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Abstract: Mammography interpretation is challenging with high error rates. This study aims to
reduce the errors in mammography reading by mapping diagnostic errors against global mammo-
graphic characteristics using a radiomics-based machine learning approach. A total of 36 radiologists
from cohort A (n = 20) and cohort B (n = 16) read 60 high-density mammographic cases. Radiomic
features were extracted from three regions of interest (ROIs), and random forest models were trained
to predict diagnostic errors for each cohort. Performance was evaluated using sensitivity, specificity,
accuracy, and AUC. The impact of ROI placement and normalization on prediction was investigated.
Our approach successfully predicted both the false positive and false negative errors of both cohorts
but did not consistently predict location errors. The errors produced by radiologists from cohort B
were less predictable compared to those in cohort A. The performance of the models did not show
significant improvement after feature normalization, despite the mammograms being produced by
different vendors. Our novel radiomics-based machine learning pipeline focusing on global radiomic
features could predict false positive and false negative errors. The proposed method can be used to
develop group-tailored mammographic educational strategies to help improve future mammography
reader performance.

Keywords: mammography; mammography interpretation; diagnostic errors; radiomics; machine learning

1. Introduction

Self-assessment mammography test sets have been demonstrated to be an effective
learning approach in improving the clinical performance of mammography readers, where
participants are asked to assess a mammography set enriched with cancer cases, displaying
a range of image appearances with known truth [1,2]. Upon completion, participants
receive immediate, individual feedback on their performance, including sensitivity and
specificity, allowing them to anonymously compare their results with their peers and learn
from their mistakes by visualizing their errors (Figure 1). This exposure to a wide range
of mammographic appearances, the high prevalence of cancer cases, and the immediate
feedback with visual display make self-assessment mammography test sets an effective ap-
proach for developing radiologists’ expertise [3]. However, most self-assessment modules
available use a one-size-fits-all approach to selecting training cases without considering the
particular needs of specific cohorts of radiologists [4]. An alternative solution for customiz-
ing the test sets used would be cohort-tailored self-assessment test sets, with an emphasis
on mammographic appearances that are particularly challenging for that group [5]. This
is especially important in continuing education programs, where participants may have
varying levels of experience and domain knowledge, and the performance data for each
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individual is unavailable, so personalizing the test set is not possible. In this instance,
customizing the educational materials according to the readers’ experience and expertise
level as a cohort is highly desirable as an ideal education strategy that focuses on improving
their weaknesses to enhance learning outcomes. Artificial intelligence (AI) can quantify
image analysis and recognize complex patterns, making it a potential solution for curating
such tailored self-assessment cohort test sets [6].
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Figure 1. Illustration of Breastscreen REader Assessment STrategy (BREAST) platform for reading 
mammographic images. (a) Once readers completed the assessment, they were ranked against their 
peers anonymously. (b) A visual display of all errors and the truth. 

2. Materials and Methods 
2.1. Mammogram Acquisition 

This study analyzed 60 high-density mammographic cases collected from breast 
screening programs. Each case was deidentified and contained standard bilateral cranio-
caudal (CC) and mediolateral oblique (MLO) mammograms. Of the 60 cases, 40 were can-
cer-free with no benign findings, evaluated by at least two senior radiologists, followed 
by two-year negative screening reports, while the remaining 20 cancer cases (lesions = 21) 
were biopsy-proven. The locations of the cancers were provided by a senior radiologist, 
who did not participate in the subsequent study, based on mammograms, histopatholog-
ical reports, and any additional images. Information on breast density, lesion types, and 
manufacturers is summarized in Table 1. 

Table 1. Details of mammography cases. 

Factors Non-Cancer Cases 
(n = 40) 

Cancer Cases  
(n = 20) 

Breast density 
BI-RADS A 0 0 
BI-RADS B 2 0 
BI-RADS C 30 15 
BI-RADS D 8 5 

Lesion type * 
Stellate  9 

Architectural distortion  2 
Calcification  2 

Discrete mass  5 
Non-specific density   3 

Manufacturer   
GE Medical Systems  14 7 

Philips Digital Mammography Sweden 
AB 8 5 

Sectra Imtec AB 11 6 
KODAK 0 1 

Unknown  7 1 
* A total of 21 lesions were found in the 20 cancer cases. 

