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Abstract

Background: The etiology of cancer involves a complex series of genetic and

environmental conditions. To better represent and study the intricate genetics of

cancer onset and progression, we construct a network of biological interactions to

search for groups of genes that compose cancer-related modules. Three cancer

expression datasets are investigated to prioritize genes and interactions associated

with cancer outcomes. Using a graph-based approach to search for communities of

phenotype-related genes in microarray data, we find modules of genes associated

with cancer phenotypes in a weighted interaction network.

Results: We implement Walktrap, a random-walk-based community detection

algorithm, to identify biological modules predisposing to tumor growth in 22

hepatocellular carcinoma samples (GSE14520), adenoma development in 32

colorectal cancer samples (GSE8671), and prognosis in 198 breast cancer patients

(GSE7390). For each study, we find the best scoring partitions under a maximum

cluster size of 200 nodes. Significant modules highlight groups of genes that are

functionally related to cancer and show promise as therapeutic targets; these include

interactions among transcription factors (SPIB, RPS6KA2 and RPS6KA6), cell-cycle

regulatory genes (BRSK1, WEE1 and CDC25C), modulators of the cell-cycle and

proliferation (CBLC and IRS2) and genes that regulate and participate in the map-

kinase pathway (MAPK9, DUSP1, DUSP9, RIPK2). To assess the performance of Walktrap

to find genomic modules

(Walktrap-GM), we evaluate our results against other tools recently developed to

discover disease modules in biological networks. Compared with other highly cited

module-finding tools, jActiveModules and Matisse, Walktrap-GM shows strong

performance in the discovery of modules enriched with known cancer genes.

Conclusions: These results demonstrate that the Walktrap-GM algorithm identifies

modules significantly enriched with cancer genes, their joint effects and promising

candidate genes. The approach performs well when evaluated against similar tools

and smaller overall module size allows for more specific functional annotation and

facilitates the interpretation of these modules.

Keywords: Network analysis, Cancer, Modules, Graph theory, Interactions, Random

walk, Walktrap

BioData Mining

© 2013 Petrochilos et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Petrochilos et al. BioData Mining 2013, 6:17

http://www.biodatamining.org/content/6/1/17

mailto:dpetroch@uw.edu
http://creativecommons.org/licenses/by/2.0


Background

Cancer biology involves an intricate series of genetic and environmental interactions that

act in concert to influence the onset and progression of disease. The complex nature of

this information motivates the search for analytical tools that can model these interactions

to examine associations between gene interactions and cancer. Network-based studies

facilitate these genotype-phenotype investigations by integrating evidence of biological

interactions from high throughput experiments, the literature, and a growing number of

online databases, to improve the prioritization of disease genes and their interactions.

Gene set enrichment approaches leverage genomic interaction and pathway informa-

tion to enable the study of putative genes in the context of their biological processes.

Gene Set Enrichment Analysis (GSEA) [1] is a computational method that considers a

priori defined gene sets to investigate expression data for significantly enriched sets of

genes or pathways. GSEA focuses on the significance of groups of interacting genes

rather than individual genes; and variations have been developed to improve statistical

validity [2-5] and to use more granular methods to study pathway activity [6-9]. Such

approaches allow interpretation of significant genes in the setting of their pathway

interactions and functional relevance; however, they are limited in their ability to search

for significantly expressed genes that form a small component of large pathways or

interact across multiple gene sets.

Network analyses provide a framework to study genes in the context of interactions de-

rived from multiple data sources and integrated as a global interactome. Several studies

evaluate the topology of disease genes in global interaction networks and have found that

related disease genes are more likely to interact, and that cancer genes are associated with

high network centrality [10-12]. Building on the hypothesis that neighboring genes within

an interaction network share a common biological function, other network studies seed

known disease genes in functional networks combining evidence from the literature, func-

tional annotation, genomic distances, or genetic variation data (i.e., GWAS, SNP, eQTL),

to search for nearby putative genes [13-15]. Related work integrates experimental data in

the interaction network, for example, significant genes from regulatory or proteomic

experiments, to discover candidate genes given their proximity to query genes [16-18].

Further graph-based approaches search for densely connected communities within

interaction networks, using the structure of the network and weights derived from

experimental data to find modules significantly associated with phenotypes of interest.

Dittrich and colleagues [19] implement a Steiner tree to find parsimonious subnetworks

of cancer-related genes in microarray studies. The tree is an optimally connected sub-

graph spanning an interactome weighted by expression data. Ideker et al. and Chuang

et al. [20,21] apply a simulated annealing algorithm to identify significant subgraphs

associated with cancer in a protein interaction network. The algorithm initiates module

generation with seed genes and iteratively adds nearby proteins with significant p-values

to the subnetwork, until an optimal score is reached reflecting differential activity of the

module in the expression data. Ulitsky and Shamir [22] use a seed-based clustering algo-

rithm to discover significant modules in yeast and human cell cycle data. They provide

multiple heuristics to generate seeds in the network and build modules based on similarity

in expression values. These studies conclude that mining for dense subgraphs of signifi-

cant genes within interaction networks can reveal modules of genomic interactions that

are functionally relevant to specific phenotypes of interest.
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Among graph-based algorithms used to study genomic data, random walks have

shown strong performance in the prioritization of disease genes and when evaluated

against other graph-clustering algorithms used to partition complex networks [23-25].

Transition probabilities generated by the random walk are drawn upon to calculate

distances between network nodes that can be used to prioritize genes or as metrics for

clustering algorithms. Kholer et al. [14] apply a random walk in a functional interaction

network to identify novel disease genes by their proximity to known disease genes

based on genome mapping, eQTL and interaction data. They conclude that random

walks outperform other distance-based methods in prioritizing related disease genes,

and similar approaches have been applied in genome-phenome networks [26,27]. Tu

et al. [28] employ a heuristic random walk in an integrated network to find regulatory

modules in gene expression data, identifying the most likely path from quantitative trait

loci to a candidate gene. The Markov Clustering (MCL) algorithm, based on random

walks, has been applied to cluster proteomic and expression data using similar expres-

sion profiles [29], and to search for gene signatures in cancer expression data [30].

Komurov et al. [23,31] implement a random walk algorithm to prioritize cancer genes

and hierarchically cluster expression data. These studies show the random walk is well-

adapted to genome studies in interaction networks and can be used to define distances

between nodes that reflect correlation or relevance of interaction between nodes.

The implementation of random walks varies based on optimization strategies, greedy-

search heuristics and the calculation of distance metrics. We use a random-walk algo-

rithm, Walktrap [32], that is optimized for large networks and integrates a community

search using distances derived from transition probabilities. We develop a scoring method

to rank significant modules, and configure the algorithm to improve the search for

informative modules by including a series of stopping criteria in the merge process, using

modularity, module size and maximum module score to guide clustering. The random

walk algorithm adapted to genomic modules (Walktrap-GM), is applied to guide a semi-

supervised search for cancer-related modules in an expression-weighted interactome.

Walktrap-GM demonstrates strong performance compared with similar tools developed

to identify subnetworks of disease genes in interaction networks and highlights the

potential role of candidate genes and their interactions in cancer.

