for probabilistic correct quantiles this can be interpreted as the fulfilment of (i). Furthermore, it is seen that in

many situations the IQR is significantly smaller than the IQR of the historic power productions, i.e. the fore-

cast is sharp compared with historic data.

Discussion and Conclusions

We have proposed a method for building models of e.g. the 25% and 75% quantiles of the forecast errors from

existing wind power forecast systems. Such models can be used together with existing systems and have the

potential of providing situation-specific information about the uncertainty of a particular forecast.

The quantiles are modelled as a sum of non-linear smooth functions of variables forecasted by the meteo-

rological model or variables derived from such forecasts. The additive model structure is used since it allows

Table I. Observed frequencies (test data) below the forecasted 25% quantile and
above the forecasted 75% quantile for the four models considered. Values (%)
are given both for the full test set and for the test set split into two parts based
on a presumably important model change in DMI-HIRLAM (see section two)

Basic Full W/o density Incl. risk

All test data
Above 18 13 17 17
Centre 61 58 53 52
Below 21 29 30 31

Test data before 2/9/2003
Above 19 10 19 19
Centre 62 64 53 52
Below 19 26 28 29

Test data after 2/9/2003
Above 16 16 15 14
Centre 60 50 50 53
Below 24 34 35 33
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for the inclusion of more explanatory variables than more general non-parametric models. Furthermore, addi-

tive models are relatively easy to visualize and interpret. Using spline bases to approximate each of the smooth

functions as a linear combination of basis functions depending only on known quantities permits the use of

existing linear quantile regression software to fit the models.

The software used is ‘R’ together with the add-on package ‘quantreg’, which can both be freely downloaded

from http://www.r-project.org. An example R-script is included in the Appendix ‘R’ could be used to easily

extend a given wind power forecast system, and it is even possible to embed ‘R’ into other software products.

With respect to the analysis of the specific data it is noted that the risk indices, which all are inspired by

Pinson and Kariniotakis,5 do not seem to have very much influence on the 25% and 75% quantiles. However,

it is noted that Pinson and Kariniotakis5 consider horizons ranging from 0 to 24 h, whereas we consider hori-

zons ranging from 18 to 36 h. Note that the horizons mentioned do not take into account the calculation time

of HIRLAM. Not surprisingly, the most influential variable is the forecasted wind power production. Further-

more, the results show increased uncertainty for westerly winds. Also, the effect of the horizon on the quan-

tiles is minor.

Bremnes2 shows that the optimal quantile to use depends on the actual prices in the market. This will require

a range of quantile models to be applied in parallel. Using models with several predictors and spline bases as

suggested in this article is likely to result in crossing of some of these quantiles. Ideally, the coefficients esti-

mated should be constrained in order to avoid crossings. However, we are not aware of software which can

handle this easily. In the situation just outlined, it is probably sufficient to use the quantile model indicated by

the prices in the market and disregard the fact that this quantile model may cross some other quantile models.

As just outlined, quantile regression is characterized by estimating separate models for each quantile. As a

consequence, crossing of quantiles may occur; indeed, in the analysis of the data here a few crossings of the

25% and 75% quantiles occurred. In practice this probably indicates low uncertainty and is therefore of less

practical importance. It is, however, undesirable from a theoretical point of view. One solution would be to
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risk (dashed). The grouping variable is the power production (kW) as forecasted by WPPT and split into six intervals of
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start with the median (50% quantile) and find solutions to successive lower and higher quantiles under the

restriction that the quantiles do not cross. The restriction should be valid for all possible values of the explana-

tory variables. Considering the data at hand, this could be approximated by considering all observations, i.e.

the number of restrictions will be high. We believe that methods based on approximations of the full dist-

ribution should also be investigated, since this will automatically supply non-crossing quantiles.

As mentioned above, we chose the additive model structure since it allows for inclusion of many explana-

tory variables. However, the additive model structure may lead to unrealistic quantiles, i.e. quantiles above or

below the capacity range. For the additive model displayed in Figure 5, the lower and upper bound is broken

in approximately 500 out of 11,000 cases. As expected, very similar results are obtained when including the

risk index, i.e. for the model displayed in Figure 8. A possible way to avoid such unrealistic quantiles is to

forecast the power production instead of the forecast error. This allows the power to be transformed so that it

is confined to the range of possible values.19 Hereafter a quantile model built on the transformed scale will not

produce unrealistic forecasts when these are transformed back to the original scale. Since the unrealistic fore-