  

Figure 1. Illustration of Breastscreen REader Assessment STrategy (BREAST) platform for reading
mammographic images. (a) Once readers completed the assessment, they were ranked against their
peers anonymously. (b) A visual display of all errors and the truth.

The application of AI, often in the form of machine learning, is transforming education
by improving instructor–learner interactions and increasing student access to educational
materials [7,8]. However, customizing educational content based on the specific needs
of each cohort of learners in medical imaging has not yet been fully developed [9,10].
Previous studies have explored the potential of AI in radiology education and investigated
the relationship between image characteristics and radiologists’ diagnostic errors, but the
results have been limited and inconsistent. For example, one study mapped the errors of
radiology trainees in distinguishing malignant from benign breast masses to two features
(breast density and mass margin) from the Breast Imaging-Reporting and Data System
(BI-RADS) using AI [11]. This study found that machine learning models can predict
individual trainees’ diagnostic errors using two BI-RADS features [11]. However, the
number of readers involved in the study was small, and they only investigated segmented
breast masses instead of the entire mammographic case [11]. Another study explored
the relationship between wavelet-decomposed mammographic features and radiologists’
diagnostic errors and found that artificial neural networks, another form of AI, can pre-
dict radiologists’ decision outcomes on the eye-attracted local areas [12]. However, the
prediction accuracy was inconsistent, and more features needed to be investigated [12]. To
improve the prediction performance, radiomics, an emerging technique in image analysis,
should be explored.

Radiomics, a process of high-throughput extraction of image features into minable
quantitative data, has been proven to help predict radiologists’ diagnostic errors [13]. In this
study, we aimed to test the hypothesis that a radiomics-based machine-learning approach
can help identify challenging mammographic cases for a specific reader cohort and thereby
improve the curation of cohort-tailored test sets. To test the hypothesis, we developed
machine-learning models to map the global mammographic characteristics, represented by
a comprehensive set of image-derived radiomic features, to the actual difficulty level of the
mammographic case for two independent cohorts of mammography readers. The readers
in each cohort shared similar demographic characteristics. One cohort was from an Asian
country with both mass and opportunistic mammographic screening practices but with a
low participation rate (cohort A); the other was from a Pacific country with a nationwide
population-based mammography screening program and a high screening rate (cohort
B). To our knowledge, this is the first study to investigate cohort-specific error-making
patterns using a comprehensive and systematic set of radiomic features. The proposed
method, if successful, could help us to further understand the cohort-based weaknesses
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in reading mammograms and develop group-tailored educational strategies to improve
future mammography reader performance.

2. Materials and Methods
2.1. Mammogram Acquisition

This study analyzed 60 high-density mammographic cases collected from breast screen-
ing programs. Each case was deidentified and contained standard bilateral craniocaudal
(CC) and mediolateral oblique (MLO) mammograms. Of the 60 cases, 40 were cancer-free
with no benign findings, evaluated by at least two senior radiologists, followed by two-
year negative screening reports, while the remaining 20 cancer cases (lesions = 21) were
biopsy-proven. The locations of the cancers were provided by a senior radiologist, who did
not participate in the subsequent study, based on mammograms, histopathological reports,
and any additional images. Information on breast density, lesion types, and manufacturers
is summarized in Table 1.

Table 1. Details of mammography cases.

Factors Non-Cancer Cases
(n = 40)

Cancer Cases
(n = 20)

Breast density

BI-RADS A 0 0

BI-RADS B 2 0

BI-RADS C 30 15

BI-RADS D 8 5

Lesion type *

Stellate 9

Architectural distortion 2

Calcification 2

Discrete mass 5

Non-specific density 3

Manufacturer

GE Medical Systems 14 7

Philips Digital Mammography Sweden AB 8 5

Sectra Imtec AB 11 6

KODAK 0 1

Unknown 7 1
* A total of 21 lesions were found in the 20 cancer cases.

