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Abstract

In the Pattern Recognition field, growing interest has

been shown in recent years for Multiple Classifier Systems

and particularly for Bagging, Boosting and Random Sub-

spaces. Those methods aim at inducing an ensemble of

classifiers by producing diversity at different levels. Fol-

lowing this principle, Breiman has introduced in 2001 an-

other family of methods called Random Forest. Our work

aims at studying those methods in a strictly pragmatic ap-

proach, in order to provide rules on parameter settings for

practitioners. For that purpose we have experimented the

Forest-RI algorithm, considered as the Random Forest ref-

erence method, on the MNIST handwritten digits database.

In this paper, we describe Random Forest principles and re-

view some methods proposed in the literature. We present

next our experimental protocol and results. We finally draw

some conclusions on Random Forest global behavior ac-

cording to their parameter tuning.

1. Introduction

Machine Learning issues are concerned by several learn-

ing approaches aiming at building high performance clas-

sification systems, with respect to a set of data. One of

them, arousing growing interest in recent years, deals with

combining classifiers to build Multiple Classifier Systems

(MCS) also known as Classifier Ensembles.

MCS attempt to take into account complementarity be-

tween several classifiers in order to improve reliability in

comparison with individual classifier models. The hope is

that aggregating several classifiers will allow to bring the re-

sultant combining classifier closer to the optimal classifier

thanks to the diversity property, which is nowadays recog-

nized as one of the characteristics required to achieve those

improvements [11].

In [11] Kuncheva presents four approaches aiming at

building ensembles of diverse classifiers :

1. The combination level : Design different combiners

2. The classifier level : Use different base classifiers

3. The feature level : Use different feature subsets

4. The data level : Use different data subsets

Those two latter categories has proven to be extremely suc-

cessful owing to the Bagging, the Boosting or the Random

Subspaces methods [2, 8, 10, 11, 7].

The main idea of the Boosting is to iteratively build an

ensemble of base classifiers, each one being a ”boosted”

version of its predecessors [8]. In other words, a ”classi-

cal” classifier is progressively specialized, by increasingly

paying more attention to misclassified instances. All the

classifiers obtained at each iteration are finally combined to

participate in the same MCS.

The Bagging technique which was introduced by

Breiman as an acronym for Bootstrap Aggregating [2], con-

sists in building an ensemble of base classifiers, each one

trained on a bootstrap replicate of the training set. Predic-

tions are then obtained by combining outputs with plurality

or majority vote.

The Random Subspace principle leans on producing di-

versity by using randomization in a feature subset selection

process [10]. For each base classifier, a feature subset is

randomly selected among all the original inputs. All sam-

ples are projected to this subspace and the classifier is then

trained from those new representations.

Few years later, Breiman proposed a family of meth-

ods based on a combination of those principles, called Ran-

dom Forest [3] (RF). It consists in a general MCS building

method using Decision Trees as base classifiers. The partic-

ularity of this ensemble is that each of them has to be built

from a set of random parameters. The main idea is that this

randomization introduces more diversity into the base clas-

sifiers ensemble. The definition given by Breiman in this

paper is deliberately generic enough to let this randomiza-

tion be introduced anywhere in the process. Therefore a RF

could be built by sampling the feature set (like in Random

Subspace principle), the data set (like in Bagging principle),

and/or just varying randomly some parameters of the trees.



Since it has been introduced in 2001, RF have been fo-

cused on and studied by a lot of researchers. They have also

been compared to the other main ensemble methods, as the

two previously mentioned Bagging and Boosting. In most

of those works, RF are said to be competitive with Boost-

ing – known as one of the most efficient [3, 11]. However,

though lots of parameters can be tuned for using RF, it does

not exist any practical study in the literature that examines

more deeply the influence of parameter choices on its per-

formance.

