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Abstract—In heterogeneous supercomputers such as TSU-
BAME2.5, GPUs on some nodes in GPU batch queues are left
idle even though there are jobs waiting in the queues; this is
caused by GPU resource-assignment fragmentation problem.
For example, in the case that each node has three GPUs
like TSUBAME2.5’s, if a node has already been assigned to
a job requesting two GPUs per node, that node cannot be
assigned to another job requesting more than one GPU per
node until the ongoing job finishes; hence, one GPU is left idle
on that node. We examine this problem on TSUBAME2.5’s
GPU batch-queue system and present a scheduling algorithm
that assigns rCUDA (a remote CUDA execution technology) to
some processes of some jobs. Because rCUDA allows jobs to
utilize the idle GPUs, the proposed scheduling algorithm can
alleviate the problem. Using a job pattern obtained from a
scheduler log of a TSUBAME2.5’s GPU queue, our simulation
shows that the proposed algorithm can decrease jobs’ lifetime
(from the time when a job arrives until finishes) by about
5% on average. Moreover, it can reduce the average number
of idle GPUs by about 15%. Also, even reducing the number
of nodes serving jobs by around 4%, the proposed algorithm
can maintain the average jobs’ lifetime around the same as
the scheduling algorithm currently used in the TSUBAME2.5’s
GPU queue.

Keywords-GPU queue; GPU execution; rCUDA; remote GPU
execution; scheduling algorithm;

I. INTRODUCTION

A. Resource sharing in TSUBAME2.5 job queues

Jobs submitted to a heterogeneous supercomputer, such
as TSUBAME2.5 at Tokyo Institute of Technology, can be
roughly categorized into three categories. The first category
is GPU-intensive jobs, which need one or more GPUs per
node for processing. They normally use CPUs for manage-
ment – distributing data to GPUs, handling communication
between nodes (e.g. MPI), and collecting results from GPUs
– but not for calculation; hence, only a small number of
CPUs per node are enough to serve this kind of jobs. The
second category is CPU-only jobs. In contrast with GPU-
intensive jobs, they only use CPUs for processing and do
not use any GPUs; even if they execute on nodes that have
GPUs, the GPUs are left idle. The third category is jobs that
use both CPUs and GPUs intensively. Unlike GPU-intensive
jobs, this kind of jobs use both CPUs and GPUs mainly

Figure 1. Overview of G queue and V queue architecture with GPU
resource-assignment fragmentation problem on G queue

for processing; thus, they usually require a large number of
CPUs, and one or more GPUs per node.

TSUBAME2.5 has G queue and V queue serving GPU-
intensive jobs and CPU-only jobs respectively. G queue and
V queue share 480 nodes with each other. GPU-intensive
jobs in G queue get exclusive access to three GPUs and
four CPUs per node. On the other hand, CPU-only jobs in V
queue share virtual machines (VMs) with some other CPU-
only jobs. The VMs are hosted on the same group of nodes
that the G queue uses. Out of 12 CPUs equipped in each
node, each VM gets 8 CPUs to serve CPU-only jobs, and
4 CPUs are left for host OS to serve GPU-only jobs. Fig. 1
shows an overview of G queue, V queue, and the nodes
shared between those two queues. As GPU-intensive jobs
and CPU-only jobs use different resources (GPUs vs. CPUs)
for processing, sharing a node increases overall resource
utilization of the system. In this paper, we focus on GPU-
only jobs executed on the G queue.

B. GPU resource-assignment fragmentation problem

Theoretically, it is possible to assign a node to more
than one GPU-intensive job at a time providing that the
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Figure 2. The number of nodes in G queue that had some number of
GPUs being occupied during April 2013 to April 2014

available resources (GPUs, CPUs, memory, etc.) are enough.
However, the current scheduling algorithm of the G queue
allows a node to be assigned to only one job at a time. This
results in GPU resource-assignment fragmentation. Fig. 1
shows this kind of situation. Job 1 and Job 2 arrived at the
G queue. Job 1 got dispatched and two nodes have been
assigned to the job as requested. At this time, there are two
idle GPUs, each from a different node. Unfortunately, Job
2 cannot use these GPUs because it requests a single node
that has two GPUs. Therefore, these two GPUs have to be
left idle and Job 2 cannot run. This is a loss for both user
and provider.