2.2. Mammography Case Difficulty Analysis

Two separate cohorts of radiologists (cohort A, n = 20 and cohort B, n = 16) read
all mammographic cases in a standardized mammography reading environment. All
the participating readers were certified radiologists. The mammograms were displayed
in DICOM format, and all typical post-processing (e.g., zooming, panning, windowing)
options were available. Each reader independently examined all mammograms, marked all
suspicious lesions with a mouse-controlled cursor, and reported radiological findings using
the Royal Australian and New Zealand College of Radiologists (RANZCR) rating system
(1- normal, 2- benign, 3- indeterminate, 4- suspicious of malignancy, and 5- definitely
malignant). Although the RANZCR and BI-RADS grading systems demonstrate some
differences, the two systems are transferable, with a RANZCR rating of 3 being equivalent
to BI-RADS 3 and 4A and the RANZCR rating of 4 being equal to BI-RADS 4B and 4C.
Ratings 1, 2, and 5 were interchangeable in the two systems [14]. Each reader was allowed
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to annotate multiple areas; however, only the one with the highest rating was preserved
for analysis. All readers were unaware of the cancer prevalence and lesion types in this
image set prior to reading and blinded to any clinical information and additional imaging.
However, they were told that the cancer prevalence in this test set was higher than the
incidence rate in the screening setting. More details about this procedure have previously
been described [15].

We calculated the group-specific case difficulty for each mammographic case based on
radiological assessment and cancer truth data. Specifically, the RANZCR rating of 1 or 2 was
considered negative, while 3 and above were positive. The location of a cancer lesion was
considered correct if the annotated point was 250 pixels within the actual cancer location
on DICOM images. The case difficulty level was measured as the proportion of radiologists
in each group making diagnostic errors in the form of false positives (for cancer-free cases),
false negatives (for cancer cases), and cancer location errors (for cancer cases). Specifically
for cancer cases, the difficulty level calculated based on the proportion of false negatives
was called the case-based difficulty, while the one calculated based on the proportion of
location errors was the lesion-based difficulty. Based on the proportion of false positives,
the cancer-free cases were divided into three approximately equal groups, ‘easy’, ‘median’,
and ‘difficult’, indicating different levels of difficulty. Similarly, the cancer cases were
grouped into the same categories of difficulty, with roughly equal numbers in each category
based on false negatives (case-based) and lesion location errors (lesion-based).

2.3. Image Pre-Processing

The breast region was segmented from the background, and in the MLO views,
the pectoral muscle area was removed using a previously validated pipeline based on
thresholding, morphological transformation, and hough line detection algorithms [16].
Then, three ROIs were delineated for subsequent feature extraction, including the largest
square of the central breast region (square), the retroareolar area (RA), and the whole breast
region (whole) (Figure 2). This was done using the open framework for mammography
image analysis in Matlab_R2022b (Mathworks, Natick, MA, USA) [17–19]. The central
and retroareolar regions of the breast were investigated because these areas contained the
most useful textural information of fibrogranular tissue, which has been related to the
risks of developing breast cancer [20,21]. The entire breast region was also investigated, as
neither the central nor the retroareolar area can fully reflect the heterogeneity of the breast
tissue [22]. Subsequently, z-score normalization was applied to each ROI to minimize the
grey-scale variations across image acquisitions. The original ROIs before normalization
were also preserved to evaluate the impact of normalization on model performance.
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2.4. Extraction of Radiomic Features