Methods

We employ a graph-based random walk algorithm in an integrated interaction

network to mine expression data for modules of genes associated with cancer

outcomes. First, metabolic, signaling, and protein interactions from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [33] and the Human Protein Reac-

tion Database (HPRD) [34] are used to construct a global network of biological

interactions. Edge weights are derived from expression data from three public

datasets with multiple cancer outcomes: breast cancer, hepatocellular carcinoma

and colorectal adenoma. We apply a random walk algorithm to these networks to

discover modules of closely interconnected genes and build communities using

distances derived from the random walk process. Finally, a score is calculated for

each community and modules are ranked by significance. These methods are

summarized in Figure 1.
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Gene expression data

Three cancer datasets were downloaded from the Gene Expression Omnibus (GEO)

[35] covering onset of breast cancer prognosis (BC), hepatocellular carcinoma (HCC),

and adenoma development in colorectal cancer (CCA). Data were selected to represent

different stages of cancer onset and development, by the availability of paired samples

comparing normal and adjacent tissues, and detailed prognosis data. We include three

recent, large case–control studies from expression studies generated by common

platforms, Affymetrix U133A and U133A 2.0 arrays. GSE14520 is a study of hepatocel-

lular carcinoma conducted by Roessler et al. [36], consisting of 22 paired tumor and

non-tumor expression profiles using the Affymetrix HG-U133A 2.0 array. Desmedt

et al. [37] published an expression dataset consisting of 198 samples to independently

validate a 76-gene prognostic breast cancer signature as part of the TRANSBIG project

(GSE7390). A total of 198 profiles from lymph node-negative patients (N-) were

analyzed on the Affymetrix HG-U133A array, and each profile was associated with the

Adjuvant!Online clinical risk index, identifying patients at high risk for distant

Figure 1 Flow diagram of network-based expression analysis. Three cancer datasets from GEO and

interactions from HPRD and KEGG are integrated in a weighted interaction network. The Walktrap random

walk builds modules based on transition probabilities generated from the random walk process. The

modules are assessed for their significance compared to a random distribution of differential expression

values per module.
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metastasis (good = 47, poor = 151). Sebates-Bellver [38] obtained tissue from sporadic

colonic adenomas and normal mucosa of 32 colonoscopy patients and analyzed expres-

sion profiles using Affymetrix HG-U133A 2.0 arrays (GSE8671). Normal tissue was

compared to colonic adenoma cancer precursors. These data are summarized in

Table 1.

We calculate normalized, log-transformed fold-change values and p-values com-

paring paired normal versus disease tissue in HCC and CCA, and high-risk versus

low-risk samples in BC. Log odds of differential expression were calculated by em-

pirical Bayes and corresponding p-values were corrected for multiple testing using

the Benjamini and Hochberg false discovery rate [39]. Processing of expression

values and phenotype data and differential statistical analyses were performed in R

using the GEOquery [40] and limma [41,42] packages in Bioconductor [43].

Network construction

The interactome for this study was built by extracting human interactions from KEGG

and HPRD. KEGG relations were parsed from KGML files, representing 32,563 unique

interactions. Metabolic reactions were defined as a relation between two neighboring

enzymes that share a common metabolite; signaling reactions were defined as two

genes that participate in a signaling cascade where both genes share a reaction event. A

total of 39,240 protein-protein interactions were downloaded from HPRD. Duplicate

nodes and edges were removed and provenance of each interaction was saved as an

edge attribute. The resulting global interaction network consisted of 10,882 nodes and

70,385 interactions. The largest connected cluster of unique pairwise interactions

consisting of 10,642 nodes and 62,407 interactions was extracted for further analysis.

Global statistics are summarized for the network: the network diameter is 15; graph

density is 0.0011; average node degree is 11.72; average node betweenness, the number

of shortest paths via a node or edge are 16723 and 3759, respectively; closeness, or the

inverse of the number of nodes in the shortest path from one node to all other nodes

in the network, is .2454; the average shortest path length is 4.1281; and global cluster-

ing coefficient is 0.1314. Small average path length between network nodes and high

betweenness characterize the small world property of the network such that all nodes

are generally reachable by all other nodes in the network by relatively few steps.

Weights and significance scoring

For each interaction network corresponding to HCC, CCA or BC data, edge weights

are estimated as a function of differential expression. Each node is mapped to an

Table 1 Description of cancer expression data

GEO
accession

Reference Clinical outcome # of samples Controls

GSE14520 Roessler 2010 Hepatocellular carcinoma
tumors (HCC)

22 Hepatocellular
tumors

22 Paired non-tumor

GSE7390 Desmedt 2007 Risk of early distant
breast cancer
metastasis (BC)

198 Breast tumors from
lymph-node negative
patients

Favorable prognosis
(good = 47, poor = 151)

GSE8671 Sebates-Bellver 2007 Colorectal cancer
adenomas (CCA)

32 Paired sporadic
adenoma

32 Paired normal
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HGNC gene symbol and the activity of that node is determined by the absolute value

of the fold-change estimate for that symbol. Where multiple probes are associated with

a gene symbol, we choose the node with maximum differential expression. This ap-

proach was chosen rather than using p-values, as fold-change measures were more ro-

bust weight factors with a more discrete range of values and stable dispersion. Absolute

fold change was used in lieu of correlation values to support a semi-supervised analysis

of the association between the cumulative activity of all nodes in the module and the

outcome variables versus unsupervised clustering.

Weights are applied to each edge by calculating the square of the mean of the two

adjacent nodes of the edge, FC1j jþ FC2j j
2

� �

. The average weighting scheme was considered

best suited to the random walk approach as it allows for more descriptive probabilities

than weighting schemes that use for example, maximum or minimum values. Further,

this weighting scheme improves community cohesiveness in settings where and indirect

interaction may exhibit significant differential expression, but the intermediate inter-

action is non-significant.

The cumulative activity of a module is a squared transformation of the average

weighted expression for all nodes in the module; where the weight of a given node is

the maximum fold change of probes corresponding to its gene symbol. We evaluate the

significance of the magnitude of expression for modules greater than three nodes by

comparing the cumulative activity of the module against a random distribution. The

random distribution is a sample 5000 permutations of cumulative activity estimates per

module size with n nodes, and each permutation is generated by a random sampling of

n fold-change values. The module score is a test statistic comparing the cumulative

activity of a module against the bootstrap distribution ((μ0
2-μ1

2/)σerr
2), and is used to

rank high-scoring modules.

Community analysis

Among graph-based approaches, the random walk on graphs performs well in defining

distances between nodes and has been applied to find communities in networks. We

utilize a random walk algorithm, Walktrap, developed by Pons and Latapy [32] and

implemented in iGraph, [44] to simulate a random walk in the interaction network.

The random walk, compared to other popular hierarchical or seed clustering methods,

utilizes the structure of the network to build distance metrics, and Walktrap optimizes

the community search using the graph-theoretic concept of modularity. The algorithm

has shown high efficiency and accuracy in revealing community structure in large net-

works [45]. The complexity of the algorithm is generally Ο(mH log n), and Ο(n3) in

sparse matrices [32] and run time statistics using the Walktrap are summarized in

Additional file 1. Further, in benchmark testing, we found the random walk to be com-

putationally more efficient than using edge-betweenness, spectral methods, or spanning

trees, to detect communities.