Fig. 2 shows the GPU usage pattern of the G queue from
April 2013 to April 2014. This information was captured
from the Utilization Monitoring System of TSUBAME2.5.
Remind that each node has three GPUs, the graph shows how
many GPUs on assigned nodes were left idle as illustrated
by the red and the green areas. The nodes that fell into these
areas have the fragmented GPU resources that could have
been assigned to some other jobs.

The paper is organized as follows. We first examine the
effect of using rCUDA, a GPU virtualization middleware,
on the system and on the performance of applications.
We present a mathematical model of the execution time
of applications that use rCUDA, and propose a scheduling
algorithm that deals with the GPU resource-assignment frag-
mentation problem. We evaluate the algorithm by simulating
jobs whose parameters (resources requirements, arrival pat-
tern, etc.) were obtained from TSUBAME2.5’s G queue’s
scheduler and highlight the benefits of using the proposed
scheduling algorithm over the current G queue’s scheduling
algorithm of TSUBAME2.5.

II. GPU VIRTUALIZATION USING RCUDA

rCUDA [2], [3] is a CUDA-compatible GPU virtualization
middleware that we used to alleviate the GPU assignment-
fragmentation problem by allowing an application to use
GPUs remotely. rCUDA library intercepts all CUDA calls

Figure 3. Example of GPUs assignment enabling by rCUDA

of applications that use it and forwards all information
regarding the calls to rCUDA servers running on remote
hosts. The rCUDA servers execute the calls on the GPUs
of nodes that they are running on, and return all results of
the executions back to the caller. Moreover, programs that
are able to execute using native CUDA can also run using
rCUDA without modification because rCUDA provides the
same API as native CUDA. More details about how rCUDA
works and its performance analysis can be found in [2], [3],
[4], [5], [6], [7].

Because rCUDA enables applications executing on one
node to use GPUs on other nodes, it removes the node
boundary for GPU assignment from the viewpoint of a
scheduler. For example, as shown in Fig. 3, a job can get two
GPUs from the same node as usual like Job 1; or it can get
two GPUs, each from different nodes as Job 2. Therefore, it
could be used to solve the GPU assignment-fragmentation
problem. Furthermore, it is possible for a job to request
the number of GPUs per node more than the number of
GPUs physically exists on a node, like Job 3. This opens an
opportunity for jobs, which currently cannot run on the G
queue due to the number of GPUs, to run without changing
hardware. However, because rCUDA uses network to send
and receive data about intercepted CUDA calls, the network
may affect the performance of the GPU-intensive jobs.

The effect of network contention on applications using
rCUDA

We conducted experiments on the effect of network con-
tention using cudaMemcpy with rCUDA. We used a small
testbed which consists of two compute nodes; each of the
nodes had one 6-core Intel i7-3930K, one Nvidia Tesla K20c
connected via PCI-E Gen3 8x, and 48 GB memory; the
nodes were connected to each other via FDR InfiniBand.
The speed measured by ib read bw was 6.38 GB/s and
the latency measured from ib read lat was 5.97 µs. We
used ib read bw apps to generate the network contention on
the experiment system. Since we configured the InfiniBand
to use fair share, the average bandwidth for cudaMemcpy
is given by (1). We also built a model for estimating
cudaMemcpy data transfer time. The model is expressed by
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Figure 4. The effect of network contention on cudaMemcpy using rCUDA

(2).

bweff =
net bw

#ib read bw + 1
(1)

timercuda = (rcuda lat+ net lat)(gpu call count)

+
datasizeapp

bweff
overheadrcuda

(2)

where bweff is the bandwidth of the application; net bw is
the total bandwidth of the network; timercuda is the time
per CUDA kernel call when using rCUDA; rcuda lat is
the additional latency when using rCUDA; net lat is the
latency of the network; gpu call count is the number of
CUDA calls; datasizeapp is the data transfer size of the call;
and overheadrcuda is the additional bandwidth overhead
when uses rCUDA. We first conducted an experiment using
cudaMemcpy with rCUDA without running ib read bw.
By using the regression analysis, we obtains the value of
overheadrcuda = 1.09 and rcuda lat = 3.47ms.

As shown in Fig. 4, the data transfer time using cuda-
Memcpy fits to our model quite well; the fitness of the
model (R2) is 0.986. As rCUDA always uses network for
transferring data between local memory and remote GPU,
this model can be applied to all types of GPU data transfer.
Nevertheless, because the latency of rCUDA is more than
500 times greater than that of network latency (InfiniBand)
and GPU latency, we ignore the network latency and GPU
latency in the model.

