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ABSTRACT: Random walk simulation has the potential to be 
an  extremely powerful tool in the ~nvestigation of turbulence 
in environmental processes. However, care must be taken in 
applylng such simulat~ons to the mohon of particles in turbu- 
lent marine systems where turbulent diffusivity IS conlmonly 
spatially non-uniform. The problems associated with this non- 
uniformity are far from negligible and have been recognised 
for quite some time. However, incorrect implementat~ons con- 
tinue to appear in the Literature. In this note computer simula- 
tions are presented to illustrate how and why these imple- 
mentations are incorrect, and a slmple technique that can 
properly slmulate turbulent diffusion in the marine environ- 
ment is discussed. 
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Computer simulation of the movement of individual 
parhcles in a turbulent environment is becoming a 
much used and illuminating tool in investigating envi- 
ronmental processes. In the marine environment, pro- 
cesses that can be investigated in this way range from 
the distribution of planktonic cells and inter-particle 
encounter rates to the aggregation of organic material 
into flocs and marine snow, sedimentation rates and 
the trophic interactions of predators and their prey. 
The power of this method lies in its simplicity. Behav- 
ioural responses or history-dependent processes can 
be 'programmed' into the particle simulations in a 
transparent manner, and a variety of hypotheses can 
be tested. 

The first and perhaps most crucial question to be 
addressed in such simulations is how individual parti- 
cles move in response to turbulent diffusion. Here, a 
random walk model is most often used. The central 
premise of a random walk simulation is that, given a 

diffusivity K (m2 S-'), the ensemble average (denoted 
by (. . . ))  of the square of the particle displacement z is 
given by 

d - ( z 2 )  = 2K 
d t 

for a l-dimensional process (e.g.  Taylor 1921, Batche- 
lor 1949, Csanady 1973, Berg 1983). For an  individual 
particle, this translates to a change in position, from 
z, to z,,,, over a finite time step, 6 t ,  given by 

where R  is a random process, with mean ( R 2 )  = 0 and 
standard deviation ( R 2 )  = r. (e.g.  if R  is a uniform dis- 
tribution between + l  and -1, then r = 1/3). 

It has long been recognised that turbulent diffusion 
in marine environments is not uniform. For instance, a 
water column on a shelf sea under the influence of 
wind, tides and stratification can exhibit a diffusivity 
profile which is high in the surface and bottom layers, 
and low in the vicinity of the pycnocline. An example 
of such a profile, calculated using a k-E turbulence clo- 
sure scheme is shown in Fig. 1. If we begin with a uni- 
form distribution of neutrally buoyant particles in this 
turbulent diffusive field, and calculate their redistribu- 
tion by a straightforward (naive) random walk model, 
i.e. 

then the particles eventually begin to accumulate in 
the region of low diffusivity. This is shown in Fig. 2 ,  
where maximum particle concentrations of 3 times the 
mean concentration are  observed in the low diffusivity 
region after 6 h of simulation. If we equate the particles 
with phytoplankton cells, we might conclude that we 
have found a n  explanation for the subsurface chloro- 
phyll maximum based purely on physical processes. 
However, the particles can just as well represent salt 
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diffusivity [rn2/s] Fig. 1 A representative dif- 
fusiv~ty profile as calculated 
by a k-E turbulence closure 
scheme as described in Bur- 
chard & Baumert (1995). The 
water column depth is 40 m. 
A surface wind stress corre- 
sponding to a w ~ n d  speed of 
about 9 m S-' is appl~ed,  as is 
a tidal current of amplitude 
0.5 m S-' There is moderate 
stratification: a vertical dif- 
ference of 0.15 kg m-3 over a 
15 m pycnocline separating 
vertically well-mlxed surface 

and bottom layers 

ions, in which case we have demonstrated that 
the salinity of the low turbulence region should 
increase. As pointed out by Holloway (1994), this is 
clearly incorrect. 