The algorithm begins with graph G and its associated adjacency matrix A. In the

weighted network, Aij ∈R if i and j are connected in G, and Aij = 0 otherwise. The ran-

dom walk process starts at a vertex i, and at each time point in the walk of length t, a

random step is taken to an adjacent node j. Here we set t to 3. The transition probabil-

ity at each step is Pij ¼
Aij

d ið Þ where d(i) is the degree of vertex i , d(i) = ∑ jAij. Transition
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probabilities define the transition matrix P of the random walk, and powers of P deter-

mine the probability Ptij that the walker will traverse from i to j over time t. Structural

similarity between vertices and communities are calculated using probabilities Ptij to

measure the distance between nodes. The distance between the two vertices i and j, rij

is computed by:

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

Pt
ik−P

t
jk

� �2

d kð Þ

v

u

u

u

t ð1Þ

Similarly, the distance between two communities C1 and C2 is:

rC1C2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

k¼1

Pt
c1k

−Pt
c2k

� �2

d kð Þ

v

u

u

u

t ð2Þ

Where Pt
cjk measures the probability of traversing from a node in Cj to node k (j = 1,2).

At each step in the merge algorithm, two communities are selected to be merged if the

merge minimizes the mean σk of the squared distances between each vertex and its

community:

σk ¼
1

n

X

C∈Rk

X

i∈C

r2iC ð3Þ

After the merge step, the decrease in squared distances Δσ between the communities

is found by:

Δσ C1−C2ð Þ ¼
1

n

C1j j C2j j

C1j j þ C2j j
r2C1C2

ð4Þ

The merge process continues until the modularity of the network is maximized.

Modularity Q of partition R compares the fraction of edges eC inside the community C

and the fraction of edges bound to the community, aC :

Q Rð Þ ¼
X

C∈P

eC−a
2
C ð5Þ

Further background and details of the Walktrap implementation are provided in the

original work [32].

To customize the algorithm to discover significant and interpretable cancer-

associated modules in Walktrap-GM, we implement stopping criteria to search for the

optimal number of merge steps. The merge process is complete when one of the

following conditions is met: 1) maximum modularity, 2) maximum size, or 3) maximum

module score (Section Weights and significance scoring). We chose a maximum size of

200 nodes as the upper bound to maintain interpretability of modules, as we tested a sub-

set of larger maximum sizes between 200 and 500 that generally resulted in modules that

were too general in their functional annotation and therefore not as informative.

Functional annotation and overlap with GSEA

Functional annotation for significant modules is assessed using ConsensusPathDB [46]. For

top-scoring modules, we queried the list of genes in the module using overrepresentation
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analysis. We query these genes for overrepresentation in curated pathways from KEGG,

WikiPathways [47], PID [48], HumanCyc [49] and Reactome [50]. Parameters include a

minimum overlap of two genes with our input gene list and the consensus pathway and

the default significance threshold, p < = .01.

We analyze each cancer phenotype using GSEA to generate a list of enriched genes.

Briefly, GSEA is a commonly applied method that searches for enrichment of highly

expressed genes in curated or custom gene sets to identify differential activity of a

priori defined gene sets in two phenotypes. The method ranks significant genes and

calculates an enrichment score for each gene set based on a weighted Kolmogorov-

Smirnov-like statistic. We apply GSEA using all canonical pathways (c3.cpv2.5) in the

Molecular Signatures Database, with the following parameters: number of permuta-

tions = 1000, collapse to gene symbols = TRUE, and permutations by phenotype. We

assess results comparing disease versus normal in HCC and CCA and high risk versus

low risk in BC. Enriched gene sets are ranked by normalized enrichment score (NES).

Overlap of top-scoring modules with results with GSEA results was evaluated by

cross-validating the top 10 GSEA gene sets ranked by NES with significantly overrepre-

sented pathways in our modules (as determined by analysis of functional annotation

using ConsensusPathDB). To evaluate the agreement of the annotation of top-scoring

modules using Walktrap-GM and GSEA, we reviewed the annotation of top-scoring

modules for overrepresentation of the top 10 gene sets ranked by NES. We report

modules that show the highest overlap with these gene sets.

Comparison with related graph-clustering platforms

The performance of Walktrap-GM is compared with two highly cited platforms devel-

oped to find network modules using gene expression data in interaction networks,

jActiveModules [20] and Matisse [22]. jActiveModules initiates module generation with

seed genes and builds a high scoring subgraph by iteratively evaluating the addition of

neighboring nodes based on their p-values. The annealing algorithm uses a temperature

parameter simulating a cooling factor that imposes a probability to the addition of

nodes that do not improve the module score and this probability decreases with each

iteration until the algorithm becomes greedy. An activity score for the modules is

calculated based on significance values associated with the proteins in the subnetwork.

Matisse applies a seed clustering algorithm that uses optimization of seed data and

similarity across expression profiles to cluster nodes. The algorithm uses high-scoring

sets of similarly expressed nodes as seed data and iteratively improves sets of seed

genes by considering the addition of connected nodes and improvement in module

score. Module scores are based on the aggregate differential activity of the subnetwork.

To evaluate the ability of these tools to identify cancer-related genes and interactions,

a list of cancer-related genes was extracted from OMIM, using text string matching

and manual curation. We queried 6995 gene references including all genes in the

clusters assessed, for cancer-related terms. The resulting list consisted of 1239 cancer-

associated genes (Additional file 2). Each matching record was reviewed to confirm that

the gene was a tumor suppressor, oncogene, or shown to be otherwise significantly

associated with cancer (i.e., by differential expression data, functional pathway analysis,

genomic mapping or SNP studies). Approximately 5% of genes did not have corre-

sponding records in OMIM and were labeled non-cancer due to lack of evidence.
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Parameters set to execute jActiveModules were regional scoring, adjust score for size,

overlap = 0, and number of modules =1000. Parameters set for Matisse were beta = .95,

min seed size =2, min module size = 2, max module size =200, search strategy = all

neighbors, and no regulation priors. Walktrap modules do not include overlapping

nodes; jActiveModules was configured to not allow overlap, while the Matisse algorithm

is designed to include overlap. To evaluate the significance of each module, genes in

the interaction network were randomly sampled to generate 5000 random distributions

of class labels for each module size. The performance of each platform is assessed by

calculating a cancer-enrichment score for highly-ranked modules, or the significance of

the number known cancer genes in each module compared to the random distribution.

We also summarize the module size of significant and non-significant modules across

platforms.

Results and discussion

Functional annotation

Functional annotation for significant modules is determined using ConsensusPathDB

[46]. We query genes in the top-scoring modules for overrepresentation in curated

pathways. Canonical cancer pathways and pathways associated with hallmarks of cancer

are enriched in each cancer dataset: cell-cycle control, DNA replication/repair, cellular

adhesion/migration, apoptosis, angiogenesis, evasion of the immune response and

immortality. A summary of the statistics and representative pathways for the top-

scoring modules is presented in Table 2. BC modules are highly enriched with cell cycle

control, growth signaling, focal adhesion, and angiogenesis control genes. A number of

BC modules are also annotated with progesterone, estrogen and steroid hormone

signaling; and levels of these hormones are known to correlate with BC risk. In HCC,

detoxifying pathways including cytochrome P450, UBR, HSD detoxifying pathways and

fatty acid metabolism, are among the most enriched pathways. Inflammation and

deregulation of liver-related detoxifying pathways are frequent markers of carcinogenic

toxicity, oxidative stress, and tumorigenesis. Chronic inflammation and the immune

response are associated with adenoma formation in the colon; and several related path-

ways are over-represented in CCA, including chemokine, cytokine, T-cell receptor, fatty

acid metabolism, and intestinal immunity. Wnt signaling is a key pathway in early

stages of colorectal cancer and is enriched in CCA modules. Amino acid synthesis and

metabolism pathways, associated with stability of DNA replication and repair, are over-

represented across all three cancer types, although most notably in HCC.