According to the model, applications using rCUDA might
suffer from the network contention because of the decrease
in network bandwidth. The host-to-device and device-to-host
data transfer may not be affected as much as device-to-
device data transfer due to the fact that the total network
bandwidth and host-and-device transfer bandwidth are ap-
proximately the same (7 GB/s for InfiniBand FDR and K20c
GPU). But in the case of device-to-device data transfer, the
native bandwidth of GPU is around 170 GB/s, which is a
lot higher than that of the network. Also, depending on
the same-host GPU-to-GPU and inter-host communication
pattern, the amount of slow down of each application is not

the same. Fortunately, many jobs executing on the G queue
are nearly embarrassingly parallel; thus, the contention on
the network should not strongly affect inter-host communica-
tion. However, the contention of the network might directly
affect the applications’ performance due to same-host GPU-
to-GPU communication – programmers do not expect same-
host GPU-to-GPU communication to go over network, but
rCUDA changes its nature.

Another thing that we need to be concerned about is the
latency. Since the latency of using rCUDA is a lot greater
than that of network and GPU transfers, applications that use
rCUDA should avoid frequent GPU data transfer as much
as possible; hence, it would be better if applications transfer
data to and from GPU in large chunks instead of frequently
transferring small chunks.

III. R QUEUE: RCUDA-INTEGRATED GPU QUEUE

Even though rCUDA enables a scheduler to assign GPUs
to a job regardless of the physical boundary, jobs that use
rCUDA may suffer from the network contention; therefore,
the scheduler needs to be careful when assigning the jobs to
use rCUDA. We propose R queue, a scheduling algorithm
that allows the use of rCUDA to share GPU resources, as
the replacement of the current G queue. Fig. 5 and Fig. 6
show the simplified version of the algorithm of G queue
and the algorithm of R queue respectively. In the simplified
version of the G queue’s scheduling algorithm, the scheduler
dispatches a job in the first come first serve basis. The
first job in the queue gets dispatched if there are enough
resources to satisfy the requirements of the job. Even though
the full version of the algorithm also takes other properties
into consideration, such as job’s dependency, priority, etc.,
we simplified it in order to make the comparison with
the R queue algorithm easier to understand. For R queue,
the algorithm first tries to find as many suitable nodes
as possible to execute the jobs by using the simplified G
queue’s algorithm. If the number of suitable nodes is not
enough, the algorithm tries to find more nodes using 2-
step resource finding. First, it tries to find a node that has
enough resources excluding GPUs (e.g. CPUs, memory) to
serve a process of the job. Then, the algorithm tries to find
some nodes that have idle GPUs and ask that process to
use rCUDA servers running on those nodes. One thing in
common about these two steps is the node that has fewer
processes running is selected first. By asking only a subset
of processes of jobs to use rCUDA and selecting the nodes
that have fewer processes running first, the effect of network
contention is minimized while enabling more jobs to execute
at the same time.

Someone might also be concerned about security and
resource restriction of GPU-intensive jobs if they share
nodes; in this case, some sandbox mechanisms such as
cgroup or LXC can be employed. Also, such mechanisms



def m e e t s t a n d a r d r e q ( s e r v e r , j o b ) :
re turn s e r v e r . cpus >= j o b . r e q u e s t e d . cpus and s e r v e r .

memory >= j o b . r e q u e s t e d . memory

def f i n d G Q s u i t a b l e s e r v e r s ( j o b ) :
s u i t a b l e s e r v e r s = l i s t ( )
f o r s e r v e r in g e t a l l s e r v e r s ( ) :

i f l e n ( s u i t a b l e s e r v e r s ) == j o b . r e q u e s t e d . node coun t :
break

i f not s e r v e r . h a s j o b ( ) and m e e t s t a n d a r d r e q ( s e r v e r ,
j o b ) and s e r v e r . gpus >= j o b . r e q u e s t e d . gpus :

s u i t a b l e s e r v e r s . append ( s e r v e r )
re turn s u i t a b l e s e r v e r s

def G queue main ( ) :
f o r j o b in G queue :

s u i t a b l e s e r v e r s = f i n d G Q s u i t a b l e s e r v e r s ( j o b )
i f l e n ( s u i t a b l e s e r v e r s ) == j o b . r e q u e s t e d . node coun t :

s e r v e r . add ( j o b )
s e r v e r . s t a r t ( j o b )

e l s e :
w a i t u n t i l s t a t e c h a n g e ( )

Figure 5. Simplified version of the scheduling algorithm of G queue

have almost no impact on the performance of applications
as indicated in [1], making the sharing more attractive.