In comparison, the equivalent situation described by 
a differential equation over the vertical co-ordinate z 
and time t  for the particle concentration, C ,  may be 
written 

with boundary conditions 

at the surface and bottom. The steady state solution is 
C(z) = CO [i .e.  C ( z )  is constant], irrespective of the ver- 

2 3 4 

time [h] 

Fig. 2. Computer simulation of 4000 neutrally buoyant par- 
ticles, initially distributed uniformly over depth, subject to the 
vertical dffusivity profile shown in Fig. 1. Subsequent trajec- 
tories are calculated using the naive random walk model, 
Eq. (3). Surface and bottom surfaces are reflecting; that is, if 
z < -H then z + -(2H + z) and if z > 0, then z + -2. The time 
step used is 6 S. R is a uniform random distribution over the 
interval [+l, -11 giving ( R  ) = 0 and (R ' )  = 1/3. Results are 
presented as concentrations (particles m-'), and averaged 
over 10 min time intervals. 6 h of simulation are plotted. A 
perfectly uniform distribution would give 100 particles m-' 

tical variation of K@), whether C represents neutrally 
buoyant particles or any other passive tracer. 

A resolution of these apparently inconsistent results 
can be inferred from careful consideration of the prob- 
ability and/or moment statistics of the spatially varying 
diffusivity field. The formal aspects of these considera- 
tions have been well documented (e.g. Thomson 1984, 
Okubo 1986, Hunter et al. 1993). Following Hunter 
et  al. (1993). it is demonstrated in Appendix 1 that 
the corrected random walk model corresponding to 
the situation described in the differential equation, 
Eq.  (4 ) ,  is 

where we use the shorthand notation, K' = 6K/6z, to 
represent the gradient of diffusivity. There are 2 dif- 
ferences between this, the diffusive random walk 
simulation, and the naive random walk, Eq. (3). Firstly, 
and most importantly, there is an additional non- 
random 'advective' component, Kf(z,)Ft, from areas of 
low diffusivity to areas of high diffusivity. Secondly, 
the diffusivity is not estimated at the initial particle 
location, z,, but offset a distance l / 2 ~ ' ( ~ , ) 6 t .  Note also, 
that in the case where the diffusivity becomes uniform, 
K 1 ( z )  = 0,  the naive and diffusive random walks 
become identical. 

To illustrate the effect of these additional terms, we 
use the same diffusivity profile and situation as in 
Fig. 2 and calculate the redistribution of neutrally 
buoyant particles using the diffusive random walk 
model, Eq. (6). The results, presented m Fig. 3,  clearly 
correspond much better with the differential equation 
solution; the distribution, apart from apparently ran- 
dom fluctuations no greater than ?15% of the mean, 
remains virtually uniform. Apparently, the additional 
non-random term in Eq. ( 6 )  exactly balances the 
tendency of the naive model to collect particles in low 
diffusion regions. 

time [h] 

Fig. 3.  As in Fig. 2 except that particle trajectories are sirnu- 
lated using the diffusive random walk model, Eq. (6).  A per- 

fectly unlform distribution would glve 100 particles m-' 
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Most simply put, this term arises because, over a 
given time interval, particles at a particular location 
are influenced by slightly more energetic eddies origi- 
nating in the area of high diffusion compared with 
somewhat less energetic eddies from the low diffusion 
region. Note that diffusivity is related to the turbulent 
velocity fluctuations, W' ,  by K = (wI2)7, where 7 is the 
Lagrangian correlation time scale (cf. Csanady 1973). 
The effect of a gradient in the turbulent kinetic energy 
field is to induce a mean drift in the direction of in- 
creasing diffusivity (e.g.  Legg & Raupach 1982, Thom- 
son 1984, Rahm & Svenson 1986). This is sketched in 
Fig. 4. Suppose that a particle is at zo, where diffusivity 
is KO and is locally non-uniform of the form K(z) = KO + 
(z  - zo)K1. If we choose R as a random step process of 
+ l  (i.e. r = 1) then, in the first instance, the particle 
moves either up or down a distance 6z = +(2KoFt)It2. 
However, the particle's upward motion is subject to 
slightly higher diffusivity (turbulent kinetic energy), 
K+ = KO + (2KoFt)"2K'. This gives a net upward dis- 
placement of 

On the other hand, the particle's downward motion 
is subject to slightly lower diffusivity, K- = KO - 
(2K06t)"2K', which gives a net downward displace- 
ment of 

The overall effect is that the centre of mass of the 
particles, initially at zo, moves in the direction of 
increasing diffusivity a t  rate K'. 