Breast cancer

BC fold-change measurements were filtered below an FDR-adjusted p-value of .01 and

data associated with the remaining 2074 probes were used to weigh the network. The

merge process reached a maximum size at step 2069, and the community search

resulted in 8116 singletons, 206 pairs, 77 triplets and 174 modules (module size

(3 > size ≤ 200).

We examined the top-scoring modules in more detail by reviewing functional anno-

tation and referring to visualizations of the modules (Table 2, Additional file 3). These

modules were investigated to identify candidate genes, interactions with known cancer

Petrochilos et al. BioData Mining 2013, 6:17 Page 9 of 25

http://www.biodatamining.org/content/6/1/17



Table 2 Functional overview of top scoring modules

Breast cancer

ID Score Size Key functional annotation

134 40.20 16 DNA REPLICATION, ATR SIGNALING, CELL CYCLE, SYNTHESIS OF DNA, UNWINDING OF DNA

82 27.77 32 VEGF AND VEGFR SIGNALING, FOCAL ADHESION, CYTOKINE RECEPTOR INTERACTIONS,
MTOR SIGNALING, PI3K CASCADE, ERBB SIGNALING, IRS SIGNALING, ANGIOGENESIS, FGFR
SIGNALING, GLYPICAN1 NETWORK, SYNDECAN SIGNALING, IGF1 PATHWAY, ARF6 SIGNALING

226 21.26 16 NUCLEAR ESTROGEN RECEPTOR ALPHA NETWORK, REGULATION OF ANDROGEN RECEPTOR

224 19.08 27 METABOLISM OF NUCLEOTIDES, DNA REPLICATION, APOPTOSIS PATHWAY, ARF6 PATHWAY,
CAM PATHWAY, TELOMERES EXTENSTION, PLC-G1 SIGNALING, GLUCAGON SIGNALING,
C-MYC TRANSCRIPTION, GNRH SIGNALING, ERBB2 SIGNALING, EGFR SIGNALING IN CANCER

79 16.08 24 JAK-STAT SIGNALING, INTERFERON SIGNALING, CYTOKINE SIGNALING, GROWTH HORMONE
RECEPTOR SIGNALING, LEPTIN SIGNALING, INSULIN SIGNALING, PROLACTIN SIGNALING,
SIGNALING BY INTERLEUKINS, SHP2 SIGNALING, ERBB2 IN SIGNAL TRANSDUCTION AND
ONCOLOGY, EPO SIGNALING, CD40/CD40L SIGNALING, EGFR SIGNALING, KIT SIGNALING

395 15.32 29 G ALPHA SIGNALING, GPCR SIGNALING, METABOLISM OF NUCLEOTIDES, CAM PATHWAY,
SIGNALING BY ERBB2, SIGNALING BY EGFR IN CANCER, GROWTH FACTOR SIGNALING

182 14.59 12 FOXM1 TRANSCRIPTION, PROGESTERONE-MEDIATED OOCYTE MATURATION,

96 13.74 13 REELIN SIGNALING, GLYCOGEN METABOLISM, SIGNALING BY INTERLEUKINS, WNT
SIGNALING, PHOSPHOINOSITIDE TARGETS, IFN-GAMMA PATHWAY, REGULATION OF
MICROTUBULE CYTOSKELETON, TGF-BETA SIGNALING, KIT SIGNALING, SEMAPHORIN
INTERACTIONS

321 10.99 5 VITAMIN A AND CAROTENOID METABOLISM, CYTOCHROME P450

145 10.97 11 CELL CYCLE, DNA DAMAGE RESPONSE, P53 SIGNALING, P38 MAPK SIGNALING, SONIC
HEDGEHOG RECEPTOR, EFP CONTROLS CELL CYCLE AND BREAST TUMORS GROWTH, TGF
BETA SIGNALING, INTEGRATED BREAST CANCER PATHWAY, MAPK SIGNALING, FOXM1
TRANSCRIPTION, AMPK SIGNALING

165 10.90 55 NUCLEAR ESTROGEN RECEPTOR NETWORK, ATF-2 TRANSCRIPTION, RETINOIC ACID
RECEPTORS-MEDIATED SIGNALING, SIGNALING MEDIATED BY P38-ALPHA AND P38-BETA,
FOXA1 TRANSCRIPTION

122 9.28 16 BCR SIGNALING, TCR SIGNALING, NATURAL KILLER CELL CYTOTOXICITY, FC EPSILON
SIGNALING, PI3K SIGNALING, JNK SIGNALING, NF-KAPPA B SIGNALING, INTERLEUKIN
SIGNALING, EPO SIGNALING, CDC42 REGULATION, EGF-EGFR SIGNALING, RAC1
REGULATION, REGULATION OF RHOA

143 8.97 11 SKP2 DEGRADATION OF P27/P21, FOXM1 TRANSCRIPTION, P73 TRANSCRIPTION, PRL
SIGNALING, ATR SIGNALING, P53 PATHWAY, RB TUMOR SUPPRESSOR/CHECKPOINT, EFP
CONTROLS CELL CYCLE/ BREAST TUMOR GROWTH, AKT SIGNALING, AHR PATHWAY, NOTCH
SIGNALING, ERBB SIGNALING, PI3K CASCADE, AMPK SIGNALING, C-MYC TRANSCRIPTIONAL
REPRESSION, SMAD2/3 SIGNALING

205 8.71 15 DNA DAMAGE RESPONSE, CELL CYCLE, INTEGRATED BREAST CANCER PATHWAY, WNT
SIGNALING, AURORA A SIGNALING, LKB1 SIGNALING, C-MYC TRANSCRIPTION REGULATION,
BARD1 SIGNALING, ATM PATHWAY, PLK3 SIGNALING, HEDGEHOG SIGNALING, ERBB
SIGNALING, P53 PATHWAY, HTERT TRANSCRIPTIONAL REGULATION, VEGFR1/ VEGFR2
SIGNALING, AP-1 TRANSCRIPTION, E2F TRANSCRIPTION, BRCA1 BRCA2 AND ATR IN CANCER,
ARF INHIBITS BIOGENESIS, NUCLEAR ESTROGEN RECEPTOR ALPHA NETWORK, AMPK
SIGNALING

89 8.54 7 REGULATION OF IGF ACTIVITY BY INSULIN-LIKE GROWTH FACTOR BINDING PROTEINS

189 8.25 7 C-MYB TRANSCRIPTION, TRANSCRIPTIONAL MISREGULATION IN CANCER, AP-1 TRANSCRIPTION

348 8.20 29 REGULATION OF ACTIN CYTOSKELETON, SHC CASCADE, FGFR SIGNALING, MAPK SIGNALING,
PHOSPHOLIPASE C CASCADE, PI3K CASCADE, IRS SIGNALING, INSULIN SIGNALING,
SYNDECAN SIGNALING, ERBB SIGNALING, FOCAL ADHESION, ANGIOGENESIS

173 8.18 6 METABOLISM OF NUCLEOTIDES, DRUG METABOLISM, E2F TRANSCRIPTION

99 7.47 7 P38 SIGNALING MEDIATED BY MAPKAP KINASES, CELL CYCLE, INSULIN-MEDIATED GLUCOSE
TRANSPORT, PI3K SIGNALING MEDIATED BY AKT, INTEGRIN SIGNALING, MTOR SIGNALING,
BETA CATENIN SIGNALING, ERBB1 SIGNALING, PDGFR-BETA SIGNALING, SIGNALING BY
HIPPO