A total of 203 radiomic features were extracted from each normalized and original
ROI. These features have been studied extensively in previous studies for their application
in breast cancer diagnosis and risk assessment. They can be grouped into three broad
categories: histogram-based first-order statistics, texture-based second-order features, and
transform-based higher-order features [23]. The histogram-derived features describe the
distribution of grey-level intensities; the textural descriptors quantify the spatial relation-
ship between pixels; and the transform-based features, extracted from the decomposed
images using a bank of filters, provide additional information on the interrelationship
among pixels [24]. Specifically, there were 28 histogram-based statistics and 159 textual
features, including 88 from the grey level co-occurrence matrix (GLCM) [25], seven from
the grey level run length matrix (GLRLM) [26], six from the grey level sharpness measure
(GLSM) [27], 15 grey level difference statistics (GLDS) [28], 15 from the neighborhood grey
tone difference matrix (NGTDM) [29], eight from the statistical feature matrix (SFM) [30],
18 laws texture energy measures [31] and two from fractional dimension texture analy-
sis [32]. Additionally, there were 16 transform-based features, including six and eight
from Gabor- and RFS- filtered images [33,34], respectively, and two features from the
Fourier-transformed images [32]. The radiomic features used in this study can be found in
Supplementary Materials.

2.5. Feature Selection and Model Construction

As shown in Figure 3, we developed three machine-learning pipelines to predict case
difficulty levels for both cancer-free and cancer cases. Specifically for cancer cases, models
were developed to predict case-based and lesion-based difficulty levels separately. Before
implementation, mammography cases from the median difficulty group were excluded,
as including two more extreme categories of difficulty accentuates differences between
groups and allows a good separation between the most ‘difficult’ and ‘easy’ cases for group
readers. Of note, 13 and 10 out of 40 cancer-free cases were excluded for cohort A and
cohort B, respectively. Five and four out of 20 cancer cases were excluded from the pipeline
predicting case-based difficulty levels, and six and five out of 20 cancer cases were excluded
from predicting lesion-based difficulty levels for cohorts A and B, respectively.

Within each pipeline, the random forest (RF) classifier was chosen as the learning
model since it is a non-linear algorithm consisting of an ensemble of decision tree classifiers.
Although each tree tends to suffer from instability and overfitting, RF aggregates the
results from all trees and makes a relatively more accurate prediction with better generality.
Specifically, for cancer-free cases, four RF models were trained on features from CC and
MLO views of both breasts, respectively, as false positive findings can occur on either side
of the breasts. However, for cancer cases, only the features from the lesion-located views
were fed into the pipeline for training, which is because, on the existence and location of
cancer on the lesion side, the appearance of the contralateral normal breast offers little
information if there is any, and therefore cannot help in predicting the proportion of readers
who missed or mislocated the lesion. As shown in Figure 3, each pipeline returned multiple
class probabilities indicating the likelihood of a given view being ‘difficult’. However,
to obtain a case-wise prediction, we fused all outputs using the ‘maximum probability’
approach, and only the one with the highest probability score was considered as the final
output of the pipeline. This method was taken to ensure the pipeline’s sensitivity to
detect challenging mammographic cases for educational purposes. Ideally, a case should
be labeled as ‘difficult’ even if only one or two views present actual detection difficulty,
regardless of the error status in the remaining views.
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To avoid data leakage and overfitting during training, we applied nested cross-
validation for feature selection and model construction (Figure 4). The outer layer used
leave-one-out cross-validation to estimate the classifier’s generability on unseen data; the
inner loop adopted repeated three-fold cross-validation with three repeats to train the
model, select features and simultaneously adjust the hyperparameters in RF. To select
features, we applied RF embedded method because it required less computation than
the wrapper approach and was more robust than the filter approach [35]. In addition, it
allowed simultaneous feature selection and model training so that the optimal number of
features to be selected could be considered as a hyperparameter of the pipeline, which can
be tuned together with the number of trees (from 50, 100, and 500 to 1000), the maximum
sample size (from 10%, and 50% to 100%), and the depth of each tree (from 1 and 5 to 10).
These hyperparameters were independent of the input dataset but determined how well
the RF model could be trained to map the input features to the output difficulty level. We
used the exhaustive grid search method to select the best combination of hyperparameters
that produced the highest averaged AUC value in the inner validation set (Figure 4b).
The combination of hyperparameters with the best validation performance was further
evaluated on the outer testing set in the outer layer. Model performance was measured
by sensitivity, specificity, accuracy, and AUC, with AUC equal to 0.5 considered random
guessing. The feature selection and model-building processes were implemented in the
Scikit-learn package in Python Version 3.9.4.
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Figure 4. (a) Flow diagram of the nested cross-validation. (A) The outer loop of the nested CV was
divided into k folds (k = the number of samples), of which the (k-1) folds were treated as the outer
training set and the kth fold as the outer testing set. (B) Data from the outer training set flowed
into the inner loop, being further split into three folds, two of which were the inner training set,
and the remaining fold was the inner validation set. Within the inner layer, the number of features
and trees, the maximum sample size, and the depth of each tree were selected using an exhaustive
grid search method. (C) The RF classifier with the highest AUC scores in the inner loop validation
set was evaluated in the outer testing, giving the corresponding predictive probability. (D) The
workflow (A–C) was repeated until all samples in the outer loop were tested. (E) In the end, an AUC
score incorporating the results of all outer loops was calculated as the classification performance
of the predictive model. (b). Schematic of feature selection and hyperparameter tuning within the
inner loop. All combinations of hyperparameters will be exhaustively investigated using repeated
three-fold cross-validation, and the performance on the inner validation set from the three-folds will
be averaged. The hyperparameter combination with the highest averaged performance, represented
as the AUC score, will be further evaluated on the outer testing set in the outer loop.
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Additionally, a 2000-time stratified bootstrap was used to obtain the 95% confidence
interval of AUC for model evaluation. Additionally, we compared the AUC values between
cohort A and cohort B using a 2000-time stratified bootstrap method. Additionally, we
investigated the effects of ROI placement and feature normalization on error detection using
DeLong’s test. The two-tailed tests of significance were applied using a significance level
of 0.05. The statistical analyses were performed in the ‘pROC’ package in R Version 4.2.2.