casts are mainly caused by the model structure, e.g. when the production is at the maximum the effect of wind

direction should be small, it might also be considered to use other quantile regression methods. Bremnes2 uses

local quantile regression which surely solves the problem mentioned. However, we argue that it is generally

inappropriate to use local regression methods for applications with many potential explanatory variables. The

explanation is sometimes called the curse of dimensionality and refers to the fact that neighbourhoods with a

fixed number of points become less local as the dimensions increase.18 Hence, in many dimensions, local regres-

sion is not really local. An illustration of this fact can be found in Reference 19, which uses local regression

to fit direction-dependent power curve models, i.e. models with two explanatory variables, using 5 months of

data. In this case, using a 10% nearest-neighbour bandwidth results in actual bandwidths of 4–7 m s−1 when

the wind speed is 5 m s−1. For higher wind speeds the data are even more sparse.
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Appendix: Parametric Additive Quantile Models in ‘R’

The ‘quantreg’ library or package is not part of a standard ‘R’ installation. To install the package, start ‘R’ and

issue the command

install.packages(“quantreg”)

However, please read the help-page before issuing this command.

Assume that the data are contained in a data frame named train with columns y, x1 and x2. Further-

more, data for which quantile forecasts must be computed are assumed to be contained in a similar data frame

named test with columns x1 and x2.

The R-script shown in Table II illustrates how parametric additive quantile models can be fitted, how the

results can be visualized and how forecasts can be produced.

Periodic bases12 can be constructed from the output of the function bs. This is done by the S-PLUS/R func-

tion pb.bse found in the file periodic.bases.q at http://www.imm.dtu.dk/~han/pub which has been

used in this article. The restriction that the function approximated by the periodic basis integrates to zero over

the period is imposed on the periodic basis using the function downloadable as bint0.q.
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Table II. R-script. Functions and operators are indicated by the bold font; comments start with ‘##’

## Load required libraries:

library (splines)

library (quantreg)

## Make natural spline bases with 10 columns and knots placed

## according to the quantiles of x1 and x2:

basis . x1 <– ns (train $ x 1, df = 10, intercept = F)

basis . x2 <– ns (train $ x 2, df = 10, intercept = F)

## Fit 25% and 75% quantile models (1 denotes the intercept):

fit25 <– rq (train $y ∼ 1 + basis . x1 + basis . x2, tau = 0·25)

fit75 <– rq (train $y ∼ 1 + basis . x1 + basis . x2, tau = 0·75)

## Estimated coefficients:

coef (fit25)

coef (fit75)

## Plot of fitted values of the estimates related to x1:

intercept . avg <– (coef (fit25) [“(Intercept)”] + coef (fit75) [“(Intercept)”]) / 2

matplot (train $x1,

cbind (basis . x1 %*% coef (fit25) [grep (“basis \\. x1”, names (coef (fit25)))]

+ coef (fit25) [“(Intercept)”] − intercept . avg,

basis . x1 %*% coef (fit75) [grep (“basis \\. x1”, names (coef (fit75)))]

+ coef (fit75) [“(Intercept)”] − intercept . avg

))

## Plot of fitted values of the estimates related to x2:

matplot (train $x2,

cbind (basis . x2 %*% coef (fit25) [grep (“basis \\. x2”, names (coef (fit25)))]

+ coef (fit25) [“(Intercept)”] − intercept . avg,

basis . x2 %*% coef (fit75) [grep (“basis \\. x2”, names (coef (fit75)))]

+ coef (fit75) [“(Intercept)”] − intercept . avg

))

## Forecast for data frame ‘test’:

test . b . x1 <– ns (test $x1,

knots = attributes (basis . x1) $ knots,

Boundary . knots = attributes (basis . x1) $Boundary . knots,

intercept = attributes (basis . x1) $ intercept)

test . b . x2 <– ns (test $x2,

knots = attributes (basis . x2) $ knots,

Boundary . knots = attributes (basis . x2) $ Boundary . knots,

intercept = attributes (basis . x2) $ intercept)

##

## Comment: It is very important that the bases for prediction are

## constructed independently from the test data, i.e. by supplying the

## knots etc . as outlined above.

##

qForecast <– data . frame (Q25 = cbind (1, test . b . x1, test . b . x2) %*% coef (fit25),

Q75 = cbind (1, test . b . x 1, test . b . x2) %*% coef (fit75))

## Print forecasts:

qForecast
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