12 7.25 23 MAPK SIGNALING, ATF-2 TRANSCRIPTION, REGULATION OF P38-ALPHA AND P38-BETA, TOLL
LIKE RECEPTOR CASCADE, ERBB1 SIGNALING, NGF SIGNALING, RAS SIGNALING
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Table 2 Functional overview of top scoring modules (Continued)

Hepatocellular carcinoma

408 72.64 24 DRUG METABOLISM - CYTOCHROME P450, METABOLISM OF AMINO ACIDS, FATTY ACID
METABOLISM GLYCOLYSIS/GLUCONEOGENESIS, ETHANOL OXIDATION, ARACHIDONIC ACID
METABOLISM, TAMOXIFEN METABOLISM, VITAMIN A/CAROTENOID METABOLISM, ESTROGEN
METABOLISM, AHR PATHWAY

10 34.22 49 DRUG METABOLISM, STEROID HORMONE BIOSYNTHESIS, RETINOL METABOLISM,
CYTOCHROME P450 METABOLISM, METABOLISM OF AMINO ACIDS, TAMOXIFEN
METABOLISM, FATTY ACID OXIDATION, BENZO(A)PYRENE METABOLISM, AHR PATHWAY,
AFLATOXIN B1 METABOLISM, IL-10 SIGNALING

513 22.92 4 ALTERNATIVE COMPLEMENT PATHWAY, COMPLEMENT AND COAGULATION CASCADES

579 19.55 13 METABOLISM OF STEROID HORMONES AND VITAMINS A AND D, METABOLISM OF LIPIDS
AND LIPOPROTEINS, MINERALOCORTICOID BIOSYNTHESIS, GLUCOCORTICOID METABOLISM

603 17.58 6 METABOLISM OF AMINO ACIDS

31 14.24 14 PPAR SIGNALING, FATTY ACID, TRIACYLGLYCEROL, AND KETONE BODY METABOLISM,
ADIPOCYTOKINE SIGNALING, METABOLISM OF LIPIDS AND LIPOPROTEINS, AMPK SIGNALING

97 13.93 5 ONE CARBON POOL BY FOLATE, METABOLISM OF AMINO ACIDS AND DERIVATIVES

361 9.55 16 DNA REPLICATION, CELL CYCLE, UNWINDING OF DNA, SYNTHESIS OF DNA

314 9.47 10 FATTY ACID METABOLISM, GLYCEROLIPID METABOLISM, METABOLISM OF AMINO ACIDS

34 9.08 14 TOLL-LIKE RECEPTOR SIGNALING, HTLV-I INFECTION, ACTIVATION OF AP-1 TRANSCRIPTION
FACTORS, MAPK SIGNALING, TWEAK SIGNALING, TGF BETA SIGNALING, INTERLEUKIN
SIGNALING, RIG-I-LIKE RECEPTOR SIGNALING, HEPATITIS B VIRUS, IGF-1 SIGNALING,
HEPATOCYTE GROWTH FACTOR RECEPTOR SIGNALING, JAK-STAT SIGNALING, FAS PATHWAY

598 8.94 4 KEAP1-NRF2 PATHWAY, METABOLISM OF AMINO ACIDS AND DERIVATIVES

360 8.73 7 INSULIN SIGNALING, GLYCOGEN METABOLISM, GLUCOSE METABOLISM, METABOLISM OF
CARBOHYDRATES

112 8.65 5 MRNA SPLICING, MRNA PROCESSING

515 8.46 10 ONE CARBON POOL BY FOLATE, FOLATE METABOLISM

257 8.23 5 UREA CYCLE AND METABOLISM OF AMINO GROUPS, METABOLISM OF AMINO ACIDS

153 7.29 5 GLUCOCORTICOID & MINERALCORTICOID METABOLISM, METABOLISM OF STEROID
HORMONES & VITA/D, METABOLISM OF LIPIDS & LIPOPROTEINS, PROSTAGLANDIN
SYNTHESIS/ REGULATION

123 7.22 7 ONE CARBON FOLATE METABOLISM, METHYLATION, METABOLISM OF AMINO ACIDS

254 7.03 6 METABOLISM OF NUCLEOTIDES, METABOLISM OF AMINO ACIDS AND DERIVATIVES

429 7.02 9 SIGNAL TRANSDUCTION BY L1, MTOR SIGNALING, RSK ACTIVATION, PROSTATE CANCER,
L1CAM INTERACTIONS, CREB PHOSPHORYLATION THROUGH THE ACTIVATION OF RAS,
MAPK SIGNALING

414 6.50 35 MAPK SIGNALING, ATF-2 TRANSCRIPTION, CELL SIGNALING IN H. PYLORI INFECTION,
ACTIVATION OF AP-1 TRANSCRIPTION FACTORS, FC EPSILON RI SIGNALING, NOD1/2
SIGNALING, GNRH SIGNALING, JNK SIGNALING, CD40/CD40L SIGNALING, C RIG-I-LIKE
RECEPTOR SIGNALING, TGF BETA SIGNALING, VEGF SIGNALING, EGF-EGFR SIGNALING, FOSB
GENE EXPRESSION

Colorectal adenoma

257 33.48 50 CHEMOKINE SIGNALING, GPCR SIGNALING, NF-KAPPA B SIGNALING, CXCR3 SIGNALING,
TOLL-LIKE RECEPTOR SIGNALING, NOD-LIKE RECEPTOR SIGNALING, INTESTINAL IMMUNE
NETWORK FOR IGA PRODUCTION, INTERLEUKIN SIGNALING, CELL SIGNALING IN H. PYLORI
INFECTION

182 21.57 25 TIGHT JUNCTION INTERACTIONS, TRANSENDOTHELIAL MIGRATION, CELL-CELL
COMMUNICATION, CAMS

158 18.94 9 P75(NTR) SIGNALING, DEGRADATION OF THE ECM, ECM ORGANIZATION, SYNDECAN SIGNALING

770 12.58 8 ETHANOL OXIDATION, METABOLISM BY CYTOCHROME P450, TYROSINE METABOLISM, FATTY
ACID METABOLISM, GLYCOLYSIS/GLUCONEOGENESIS, VITAMIN A/CAROTENOID METABOLISM

14 11.51 5 C-MYC TRANSCRIPTIONAL REPRESSION, SMAD2/3 SIGNALING, CELL CYCLE, PATHWAYS
IN CANCER

452 8.75 10 GLYCOSPHINGOLIPID BIOSYNTHESIS, GLYCOSAMINOGLYCAN BIOSYNTHESIS

Petrochilos et al. BioData Mining 2013, 6:17 Page 11 of 25

http://www.biodatamining.org/content/6/1/17



genes, and interactions between pathways. Among these top modules, we found highly

differentially expressed candidate genes and relevant cancer interactions in modules

143, 79 and 82 (Figure 2). Module 143 is composed of cyclins regulating the cell cycle

and a link to telomere formation (E2F5). SKP2 is a known oncogene and interacts with

cyclins to promote cell proliferation and evade apoptosis [51]. SKP2 and cyclin CCNA2

show significantly altered activity and interact with G2-phase cell cycle checkpoint

genes BRCA2 via CDK2. Module 79 involves interactions between cytokines and JAK/

STAT regulation of signal transduction, cellular proliferation and differentiation.