In this paper we propose a preliminary work to study the

Random Forest mechanism in a pragmatic way, by taking a

practitioner point of view. Our aim is not to search for best

intrinsic performance but rather to analyze the global behav-

ior of this family of methods with respect to their parameter

settings. For that purpose we have investigated one variant

of RF called Forest-RI [3] to the recognition of handwritten

digits from the well known MNIST database [12].

This paper is divided into three main parts. In section 2,

we first detail Random Forest principles and review differ-

ent methods proposed in the literature. We then explain our

experimental protocol for using Forest-RI on the MNIST

Database in section 3. Finally we present some results and

discussion to conclude on the Random Forest global behav-

ior according to the studied parameters.

2. Random Forests

Actually, Random Forest is a general term for clas-

sifier combination that uses L tree-structured classifiers

{h(x,Θk), k = 1, ...L} where Θk are independent identi-

cally distributed random vectors and x is an input. With re-

spect to this definition, one can say that Random Forest is a

family of methods in which we can find several algorithms,

such as the Forest-RI algorithm proposed by Breiman in [3],

and cited as the reference method in all RF related papers.

In Forest-RI algorithm, Bagging is used in tandem with

a random feature selection principle. The training stage of

this method consists in building multiple trees, each one

trained on a bootstrap sample of the original training set

– i.e. the Bagging principle – and with a CART-like induc-

tion algorithm [4]. This tree induction method, sometimes

called RamdomTree, is a CART-based algorithm that modi-

fies the feature selection procedure at each node of the tree,

by introducing a random pre-selection — i.e. the Random

Subspace principle.

Each tree is grown as follows :

• For N instances in the training set, sample N cases at

random with replacement. The resulting set will be the

training set of the tree.

• For M input features, a number K << M is specified

such that at each node, a subset of K features is drawn

at random, and among which the best split is selected.

• Each tree is grown to its maximum size and unpruned.

Consequently this algorithm works according to two main

parameters : the number L of trees in the forest, and the

number K of features pre-selected for the splitting process.

During the past few years, the RF family has been en-

larged by several researchers, each of them proposing a

variant of the Forest-RI algorithm.

Breiman has introduced in [3] another procedure for

growing a RF, called Forest-RC, in which the split at each

node is based on linear combinations of features instead of a

single one. This allows to deal with cases with only few in-

puts supplied, that the original Forest-RI method can hardly

handle.

Robnik in [15] tries to improve the combination proce-

dure of the original Forest-RI, by introducing a weighted

voting method. The goal is to take into account a restricted

subset of the classifier outputs, based on individual accura-

cies on similar instances. According to Breiman procedure

for similarity evaluation [3], classifier accuracies on simi-

lar instances are examined in order to remove from the vote

those that show the lowest values.

Some works have also studied the random aspect of the

RF, and have tried to go one step further in that way. Geurts

et al. for example have proposed in [9], the Extremely Ran-

domized Trees method. It consists in using randomization

for the feature selection at each node, as in Forest-RI, but

also for a cut-point selection procedure. In that way, each

tree is totally randomly grown. Earlier, Cutler and Zhao

introduced in [6] the PERT algorithm (for Perfect Random

Tree Ensemble) for which the process is almost the same,

except that the cut-point is computed from two randomly

selected instances.

Another direction of RF investigations proposed in the

literature is what Boinee et al. called Meta Random Forests

[1]. It consists in using RF as base classifiers of combina-

tion techniques. They experiment Bagged Random Forests

and AdaBoosted Random Forests to respectively study Bag-

ging and Boosting using RF as base classifiers.

In spite of all those investigations on designing an ac-

curate RF method, none of them have actually managed to

prove the superiority of one method over the others. In ad-

dition, there does not exist any referenced work that present

experimental results on using RF algorithms in a practical

point of view. And some parameter values are commonly

used without any theoretical nor empirical justifications.