K(:) = K ,  +I: - %)K' 
I 

net d~splacement of 

I 

The principles outlined in the above paragraphs have 
been known for several years. Despite this however, ei- 
ther through a lack of knowledge or an underestimate 
of the importance of this effect, naive random walk 
models continue to appear in the literature applied to 
situations for which they are  ill suited (e.g. Patterson 
1991, Yamazaki & Kamykowski 1991, Kamykowski e t  
al. 1994, MacIntyre et al. 1995). While it is not evident 
what the implications of this erroneous application are 
for these particular studies, it is clear that there is a 
potential for quite substantial differences, as may be in- 
ferred by comparing Figs. 2 & 3.  As is shown in 
Appendix 1, the naive random walk model of Eq. (3) 
corresponds to the differential equation 

--p ( K C )  = 0 
at az2 

with boundary conditions 

at the surface and bottom. This can be rewritten in 
the form 

The second term in this equation represents an actual 
advection from areas of high diffusivity to areas of 
low diffusivity. 

Admittedly, the random iterative process in Eq. (6) is 
an approximation, dependent ultimately on the size of 
the time step, 6t. However, it should be stressed that 
Eq. (6) is not a higher order approximation to Eq. (3). 
That is, the discrepancy between the naive and cor- 
rected random walk models cannot be made negligibly 
small by decreasing the time step. In order to simulate 
particle motions over a finite time interval At = nFf, 
Eq. (6) must be iterated n times, giving an advective 
displacement of -K'At ,  irrespective of how small S t  is. 
The criterion for the appropriate application of Eq. (6) 
requires that, locally, the diffusivity be well approxi- 
mated by 

over the range of expected turbulent displacements, 
z = zo 2 ( 2 ~ ~ 6 t ) " ~ .  This means that higher order con- 
tributions to the Taylor expansion implied in Eq. (11) 

Fig. 4 .  Sketch of the eddies affecting the motion of a particle 
are small. Specifically, this suggests that the second 

in a non-uniform diffusivity field. The maximum of derivative of diffusivity, K", is such that 

the eddies in the vicinity of the particle is approximately 6z = 
( 2 ~ ~ 6 t ) ' l ~ .  However, because the turbulence field is non- K .> 'l2 [ ( 2 ~  F t )1 '2 ]2~"  
uniform, eddies that sweep the partlcle upwards will he 
slightly larger than those that sweep it downwards. This This criterion can always be met by choosing a small 
disparity of maximum eddy scales ~ntroduces a net upward enough S t .  In particular 
displacement, K'6 t ,  of the centre of mass of an ensemble 

average of particles in~tially at  2, 6t  * MIN(1/KU) 
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where MIN implies the minimum value over the region 
of interest. For the diffusivity profile in Fig. 1, this 
requires Ft G 300 S. 

A distinction should be made here between physical 
diffusion and 'biological' diffusion. For example, con- 
sider the rapid jump of a copepod which is based on a 
reaction to some environmental stimulus at a particular 
location. The length of the jump does not depend on 
the variation of the stimulus between the copepod's 
initial location and its end point. In this way, rapid 
jump behaviour can be modelled by a naive random 
walk so that behavioural diffusion can concentrate 
biota at  particular locations. 

Lastly, we can consider the residence times of sink- 
ing particles in the turbulent (wind-mixed) surface 
layers of the ocean. As pointed out by Ruiz et al. (1996), 
there is an apparent paradox between the (naive) 
random walk model and intuition. In particular, if a 
particle has a settling velocity, W, and turbulence is 
simulated by a random upward or downward motion, 
then, on average, the random deflections by turbu- 
lence will average out and the effective settling veloc- 
ity of the particles will remain unaffected. This is 
counter to the commonly held concept (cf. Ruiz et al. 
1996) that increased mixing increases the residence 
time of particles in the mixed layer. Ruiz et al. (1996) 
examined the advection-diffusion equation for particle 
concentrations, C@). Here, increased residence times 
arise because turbulence decreases the flux, F = Chw, 
out of the mixed layer, by decreasing C,,, the particle 
concentration at  the bottom of the mixed layer. In light 
of the diffusive random walk, we can now see how this 
increased residence time is brought about for individ- 
ual particles; their effective settling velocity is in fact 
reduced at the bottom of the mixed layer where the 
gradient of diffusivity, K', can be large and directed 
upwards. That is, the centre of mass of a cloud of parti- 
cles released at the base of the mixed layer will move 
towards the surface at  a rate K'. Ruiz et al. (1996) cite 
dynamics studies (Fung 1993, Wang & Maxey 1993) 
which suggest the opposite. Namely, that for particles 
of low inertia (i.e. plankton), settling is essentially un- 
affected by turbulence. However, these resuits relate 
to isotropic turbulence, which is not the case at the bot- 
tom of the surface mixed layer. 