SOCS1, SOCS2, SOCS3 and CBLC are involved in mediating JAK/STAT signaling, in the

inflammatory response and in cellular growth. Differentially expressed genes include

Table 2 Functional overview of top scoring modules (Continued)

487 7.16 28 MAPK SIGNALING, ATF-2 TRANSCRIPTION, ACTIVATION OF AP-1 TRANSCRIPTION FACTORS,
NOD-LIKE RECEPTOR SIGNALING, FC EPSILON SIGNALING, GNRH SIGNALING, TOLL-LIKE
RECEPTOR SIGNALING, INTERLEUKIN SIGNALING, TGF BETA SIGNALING, VEGF SIGNALING,
EGF-EGFR SIGNALING, KIT SIGNALING, RANKL-RANK SIGNALING, COLORECTAL CANCER, S1P2
PATHWAY, NONCANONICAL WNT SIGNALING, ARF6 PATHWAY, ERBB SIGNALING, TBXA2R
SIGNALING

301 7.06 7 TRANSCRIPTIONAL MISREGULATION IN CANCER, RB REGULATION, INTERLEUKIN SIGNALING,
C-MYB TRANSCRIPTION, INTERFERON SIGNALING, FOXA2/ FOXA3 TRANSCRIPTIONS, SMAD2/
3 SIGNALING

758 6.91 5 METABOLISM OF AMINO ACIDS AND DERIVATIVES

762 6.59 12 WNT SIGNALING, SECRETIN FAMILY OF RECEPTORS, HTLV-I INFECTION, SIGNALING BY GPCR

240 6.59 28 G PROTEIN SIGNALING, CAM PATHWAY, PLC-GAMMA1 SIGNALING, NUCLEOTIDE
METABOLISM, SIGNALING BY ERBB2, SIGNALING BY EGFR, SIGNALING BY FGFR, SIGNALING
BY PDGF

757 6.53 12 METABOLISM OF STEROID HORMONES AND VITA/D, METABOLISM OF LIPIDS AND
LIPOPROTEINS, GLUCOCORTICOID & MINERALCORTICOID METABOLISM, BILE ACID AND BILE
SALT METABOLISM

410 6.49 6 JAK-STAT SIGNALING, CYTOKINE-CYTOKINE RECEPTOR INTERACTION, SHP2 SIGNALING,
INTERLEUKIN SIGNALING, ROLE OF ERBB2 IN SIGNAL TRANSDUCTION AND ONCOLOGY

412 6.21 9 DNA REPLICATION, CELL CYCLE, UNWINDING OF DNA, ATR SIGNALING, E2F TRANSCRIPTION

345 6.13 14 NEUROTROPHIN SIGNALING, GNRH SIGNALING, CREB PHOSPHORYLATION, PKA ACTIVATION,
CAM PATHWAY, INSULIN SIGNALING, PGC-1A REGULATION, RAS REGULATION, SMAD2/3
SIGNALING

267 6.06 6 METABOLISM OF PROTEINS

334 6.04 12 BETA-CATENIN PHOSPHORYLATION CASCADE, SIGNALING BY WNT, GLYCOGEN METABOLISM,
PLATELET HOMEOSTASIS, DNA REPLICATION, CELL CYCLE, DNA DAMAGE RESPONSE

111 5.74 11 ECM-RECEPTOR INTERACTION, FOCAL ADHESION, INTEGRIN INTERACTIONS, NCAM
INTERACTIONS, SYNDECAN SIGNALING, PROTHROMBIN ACTIVATION PATHWAY, PDGF
SIGNALING, VEGFR3 SIGNALING

54 5.73 4 NONE

125 5.67 20 CHEMOKINE SIGNALING, G ALPHA SIGNALING, SIGNALING BY GPCR, ACTIVATION OF PKA,
INTESTINAL IMMUNE NETWORK FOR IGA, CELL SIGNALING IN HELICOBACTER PYLORI INFECTION

183 5.41 6 BETA-CATENIN PHOSPHORYLATION CASCADE, CTLA4 INHIBITORY SIGNALING, GLYCOGEN
METABOLISM, WNT SIGNALING, DNA REPLICATION, CELL CYCLE, IMMUNE SYSTEM, DNA
DAMAGE RESPONSE

156 5.38 4 HEMATOPOIETIC CELL LINEAGE

144 5.35 16 CELL CYCLE, P38/MAPKAP SIGNALING, LKB1 SIGNALING, INSULIN-MEDIATED GLUCOSE
TRANSPORT, PI3K/AKT SIGNALING, INTEGRIN SIGNALING, FOXO FAMILY SIGNALING, MTOR
SIGNALING, ERBB1 SIGNALING, PDGFR-BETA SIGNALING, ATR SIGNALING, PLK1 SIGNALING, RB
TUMOR SUPPRESSOR/CHECKPOINT, RAP1 SIGNALING, INTEGRATED CANCER PATHWAY, ATM
PATHWAY, SHC SIGNALING, ARMS-MEDIATED ACTIVATION, IGF1 PATHWAY, IRS SIGNALING
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SOC2, SOC3, CBLC, and the interleukin receptor IL20RA; and the altered expression

and coordinated interaction and of these genes suggest a concerted role in BC progres-

sion. Module 82 shows interaction between a number of growth factors and receptors,

including FIGF, IGFIR, PDGFRA, EGFR, the MET oncogene, and tumor regulator

ERBB4. The oncogene MET interacts with several growth factors, including FGF7,

which mediates epithelial proliferation and has a potential role in gastric cancer

[52]. VEGFA is a known metastatic vascular growth marker and a therapeutic

target for breast cancer survival. IRS2 affects proliferation and regeneration of cells,

expression of this gene is critical during development and growth, and the gene

may influence cancer survival [53,54]. IRS2 and FGF7 represent interesting candi-

date disease genes given their key functions and clinical relevance in aberrant

cellular growth and proliferation.

Figure 2 Intersection of BC modules 143, 79 and 82. Module 143, designated by square nodes, shows

interactions among cyclins, SKP2 and BRCA2. Module 79, designated by rectangular nodes shows

interactions among cytokines, SOCS genes and genes in the JAK-STAT pathway. The JAK-STAT pathway is

associated with B-cell growth and proliferation and a number of genes in this pathway are related to

cancer. Module 82, designated by circular nodes, shows interactions among the MET oncogene and critical

cancer-associated growth factors including IGF1R, PDGFRA, VEGFA, and ERBB4. Among genes in this module,

IRS2 and FGF7 are differentially regulated and may be interesting targets for further research. Red nodes

designate cancer-associated genes based on descriptions in OMIM. Node sizes correspond to the absolute

values of the fold change of differentially regulated genes (up- or down-regulated). Blue edges are derived

from HPRD, green from KEGG, and orange from both databases.
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Hepatocellular carcinoma

HCC data included 16,360 probes after filtering by p-value. The maximal score was

reached at 2393 steps, resulting in 7666 singletons, 352 pairs, 128 triplets, and 198

modules. At this step size, the maximum module size was 54 (module size (3 > size ≤ 54).

The top-scoring modules are summarized in Table 2 and Additional file 4. We

reviewed highly expressed candidate genes and interactions modules 361, 429 and 414

in greater detail. Module 361 (Figure 3) consists of interactions between a family of

cyclins, origin recognition complexes, and minchromosome maintenance genes. Kinase

activation of CDC7 is dependent on expression of DBF4, and both genes are highly

expressed in cancer [55]. MCM5 forms a complex with MCM2 [56], a candidate

oncogene phosphorylated by CDC7. ORC5L associates with CDC7 and MCM5 in

the network and this group of genes display altered expression in HCC tissue.

These genes exhibit high differential expression and have implications in tumor

formation due to their role in regulating the cell-cycle and cellular proliferation.