For example, the number L of trees in forests is commonly

arbitrarily fixed to 100. Breiman also chooses to test the

Forest-RI algorithm with K = log2M + 1, where M is the

training set size, but without explaining the reason for this

choice. We thus propose to study this practical approach

by testing RF algorithms in a parameter tuning process. We



detail our experimental protocol in the following section.

3. Experiments

The idea of our experiments is to tune the RF main pa-

rameters in order to analyse the ”correlation” between the

RF performances and the parameter values.

In this section, we first detail the parameters studied in

our experiments and we explain the way they have been

tuned. We then present our experiment protocol, by de-

scribing the MNIST database, the test procedure, the results

recorded and the features extraction technique used.

3.1. Parameters

As mentioned above, we tuned the two parameters of

the Forest-RI method in our experiments : the number L

of trees in the forest, and the number K of random features

pre-selected in the splitting process. In [3] Breiman states

that K has to be greater than 1, in which case the splitting

variable would be totally randomly selected, but does not

have to increase so much. Our experiments aim at progres-

sively increasing this value to highlight whether or not this

statement is true. Breiman also decides for his experiments

to arbitrarily fix the number of trees to 100 for the Forest-RI

algorithm. Thus, another goal of this work is to study the

behavior of the method according to the number of trees, so

that we would be able to distinguish a global tendency. As

RF training process is quite fast, a wide range of trees can

be grown inside the forest.

Consequently, we have drawn two ranges of values for K

and L. Concerning the number L of trees, we have picked

six increasing values, from 10 to 300 trees. They have been

chosen according to the global tendency that appeared dur-

ing the experiments. Using less than 10 trees has proven

to be useless, as well as increasing the number of trees be-

yond 300 trees does not influence the convergence of the

recognition rate.

Concerning the number of features we have tested 20

values following the same approach. This time small val-

ues have proven to be more interesting for seeing the global

tendency of the recognition rate. Thus we have tested each

value of K from 1 to 16, and then five more greater values

from 20 to 84.

3.2. Experimental protocol

The handwritten digit MNIST database is made of

60,000 training samples and 10,000 test samples [12]. The

digits have been size-normalized and centered in a fixed-

size image. It is a good database for people who want to

try learning techniques and pattern recognition methods on

real-world data while spending minimal efforts on prepro-

cessing and formatting.

In this experiment we would like to have an idea of the

result variabilities. We have therefore divided the original

training set into five training subsets of 10,000 samples. Let

Ls denote the original 60,000 samples training set and Ts

the 10,000 samples test set. We denote by Lsi
each of the

5 learning subsets. In Ls the classes are not equally rep-

resented, that is to say that some of them contain less than

6,000 samples. However we would like to use strictly bal-

anced training sets, i.e. training sets with equally distributed

classes. We have consequently decided to use only five sub-

sets instead of six. Moreover it has allowed us to reduce the

tree-structure complexities.

The Forest-RI algorithm has been run with each couple

of parameters on the five Lsi
training sets, so that a RF was

grown for one couple of parameters associated to one Lsi
.

Results on each run have been obtained by testing on the Ts

set. Consequently we have obtained five recognition rates

for each couple of parameters, for which we have computed

the mean value. By recognition rate we mean the percent-

age of correctly classified instances among all the test set

samples, obtained with the forest built in the training stage.

With this work, our aim was not to discuss the influence

of the feature quality on the performance of the classifier

nor searching for best intrinsic performance. Our aim is

rather to understand the role of the parameter values on the

behavior of the RF. That is why we have decided to ar-

bitrarily choose a commonly used feature extraction tech-

nique based on a greyscale multi-resolution pyramid [14].

We have extracted for each image of our set, 84 greyscale

mean values based on four resolution levels of the image, as

illustrated in figure 1.

Figure 1. Example of multiresolution pyramid

of greyscale values of an image

The results and tendencies are discussed in the following

section.