As an illustration, Fig. 5 includes 3 examples of a 
random walk simulation for negatively buoyant parti- 
cles (W = -10-~ m ss1 = -86.4 m d-l) under the influence 
of a turbulent diffusivity profile 

corresponding to surface wind mixing. The first case, 
Fig. 5a, uses the naive random walk simulation Eq. (3), 
and the second case, Fig. 5b, uses the diffusive random 
walk Eq. (6). The third simulation case, Fig. Sc, is for a 

-0 1 2 3 4 5 6 
time [h] 

Fig. 5. Computer simulation of 4000 negatively buoyant par- 
ticles ( W  = - I O - ~  m s-' = -86.4 m d-') initially distributed uni- 
formly between 8 and 10 m depth subject to diffusivity K(z) = 
K, - Kbzexp(az), where K, = 10-3 m2 S-', Kb = 6 X 10-3 m S-', 

and a = 0.5 m-', for the (a) naive and (b) diffusive random 
walk simulations. Case (c) is for uniform diffusivity K(z) = K,  = 
2 X I O - ~  m2 S-'. The surface boundary is reflecting. The depth 
is effectively infinite, although for convenience it was not 
plotted below 20 m. The time step used is 10 S. R is a uniform 
random distribution over the interval [+ l ,  -l]. Results are 
plotted as concentrations (particles m-'), and averaged over 

12 min time intervals 

uniform diffusivity, K,, equal to the average diffusivity 
over the upper 20 m of the water column. In each 
simulation, 4000 particles are released in a uniform 
distribution between 8 and 10 m depth. This is close to 
the base of the wind-mixed layer. The plots exhibit 
similar trends, with the densest concentrations of par- 
ticles sinking out of the upper 20 m after 3 to 3 h. This 
can be compared to the zero diffusion case where no 
particles would remain in the upper 20 m after 3.3 h. In 
case (b),  that for the diffusive random walk, it appears 
that a larger proportion of the particles reach higher 
into the surface water column, and remain there longer, 
than in either case (a) or case (c). 

To underscore this, the total number of particles 
within the upper 5 m of the water column is plotted in 
Fig. 6. For brevity, this number of particles is denoted 
as P,, Pb, and P,, for each case respectively. The 
number of particles for all cases reaches a maximum 
between 1 and 2 h after release. Subsequently, the 
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0  

0 1 2 3 4 5 6  

t~me [hours] 

Fig. 6 Total number of particles within the upper 5 In of the 
water column for the 3 random walk simulations descnbed 

in Fig 5 

number decreases with time in an  apparent exponen- 
tial decay. Comparing the naive P, and uniform diffu- 
sivity P, shows that while their peak concentrations are 
about the same, the subsequent decrease in P, is much 
faster than in P, (P, = e/? after 3 h,  P, = e/3 after 6 h) .  
From this, one would conclude that increasing the 
diffusivity in the surface mixed layer decreases the 
residence time of particles. On the other hand, the 
maximum concentration for the diffusive random walk 
Pb is about twice that for uniform diffusivity, i.e. P, = 

2Pc. This difference of a factor of 2 persists throughout 
the subsequent decay period. The conclusion that can 
be drawn from this comparison is that the random walk 
model can simulate the increased residence times for 
particles in the surface mixed layer. Again we see that 
the diffusive random walk qualitatively agrees with 
conclusions drawn from differential equation solutions. 