3. Results

Table 2 summarizes the performance of models on the testing dataset in error detection
using normalized and original ROIs for readers from cohort A and cohort B, respectively.
As these figures suggested, the machine learning model using global radiomic features
could detect false positive and false negative errors but was not consistently successful
in detecting location errors for both cohorts. For cohort A, the average AUCs of models
detecting false positives, false negatives, and location errors were 0.899, 0.660, and 0.447;
and for cohort B, the average AUCs in detecting false positives, false negatives, and location
errors were 0.754, 0.729, and 0.598.

Table 2. Performance of models in detecting diagnostic errors on the testing dataset for radiologists
from cohort A and cohort B.

Normalized Dataset

Cohort A Cohort B

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

False positive
error

square 0.867 0.800 0.833 0.882
(0.724–0.996) 0.526 0.579 0.553 0.651

(0.457–0.817)

RA 0.800 0.933 0.867 0.920
(0.809–1.000) 0.842 0.632 0.737 0.787

(0.627–0.925)

whole 0.867 0.867 0.867 0.911
(0.773–1.000) 0.842 0.632 0.737 0.780

(0.618–0.913)

False negative
error

square 0.625 0.375 0.500 0.523
(0.234–0.813) 0.800 0.600 0.700 0.720

(0.450–0.930)

RA 0.875 0.500 0.688 0.695
(0.398–0.953) 0.800 0.700 0.750 0.755

(0.490–0.960)

whole 0.500 0.375 0.438 0.375
(0.328–0.891) 0.800 0.600 0.700 0.710

(0.450–0.930)

False lesion
location

square 0.571 0.429 0.500 0.469
(0.225–0.837) 0.556 0.222 0.389 0.556

(0.247–0.864)

RA 0.714 0.571 0.643 0.714
(0.388–0.959) 0.778 0.667 0.722 0.741

(0.457–0.963)

whole 0.714 0.429 0.571 0.367
(0.286–0.898) 0.778 0.444 0.611 0.654

(0.370–0.901)

Non-normalized dataset

False positive
error

square 0.867 0.800 0.833 0.933
(0.822–1.000) 0.895 0.632 0.763 0.774

(0.598–0.917)