IV. EVALUATION AND DISCUSSION

A. Simulated jobs and simulation method

The data obtained from the scheduler’s log of the G
queue were composed of many attributes. The relevant
attributes used in this simulation are shown in Table I.
Despite having a lot of data, some attributes from the log
were omitted (e.g. job dependency) due to privacy concern,
and some attributes were not recorded at all (e.g. GPU-
to-GPU total data transfer). We had to estimate the value
of some attributes in order to simulate this jobs set. The
estimating methods of each attribute are also shown in
the table. The “net data size”, “gpu gpu data size”, and
“gpu cpu data size” were set equal to the amount of mem-
ory requested. Since applications need local memory to
buffer inter-node data transfer, this number can roughly rep-
resent the data transferred between nodes (e.g. MPI commu-
nication, cudaMemcpy with rCUDA). For “net conn count”
and “gpu call count”, we used a uniform random function
ranging from 100 to 100,000 to represent the values. The
number 100 and 100,000 represents the two extremes of
application communication pattern (infrequently transferring
data, and frequently transferring data). Since those values
were not recorded directly and application names were not
disclosed, we used the randomization to mix jobs that had
frequent communication and infrequent ones together. This
served as a rough approximation of the jobs on the G queue.
The closeness of the estimation might still be a concern to
some readers; however, we experimented with many values
of these estimated data and found out that the results (which
we will discuss later) were not significantly different. The
main reason is because the R queue algorithm tries to
minimize the number of jobs that use rCUDA; therefore,

def g e t l e a s t o c c u p i e d s e r v e r ( s e r v e r l i s t ) :
re turn s o r t e d ( s e r v e r l i s t , key = lambda s e r v e r : s e r v e r .

num runn ing jobs ) [ 0 ]

def R queue main ( ) :
f o r j o b in R queue :

s u i t a b l e s e r v e r s = f i n d G Q s u i t a b l e s e r v e r s ( j o b )
f o r s e r v e r in s u i t a b l e s e r v e r s :

s e r v e r . add ( j o b )
r e v e r t = F a l s e

# Find more nodes
whi le not r e v e r t and l e n ( s u i t a b l e s e r v e r s ) < j o b .

r e q u e s t e d . node coun t :

# 1 s t s t e p : f i n d a node t o run a p r o c e s s o f t h e j o b
s e r v e r l i s t = g e t a l l s e r v e r s ( )
p roc = None
whi le l e n ( s e r v e r l i s t ) > 0 :

s e r v e r = g e t l e a s t o c c u p i e d s e r v e r ( s e r v e r l i s t )
i f not m e e t s t a n d a r d r e q ( s e r v e r , j o b ) :

r e m o v e f r o m l i s t ( s e r v e r l i s t , s e r v e r )
e l s e :

p roc = s e r v e r . add base ( j o b )
s u i t a b l e s e r v e r s . append ( s e r v e r )
break

i f proc i s None :
r e v e r t = True
break

# 2nd s t e p : f i n d rCUDA−s e r v e r nodes f o r t h e p r o c e s s
s e r v e r l i s t = [ s e r v e r f o r s e r v e r in g e t a l l s e r v e r s ( )

i f s e r v e r . i d l e g p u s > 0]
num ass igned gpus = 0
whi le l e n ( s e r v e r l i s t ) > 0 and num ass igned gpus < j o b .

r e q u e s t e d . gpus :
s e r v e r = g e t l e a s t o c c u p i e d s e r v e r ( s e r v e r l i s t )
p roc . a s s i g n r c u d a s e r v e r ( s e r v e r )
num ass igned gpus += 1
i f s e r v e r . i d l e g p u s == 0 :

r e m o v e f r o m l i s t ( s e r v e r l i s t , s e r v e r )
i f num ass igned gpus < j o b . r e q u e s t e d . gpus :

r e v e r t = True
break

i f l e n ( s u i t a b l e s e r v e r s ) < j o b . r e q u e s t e d . node coun t or
r e v e r t :

# Remove t h e a s s i g n m e n t i f n o t enough r e s o u r c e s
f o r s e r v e r in s u i t a b l e s e r v e r s :

s e r v e r . remove ( j o b )
e l s e :

f o r s e r v e r in s u i t a b l e s e r v e r s :
s e r v e r . s t a r t ( j o b )

Figure 6. Scheduling algorithm of R queue

these estimated values affected only a small subset of the
jobs.