It is unfortunate that much of the literature sur- 
rounding random walk processes is posed in the spe- 

cialist mathematics of stochastic differential equations. 
While the rigour of these methods cannot be denied, 
they have tended to cloud important principles and 
processes (e.g.  Yamazaki & Kamykowski 1994) ,  mak- 
ing them inaccessible to the non-expert user. However, 
as pointed out by Thomson ( 1 9 8 7 ) ,  the proof is in the 
pudding. Specifically, for a given physical situation, 
a stochastic model must converge with the differential 
equation solution over a sufficiently large number of 
realisations. If it doesn't, then the stochastic model is 
incorrect. In light of this criterion, this note has demon- 
strated that the naive random walk model Eq. ( 3 )  is 
systematically incorrect for non-uniform diffusivity. 
The correction required to make the random walk 
model consistent with the physical description is 
achieved quite simply, Eq. ( 6 ) ,  without a drastic in- 
crease in computing costs. 

Finally, it should be noted that physical models of 
turbulence are far from comprehensive. They can 
describe certain, but not all, aspects of turbulence. For 
instance, there is a serious shortcoming in physical 
models which lead to the parameterisation of the 
effects of turbulence as diffusivity. Such models, 
whether cast in terms of differential or random walk 
equations, can only say something sensible about the 
distribution of particles relative to a fixed co-ordinate 
frame. That is, in an  Eulerian sense. The change in the 
relative distance between particles, i.e, a Lagrangian 
measure, is dependent on their separation (e.g.  
Csanady 1973) .  How this effect can be incorporated 
into a random walk model is far from clear. 

It is hoped that this short note has clarified some 
aspects of random walk simulations so that they can be 
used to faithfully represent physical dispersion as is 
found in marine systems. This fidelity must be a fun- 
damental requirement for integrated physical and 
biological models in order for their results to be 
meaningful. 

Appendix 1 

Suppose we have a region of space where the d~ffus~vi ty  1s locally non-umform and,  wlth an  appropnate choice of the z origin, 
of the form K(z) = K, + zK',. We will examine the moments M, of the particle concentration C 

for the two advection-diffusion like equations 

case (a) :  

case (b) :  

Multiplying each equation by zn and integrating yields the local evolut~on of the nth momenL. For c.xdmple, case ( a ) ,  Eq (A2a),  
gives ac a2c ac \ d M n  = Jzn-dz = ]'znK " c +  zn+' K',, - + znK '  - ~ d z  

d t  - a t  
A azL d7 dz 

(Append~x cont~nued on next page) 
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Appendix l (continued) 

Stipulating that the particle concentration remalns spatially limited, that 1s both C + 0 and aC/az + 0 as z + +oo, integration 
by parts yields. 

- -  dMn - Kon(n - l)Mn., + K'o n2M,_, 
d t 

From this, we can see that the 0th moment, i.e. the total concentration, remains unchanged. The equation for the normalised 
moments Nn = Mn/Mo then becomes 

- =  dNn Kon(n - l)Nn_, + KO n2Nn_, IA3a) 
d t 

A similar treatment for case (b) leads to * = Kon(n - 1)N,-, + Keo n(n - l)N,., 
dt 

Setting the initial conditions of the distribution as a point source at z = 0, i.e. No = 1, N, = 0, N2 = 0 at t = 0, then integrating 
over a time interval, (O,St), gives the normalised moments of the distribution after time St. In particular, case (a) leads to 

That is, after time 6t, the centre of mass of the distribution, N,, has moved a distance, Kb6t. Further, the second moment of 
the distribution, N2, has increased by 2KSt, where K is evaluated at the distribution's new centre of mass. 
In comparison, case (b) leads to 

The centre of mass of the distribution remains unchanged, and its variance increases by 2K06t. In order for a random walk 
model to simulate either one of the differential equations (Eq. A2a, b), the random process involved should have the same 
moments as in the corresponding Eqs. (A4) & (A5). In particular, if Ris a random process with mean ( R )  = 0 and variance ( R * )  
= r, then the random walk simulations appropnate for each differential equation (Eq. A2a, b) are respectively 

case (a): znil = Z, + KS(zn)6t +R{Z~- 'K[Z,  + 1/2~'(z,)6t]6t}i'2 

case (b): z,,, = z, + ~ [ 2 r - ' ~ ( z , ) S t ] ' ' ~  

Thus, the naive random walk model, Eq. (A6b), simulates Eq. (A2b), which has an inherent advection term, 
- a(CaK/3z)/az, in the direction of decreasing diffusivity. On the other hand, the diffusion equation, Eq. (A2a), is simulated 
using the diffusive random walk model, Eq. (A6a). 
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