RA 0.733 0.667 0.700 0.813
(0.640–0.951) 0.895 0.789 0.842 0.831

(0.676–0.958)

whole 0.800 0.933 0.867 0.933
(0.813–1.000) 0.579 0.737 0.658 0.702

(0.526–0.862)

False negative
error

square 0.750 0.625 0.688 0.812
(0.563–1.000) 0.800 0.700 0.750 0.750

(0.500–0.950)

RA 0.875 0.500 0.688 0.688
(0.359–0.922) 0.900 0.500 0.700 0.695

(0.450–0.910)

whole 0.875 0.750 0.813 0.867
(0.625–1.000) 0.700 0.600 0.650 0.745

(0.500–0.935)



J. Pers. Med. 2023, 13, 888 9 of 15

Table 2. Cont.

Normalized Dataset

Cohort A Cohort B

Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

False lesion
location

square 0.429 0.286 0.357 0.347
(0.347–0.959) 0.556 0.556 0.556 0.611

(0.346–0.864)

RA 0.571 0.429 0.500 0.367
(0.286–0.898) 0.556 0.222 0.389 0.494

(0.198–0.778)

whole 0.714 0.286 0.500 0.418
(0.122–0.735) 0.556 0.333 0.444 0.531

(0.198–0.741)

The AUCs above 0.700 are in bold.

Comparisons of AUCs between cohort A and cohort B using a 2000-time stratified
bootstrap indicated that the model built on features of normalized square-predicting false
positives (cohort A: 0.882; cohort B: 0.651) and the model built on features of non-normalized
whole-predicting false positives (cohort A: 0.933; cohort B: 0.702) showed significant differ-
ences with higher predictive values observed for cohort A. p-values are shown in Table 3.
We also investigated the impacts of ROI placement and feature normalization on error
detection, and DeLong’s test revealed that these factors had statistically insignificant effects
with p-values greater than 0.05 (Tables 4 and 5).

Table 3. Comparisons of AUCs between cohort A and cohort B using a 2000-time stratified bootstrap
in detecting diagnostic errors.

Error Types Normalization ROIs p-Values

False positives

Yes

square 0.042

RA 0.144

whole 0.195

No

square 0.101

RA 0.869

whole 0.023

False negatives

Yes

square 0.323

RA 0.746

whole 0.653

No

square 0.702

RA 0.968

whole 0.420

False location

Yes

square 0.812

RA 0.892

whole 0.920

No

square 0.839

RA 0.534

whole 0.599
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Table 4. The effect of ROI placement on error detection for readers from cohort A and cohort B.