Figure 3 HCC module 361. Module 361 shows interactions among MCM, ORC genes involved in cell-cycle

control, and DBF4. A number of MCM genes are known to be involved in cancer, and DBF4 appears to play

an interesting role in the cell cycle via interactions presented in this network and with other critical cell-

cylce control genes. Red nodes designate cancer-associated genes based on descriptions in OMIM. Node

sizes correspond to the absolute values of the fold change of differentially regulated genes (up- or down-

regulated). Blue edges are derived from HPRD.
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Module 429 (Additional file 4), shows upregulation of IGFI, which is known to

alter cancer risk [57], and interaction with the oncogene NOV, and transcription

factors RPS6KA2 and RPS6KA6. These transcription factors are associated with the

RSK family of genes, involved in activating map kinase growth signaling, cell cycle

control and differentiation. Given their importance in cellular development, their

potential implication in cancer [58,59] and association with IGFI and NOV, these

RSK transcription factors are compelling candidate cancer genes. Module 414

(Figure 4) shows the interaction between MAPK signaling genes, DUSP genes and

FOS and JUND oncogenes. The DUSP genes regulate the activity of MAPK signal-

ing cascades, and several map kinase targets are known to be involved in aberrant

proliferation in cancer. The kinase RIPK2 has an important function in apoptosis

and interactions with the MAPK signaling and high differential expression in this

module suggest a potential role in tumorigenesis. Due to their association with

known cancer genes and high differential expression, DUSP1, DUSP9, MAPK9 and

RIPK2 genes are promising targets for therapeutic research.

Figure 4 HCC module 414. Module 414 shows interactions among MAPK, DUSP genes and FOSB and JUNB

oncogenes. The DUSP family of genes is known to regulate the activity of MAP kinases, a number of which

play a role in cancer. This module presents interactions among MAPK genes and the oncogene JUNB,

protooncogene FOSB, and RIPK2. RIPK2 is not well-described, but appears to play a role in apoptosis. Red

nodes designate cancer-associated genes based on descriptions in OMIM. Node sizes correspond to the

absolute values of the fold change of differentially regulated genes (up- or down-regulated). Blue edges are

derived from HPRD, green from KEGG, and orange from both databases.
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Colorectal cancer

CCA data included 21,648 probes after filtering by p-value. The maximal score was

reached at 2967 steps. The resulting community structure included 6879 singletons,

385 pairs, 149 triplets and 253 modules. The maximum module size at this step was

160 (module size (3 > size ≤ 160).

The top-scoring modules are summarized in Table 2 and Additional file 5. We

reviewed modules 301, 144, and 762 in detail based on the differential expression of

potential cancer-associated genes and relevance of their functional annotation in

cancer. There are three known oncogenes in module 301 (Figure 5): SPI1, RUNX1, and

IRF4. CEBPB and CEBPE interact with these oncogenes, affect cellular proliferation,

and alter tumor development and cancer risk [60,61]. Transcription factors SPI1and

RUNX1 participate in hematopoietic stem cell formation and can lead to the develop-

ment of multiple cell lineages in cancer [62,63]. These genes show altered expression in

the network, and specifically, the role of the highly differentially regulated transcription

factor SPIB in colorectal cancer is an interesting area for further research. Module 144

(Figure 6) shows interactions between CDK1, a key regulator of the cell cycle and

Figure 5 CCA module 301. Module 301 shows interactions among cancer-related transcription factors.

The role of SPIB in cancer is of interest is as this transcription factor is highly differentially regulated in this

module and interacts closely with known cancer genes. Node sizes correspond to the absolute values of

the fold change of differentially regulated genes (up- or down-regulated). Blue edges are derived from

HPRD, green from KEGG, and orange from both databases.
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proliferation, and genes associated cellular division and growth in cancer: PBK,

HMGA2, and FOXM1. Putative candidates among neighboring genes include

BRSK1, WEE1, and CDC25C, which are involved in cell-cycle checkpoints and are

overexpressed in CCA. Specifically, WEE1 and CDC25C are significantly differen-

tially regulated and are known to play a mutually antagonistic role in cell-cycle

control. BRSK1 is not well described, but exhibits key interactions with genes

involved in cell-cycle control. Module 762 (Additional file 5) consists of interac-

tions among SFRP1 and SFRP2 genes and FZD genes in the Wnt pathway. The

Wnt pathway is involved in cell polarity and malignant cell transformation in

colorectal cancer, and the SFRP1 and SFRP2 [64] genes interfere with normal Wnt

signaling. SFRP genes and most frizzled FZD genes in the module show altered

expression. Given the topology of SFRP1 and SFRP2 as hubs in this module, these

genes appear to play a central role the Wnt pathway and CCA development.

Descriptions of genes highlighted in BC, HCC and CCA modules are summarized

in Additional file 6.

Figure 6 CCA module 144. Module 144 shows interactions among cell cycle regulatory genes and FOXM1

oncogene. WEE1, CDC25C, YWHAE and BRSK1 are also involved in cell cycle control and interact closely with

cancer-associated genes, but are not themselves well-described as cancer genes. Also of note, WEE1 and

CDC25C are known to play an antagonistic role in regulating the cell cycle. Red nodes designate cancer-

associated genes based on descriptions in OMIM. Node sizes correspond to the absolute values of the fold

change of differentially regulated genes (up- or down-regulated). Blue edges are derived from HPRD, green

from KEGG, and orange from both databases.
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Overlap with GSEA

We analyzed BC, HCC and CCA data using GSEA and canonical pathways in MSigDB.

The overlap of top-scoring Walktrap-GM annotation with GSEA results was evaluated

by cross-validating the top 10 GSEA pathways with pathways significantly overrepre-

sented in our dataset (p ≤ .01). Notably in the BC data, module 205 overlaps with the

following highest-ranking GSEA pathways, Cell Cycle (p = 1.56 × 10-08), Ubiquitin-

mediated Proteolysis (p = 7.66 × 10-05), DNA Replication (p = .0085), G1-S Phase

(p = 4.23 × 10-08), the ATR-BRCA pathway (p = .0005), and Apoptosis (p = .0074). Module

224 exhibits significant overrepresentation in Pyrimidine Metabolism (p = 1.37 × 10-24)

Apoptosis (p = 3.08 × 10-06) and DNA Replication (p = 7.43 × 10 -05) pathways which are

among the top 10 enriched pathways in GSEA.

HCC module 408 shows significant enrichment with the 10 highest-ranking GSEA

results, including Tryptophan (p = 6.89 × 10-08), Tyrosine (p = 2.92 × 10-29), Beta-

Alanine (p = 6.05 × 10-07), and Arachidonic Acid (p = 2.15 × 10-14) metabolism. Signifi-

cant pathways overrepresented in Module 314 that overlap with the top GSEA modules

are Tryptophan (p = 6.10 × 10-13), Propanoate (p = 6.34 × 10-11), Tyrosine (p = .0007),

Beta-Alanine (p = 8.43 × 10-20), Valine, Leucine and Isoleucine (p = 3.40 × 10-10), Lysine

(1.94 × 10-12), Phenylalanine (.0001), and Glycerolipid (9.86 × 10-10) metabolism.

In CCA, module 144 overlaps with the top 10 ranked pathways in GSEA, including

the ATM (p = 1.78 × 10-05), Cell Cycle (p = 9.92 × 10-19), P53 (p = .0046), and

ATR (p = 2.1 × 10-07) pathways, and module 412 shows overlap with the Cell

Cycle (p = 8.58 × 10-16) and G1 to S Phase (p = 6.91 × 10-21). Overall, the consistency

observed with GSEA suggests that processes similar to those highlighted by GSEA are

also detected by highly-ranked Walktrap-GM network modules.