4. Results and Discussion

Table 1 presents a synthesis of our results, according to

the two studied parameters. For each element, we have no-

ticed the mean recognition rate on the left and the maximum

and minimum value among the five run, respectively on the

top-right corner and the bottom-right corner. Highest mean

recognition rates, i.e. greater than 93%, are highlighted.

By examining the differences between maximum and

minimum values of the recognition rates, we can have an

idea of the performance variabilities. One can note that

those values are almost constant, and does not show any

global evolution tendency with respect to the two studied

parameters.

Table 1. Variation in recognition rate mean

values according to K and L

We have first studied the influence of the parameter L,

i.e. the number of trees in the forest. Figure 2 presents

recognition rates with respect to the number of trees for

fixed values of K. We can see a global tendency of the

recognition rate to raise for an increasing number of trees.

It appears that this increasement is not linear but logarith-

mic. One can conclude from this, that with respect to an

increasing number of trees, the Random Forests accuracy

converges. It seems on this figure that the rise of the recog-

nition rate begins to considerably slow down from 100 trees

in the forest. However, we think that more investigations on

this direction are needed to confirm this value. We also have

noticed that the behavior of the random forests is different

with K = 1, in which case the splitting feature is totally

randomly selected. This confirms Buntine et al. and Liu et

al. results given in [5, 13], that conclude that the tree induc-

ing process should implement a splitting selection measure

rather than randomly choose splitting tests.

Figure 2. Recognition rates wrt L

Then we have focused on the second parameter K, i.e.

the number of features randomly pre-selected for the split-

ting procedure. Figure 3 presents some curves of the recog-

nition rate with respect to the number of features, and each

one for a fixed number of trees. This time, there is not a

global increase. All the curves begin to raise for an increas-

ing number of features from K = 1 up to K = 6, then are

almost constant till K = 20, and finally begin to decrease

to reach the minimum in K = 84 – except for L = 10 for

which the minimum is reached for K = 1. According to

Breiman’s work the reason of this decrease can be that a

too much important portion of features pre-selected, makes

the diversity decrease between trees in the forests. Indeed

the more features are randomly pre-selected, the more the

splits will be identical from one tree to another – since they

are then selected according to the splitting criterion. As for

the previous comment, we think here that those values need

to be studied one step further to be confirmed.

Figure 4 proposes another synthetic 3-D representation

of our results. In this diagram, tendencies with respect to the

two parameters simultaneously, clearly appear and a max-

ima surface can be identified with dark shaded greyscales.

The recognition rate maxima are reached in an area defined

by the intervals [100, 300] for L and [5, 20] for K.

5. Conclusion and Future Works

With this work we have experimented the Forest-RI al-

gorithm with different parametrization values in order to

present a study on Random Forest in a strictly pragmatic ap-

proach. For that purpose we have chosen to test the method



Figure 3. Recognition rates wrt K

Figure 4. Recognition rates wrt K and L

on the MNIST handwritten digit database, that provides a

large number of samples of real-world context data. We

have managed to highlight global tendencies of the Ran-

dom Forest behavior according to some classical parame-

ters. This has allowed us to present empirical results that

draw primary conclusions on parametrization influence for

using Random Forests. We have shown that the number K

of features randomly selected in the Forest-RI process has

to be greater than 1, but should not be actually so high (i.e.

greater than 20). We have also highlighted that the recog-

nition rate tends to converge for an increasing number of

trees. We can see that for a well defined value of K (i.e.

K ≃ 12 in this case) the recognition rate does not rise a lot

beyond 100 trees.

Obviously we think that further investigations in that

way are needed to confirm those conclusions. For example

it would be necessary to make similar experiments with dif-

ferent databases, in terms of features space dimension and

training set size, to generalize our results or even to deter-

mine whether or not the interesting values found in those ex-

periments depend on those characteristics. It would also be

interesting to focus on other characteristics of the Random

Forest process such as diversity or individual tree strength,

to empirically confirm Breiman theorical statements about

parameter influence on correlation and individual strength

of Random Forests [3] [11].
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