Error Types Radiologists Normalization ROIs p-Values 95%CI

False positives

Cohort A

Yes

square vs. RA 0.493 −0.146~0.070

RA vs. whole 0.903 −0.135~0.152

square vs. whole 0.594 −0.135~0.077

No

square vs. RA 0.206 −0.066~0.306

RA vs. whole 0.191 −0.300~0.060

square vs. whole 1.000 −0.150~0.150

Cohort B

Yes

square vs. RA 0.175 −0.332~0.060

RA vs. whole 0.940 −0.173~0.187

square vs. whole 0.272 −0.359~0.101

No

square vs. RA 0.474 −0.212~0.099

RA vs. whole 0.264 −0.097~0.355

square vs. whole 0.529 −0.152~0.296

False negatives

Cohort A

Yes

square vs. RA 0.341 −0.526~0.182

RA vs. whole 0.779 −0.420~0.561

square vs. whole 0.726 −0.669~0.465

No

square vs. RA 0.445 −0.196~0.446

RA vs. whole 0.225 −0.470~0.110

square vs. whole 0.717 −0.350~0.241

Cohort B

Yes

square vs. RA 0.818 −0.332~0.262

RA vs. whole 0.743 −0.224~0.314

square vs. whole 0.948 −0.292~0.312

No

square vs. RA 0.606 −0.154~0.264

RA vs. whole 0.553 −0.215~0.115

square vs. whole 0.961 −0.196~0.206

False location

Cohort A

Yes

square vs. RA 0.295 −0.703~0.213

RA vs. whole 0.119 −0.089~0.783

square vs. whole 0.546 −0.229~0.433

No

square vs. RA 0.905 −0.354~0.313

RA vs. whole 0.671 −0.287~0.184

square vs. whole 0.743 −0.499~0.356

Cohort B

Yes

square vs. RA 0.357 −0.579~0.209

RA vs. whole 0.601 −0.237~0.410

square vs. whole 0.642 −0.516~0.318

No

square vs. RA 0.465 −0.198~0.432

RA vs. whole 0.862 −0.456~0.382

square vs. whole 0.606 −0.225~0.385
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Table 5. The effect of normalization on error detection for readers from cohort A and cohort B.

Error Types Radiologists ROIs p-Values 95%CI

False positives

Cohort A

square 0.554 −0.220~0.118

RA 0.267 −0.082~0.295

whole 0.745 −0.156~0.112

Cohort B

square 0.304 −0.358~0.112

RA 0.676 −0.252~0.163

whole 0.464 −0.130~0.285

False negatives

Cohort A

square 0.105 −0.639~0.060

RA 0.967 −0.360~0.376

whole 0.264 −0.667~0.183

Cohort B

square 0.869 −0.387~0.327

RA 0.636 −0.189~0.309

whole 0.726 −0.231~0.161

False location

Cohort A

square 0.518 −0.248~0.493

RA 0.119 −0.089~0.783

whole 0.699 −0.309~0.207

Cohort B

square 0.776 −0.438~0.327

RA 0.213 −0.142~0.635

whole 0.429 −0.182~0.429

4. Discussion

This study was designed as a proof-of-concept study, exploring the feasibility of
using AI to produce customized self-assessment educational test sets containing difficult-
to-interpret mammographic images to improve the performance of a certain group of
mammography readers. Here, we considered two cohorts of radiologists and investigated
how mammographic characteristics relate to the diagnostic decisions of mammography
readers using machine learning methods and radiomics techniques. Mapping image
features to interpretative errors can help design mammography training content adapted
to the specific needs of the readers. To achieve this, we proposed a generalized model to
automatically select mammography cases from a large image dataset that can match the
weaknesses and strengths of a group of mammography readers with similar characteristics
for tailored training. Unlike a user-based model that identifies individual error-making
patterns, our model can predict common pitfalls using the difficult cases associated with a
high probability of diagnostic errors for most readers in a group by analyzing the previous
readings of the cohort of readers. Although prediction of the collective model might
sacrifice a certain degree of precision on the individual level, it is more time-efficient and
achievable since individual reading data are often inadequate for model construction using
data-driven machine learning methods [36]. Additionally, the individualized model might
not always reflect the true reading weaknesses of each reader as the retrospective analysis
of previous reading data might be biased if other factors, such as poor image quality or
fatigue, affect the actual performance of the specific reader [37,38]. However, such bias
can be counteracted using this collective cohort-based method, producing a more stable
prediction of the generically challenging cases for a specific group.

This study also showed that radiologists from the same country share certain error-
making patterns when reading mammography, regardless of the variation in the reading
experience, which makes country-specific training in mammography reading a feasible
solution to improve diagnostic performance. This finding was consistent with previous
research showing variability in the type of breast lesions most likely to be missed among
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radiologists across countries [39]. For example, one study found that spiculated stellate
lesions were more likely to be neglected by Vietnamese radiologists (31); however, non-
specific density was difficult to detect by Australian radiologists [40]. The reasons for
these variations are multifaceted and may be due to different focuses in mammographic
training in different countries and/or radiologists’ various experience with certain types of
mammographic densities or features [15].