Comparison with related graph-clustering platforms

Properties of Walktrap-GM are compared to those of several other approaches in

Table 3, including heuristics for clustering, learning methods and parameter tuning.

Compared with MCL [65], Affinity-Propagation [66], and Netwalker [31] that use

similarity values to cluster nodes, Walktrap-GM clustering can be implemented using

similarity or significance values, here we use significance scores to perform a supervised

search for modules that are associated with the phenotype of interest. The Matisse

algorithm clusters by similarity, using the iterative addition of significant seed genes to

find optimal scoring modules. jActiveModules uses differential expression to build

subnetworks; however, the platform is restricted to using only p-values. Among these

approaches, Walktrap-GM allows for semi-supervised learning of non-overlapping

modules using significant differential expression as edge weights.

We evaluate the performance of Walktrap-GM with two platforms widely used to

find network modules using gene expression data in interaction networks,

jActiveModules [20] and Matisse [22]. Results are summarized in Figure 7. Walktrap-

GM generally performed as well or better than Matisse or jActiveModules using the

HCC and CCA data and performs consistently well overall. Matisse modules include

overlap, so the corresponding set of top modules display greater coverage of significant

interactions, but redundant sets of significant genes. By excluding overlapping genes,

Walktrap-GM focuses the search for unique interactions across modules. We also

consider module size; distribution of module sizes for each dataset and platform are
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Table 3 Comparison of approaches to module-finding in biological networks

Approach Method Heuristic for subgraph search Cluster learning method Cluster
overlap

Tuning parameters Weighted
networks

Platform

Walktrap-BM Random walk Differential expression or pairwise
similarity

Semi-supervised No Modularity, size, score Yes R on Unix, Windows, Mac

jActiveModules [20,21] Simulated annealing Differential expression (P-values only) Semi-supervised Optional K-modules, number of paths,
iterations

Yes Cytoscape plugin on
Windows, Mac, Linux

Matisse [22] Seed clustering Pairwise similarity and significant
seed nodes

Semi-supervised Yes Module size, seed number Yes Linux, Windows

NetWalker [23,31] Random walk Differential expression Unsupervised Optional K-Modules Yes Windows, Mac

Affinity Propagation [66] Seed-based message
propagation

Pairwise similarity Unsupervised Yes Preference values,
seed number

Yes Matlab, R on Windows
and Linux

MCL [65] Random walk Pairwise similarity Unsupervised No Granularity Yes UNIX platforms
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shown in Figure 8. jActiveModules generated several large modules, including a module

of 981 nodes in BC and a module of 377 nodes in CCA. The majority of significant

modules generated by Matisse include more than 100 nodes. Generally, large clusters

demand further mining to discover the most relevant interactions and genes in each

module. The smaller distribution of module sizes associated with Walktrap-GM

highlights a more specific and informative set of biological interactions that facilitates

interpretation of modules; where the functional annotation of larger modules that may

otherwise be too general to be meaningful. Further, the time required to run the

Walktrap algorithm (summarized in Additional file 1) compared favorably to the other

tools, on a scale of minutes for each dataset on a 64-bit, 8 GB. 2.8 GHz, machine,

compared to several hours running jActiveModules and Matisse.

Conclusions

Network analysis provides a framework to search for communities of genes associated

with disease by modeling their coordinated behavior and biological knowledge of their

interactions. We use a random walk algorithm optimized to search for communities in

Figure 7 Comparison of top modules from Walktrap-GM, Matisse, jActiveModules. Performance in

finding modules significantly enriched with known cancer genes,across breast cancer (BC) and

hepatocellular carcinoma (HCC) and colorectal cancer data (CCA). Green lines show Walktrap-GM

performance, blue jActiveModules, and orange Matisse. Walktrap-GM performs as well as or better than the

other approaches across datasets. In the BC data, blue jActiveModules resulted in one very large and

significant module of 981 nodes, but few significant modules overall. Matisse includes overlapping

significant genes within its modules where Walktrap-GM does not and jActiveModules is configured not to

inlcude overlap.
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large networks, to mine for disease genes in a weighted interaction network. The

network is weighted with differential gene expression corresponding to adenoma

development, tumor growth, and cancer progression. This approach is used to

discover cancer-associated modules in a network of biological interactions weighted

by differential gene expression of breast cancer, hepatocellular carcinoma and colo-

rectal cancer data.

Walktrap-GM identifies modules relevant to the etiology of multiple cancer out-

comes, and suggests interactions among promising candidate genes for further study of

their role in cancer or potential therapeutic intervention. Functional analysis of

modules discovered in this analysis reveals strong enrichment of cancer-related path-

ways and known cancer genes. Pathways enriched across the BC, HCC and CCA data

include those involved in cell cycle control, DNA replication, DNA damage and repair,

amino acid metabolism, inflammation, and cell adhesion and migration. Specifically,

several genes may represent targets for further research, including CBLC or IRS2, which

influence breast cancer survival; transcription factors RPS6KA2 and RPS6KA6, the

interaction among MCM/CDC and ORC cell cycle control genes, and DUSP1, DUSP9,

RIPK2 and MAPK9 in the onset of hepatocellular carcinoma; or cell-cycle genes

BRSK1, WEE1, CDC25C, and the transcription factor SPIB in colorectal adenoma

development. Significant interactions among these candidate genes can be used to

Figure 8 Distribution of module sizes by score for each dataset. Walktrap-GM markers are noted in

green, Matisse in orange, and jActiveModules in blue. Walktrap-GM includes a size threshold of 200, and

identifies significant modules that are generally smaller. Smaller modules tend to have more specific and

informative functional interpretation; the functional annotation of large modules may be too general to

be meaningful.
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generate hypotheses and experimentally validate the functional significance and thera-

peutic value of these targets in cancer.

This network analysis approach has potential applications to a diverse body of

biological data, for example, protein complex prediction, functional prediction, gene

variation, and regulatory interactions. Similar functional annotation or correlation

expression can be applied to the network to predict protein complexes or functional

annotation of unknown genes. SNP or eQTL data can be integrated to search for mod-

ules that demonstrate significant genetic variation in case–control data. Transcription

factor, methylation or miRNA data can be coupled with their regulatory targets to dis-

cover significant regulatory modules. Text-mining applications can highlight significant

relationships among terms by mapping the co-occurrence of their expressions in the

literature. Related edge weighting schemes may include correlation coefficients, signifi-

cance values based on association with phenotypes of interest, or confidence scores that

reflect the level of certainty corresponding to a biological interaction.

These findings show that Walktrap-GM identifies biologically relevant modules asso-

ciated with cancer and performs well compared with other module search platforms,

Matisse and jActiveModules. Strong performance combined with smaller, more specific,

and non-overlapping modules, facilitates biological interpretation of these results.

These modules reflect known pathways in cancer and present hypotheses for clinical

studies. Future work may include an analysis across additional cancer and other com-

plex disease data, or apply these methods to integrate more classes of genomic data

such as SNP, miRNA or next generation sequencing data.

Availability and requirements

∎Project name: Walktrap-GM

∎Project home page: http://github.com/petrochilos/walktrap-GM.git

∎Operating system(s): platform independent

∎Programming Language: R

∎Other Requirements: recommended minimum requirements include 8 MB RAM,

2.8 GHz processor, 64-bit system

∎License: GNU GPL
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