Furthermore, we verified the value of global radiomic features for predicting false
positive and false negative errors, while the lesion location error was less predictable, which
might require more localized features. This may suggest that the diagnostic decision on
the case or image-based normality or abnormality was related to the overall parenchymal
pattern of breast tissue; however, the whole appearance of the breast provided inadequate
information to affect the decision on cancer location. This may be because the location signal
was overwhelmed by the relatively strong global signal, which contained much irrelevant
background information. This supports the findings of Brennan et al. and Evans et al., who
found that radiologists showed above-chance performance in distinguishing abnormal from
normal mammograms in the first impression of the image, but the signal from this quick
glimpse did not contain information on the location of suspicious areas [41,42]. Recently,
it was also shown that combining the global image characteristics with a deep learning-
based computer-aided detection tool for mammography can improve its performance in
cancer detection [14,43].

Although radiomic models showed desirable performance in detecting false positives
and false negatives for both cohorts, radiologists in cohort B (the country with a population-
based breast screening program) were less predictable compared to those in cohort A (an
Asian country with both mass and opportunistic mammographic screening practices with
low participation rate). This may be related to study readers from cohort B outperforming
those from cohort A and therefore making fewer diagnostic errors. With a limited number of
errors, it is likely that detecting error-making patterns becomes more difficult for machine-
learning approaches. This has implications around the value of a radiomic pipeline among
high-performing radiologist cohorts whose diagnostic errors tend to be less predictable. In
other words, a pipeline may be more helpful in identifying and eliminating errors made
by less experienced radiologists in mammography reading, such as radiologist trainees,
medical students, and general radiologists not specializing in mammography. However,
once these radiologists gain expert diagnostic skills, these errors may not be easily detected,
and a more individualized prediction model would be more likely to be helpful [14].

Additionally, we found that feature normalization provided no beneficial effect on the
prediction of error patterns, although these mammograms were captured by machines from
different manufacturers. This differs from other radiomic studies, such as prognostic or
cancer subtype classification research, which predicts the probability of an outcome at the
molecular level. In clinics, this is usually achieved through pathological tests, and although
mammograms can contain biological and genetic information related to cancer progression
and subtyping, it is often hidden from the radiologist [44]. Therefore, standardization
of radiomic features may provide additional benefits in these studies to unravel image
characteristics that are not immediately apparent to the vision of the radiologist [45].
However, in image perception studies where radiologists interpret the original rather than
any transformed radiographs, it makes sense that the non-normalized features can reflect
the clinical image processing procedure of radiologists and can perform well in diagnostic
error prediction.

As a proof-of-concept study, it has several limitations. First, the sample size was small,
which could potentially impact the generability of the results for larger populations. Exter-
nal validation using publicly available datasets would be valuable for model validation;
however, for a study focussing on predicting reader diagnostic errors, no current publicly
available datasets containing mammographic examinations were suitable, as these datasets
are primarily designed to develop AI models for diagnosis, while our objective is to predict
the likelihood of diagnostic errors made by radiologists. Despite the sample size limitation,
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we collected radiological assessments from 36 radiologists with varying levels of experi-
ence, and the mammographic dataset is enriched with cancer cases representing various
lesion subtypes commonly encountered in breast screening. This ensures representative
observer performance, which is crucial in diagnostic error analysis studies. Second, no
localized features were used, possibly explaining why the location errors of the lesion
were unpredictable. Nonetheless and despite these limitations, this study highlights the
importance of global radiomic features in the prediction of cohort-specific diagnostic errors.
Therefore, we encourage researchers to explore these features, alongside localized features,
to uncover their potential in various tasks such as diagnostic error prediction, breast cancer
detection, and breast cancer prediction. We also hope that our study stimulates reflection
on the current one-size-fits-all radiology training system, encouraging a collective effort
to revolutionize radiological education. We encourage researchers to embrace the novel
ideas proposed in this study, leveraging the potential of AI to improve diagnostic perfor-
mance, and we urge the community to create more comprehensive and extensive reader
performance datasets.

5. Conclusions

We proposed a framework to detect false positive and false negative errors for cohort-
based radiologists in reading high-density mammograms using global radiomic features.
This method can be further validated, optimized, and then integrated into computer-
assisted adaptive mammography training for future group-tailored educational strategies
to help inform greater error reduction in mammography.
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cohort A and cohort B.
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