Table II shows the parameters of each simulated nodes.
All of the values were obtained from the real nodes of the G
queue. Our simulator generated sets of the simulated nodes
using these parameters and simulated resource occupancy of
each node by the simulated jobs. The number of nodes that
were generated for each experiment is given in the relevant
subsections of those experiments.

The simulator uses time-step-wise numerical method to
simulate scheduling pattern. This method concerns only
points in time where there is a change in the system such
as when a job arrives in the system, or when a job finishes
processing. There is no actual job running in the simulation;



Table I
JOB’S ATTRIBUTES, DESCRIPTIONS, AND HOW TO OBTAIN THE DATA

Field Name Obtaining Method Description
requested.node count Scheduler log Number of nodes

required
atime Scheduler log Job arrival time
etime Scheduler log Job end time
requested.cpus Scheduler log Requested # CPUs

per node
requested.gpus Scheduler log Requested # GPUs

per node
requested.memory Scheduler log Requested # mem-

ory per node
used.walltime Scheduler log Actual execution

time
net data size Eq requested.memory Network transfer

size per node
net conn count Rand(100, 100000) # connection

opening per node
gpu gpu data size Eq requested.memory GPU-to-GPU

transfer size per
node

gpu cpu data size Eq requested.memory GPU-to-CPU
transfer size per
node

gpu call count Rand(100, 100000) # CUDA calls per
node

Table II
SOME PARAMETERS OF EACH SIMULATED NODE

Field Name Value Description
cpus 8 # CPUs (including hyper-threading)
gpus 3 # GPUs
memory 22 GB Amount of memory
net bw 7 GB/s Network bandwidth
net lat 1.2 µs Network latency
gpu gpu bw 171 GB/s GPU-to-GPU bandwidth
gpu cpu bw 7 GB/s GPU-to-CPU bandwidth
gpu lat 0.99 ms CUDA call’s latency

instead, between each time step, the simulation assumes
consistent parameters, for example, available network band-
width for each application, etc. By using these parameters,
the simulator can compute the execution time of a job as
follow:

timeexec = timenet + timegpu comm + timeother (3)

timenet = (net lat)(net conn count)

+
net data size×#job

net bw

(4)

if the job uses rCUDA,

timegpu comm = timercuda (5)

otherwise,

timegpu comm = (gpu call count)(gpu lat)

+
gpu gpu data size

gpu gpu bw

+
gpu cpu data size

gpu cpu bw

(6)

where timeexec is the execution time of a job; timenet is
the time the job spends on network transfer; timegpu comm

is the time the job spends on GPU data transfer – both GPU
to GPU and GPU to CPU; timeother is the time the job
spends doing other things except what is stated above, such
as GPU/CPU computation, local disk access, etc; #job is
the number of jobs running on a node assigned to this job.
Also, we define a job’s lifetime as follow:

timelife = timewait + timeexec (7)

where timelife is the lifetime of a job. timewait is the wait
time of the job. Even though the above model is simple, it
can be used for estimating the actual execution time of a job.
Moreover, we are able to calculate the next time-change of
the system and simulate the execution of the job set using
the simplified version of the G queue and the proposed R
queue thanks to this model.

The disadvantage of using rCUDA compared to native
CUDA is quite clear when taking a look at the (3) to (7).
A job that uses rCUDA has longer execution time due to
the nature of rCUDA that changes GPU communication to
network communication; thus, timegpu comm gets longer.
Nevertheless, the R queue’s algorithm allows two or more
jobs to co-exist on a node; this causes the network bandwidth
that each job can use to be reduced. The reduction of
network bandwidth affects not only jobs that use rCUDA
but also jobs that do not. Despite having that negative
effect, R queue’s algorithm has the advantage that a job can
start earlier. Unfortunately, the advantage is not as obvious
as the disadvantage. Instead of analyzing the advantage
mathematically, we use the following experiments to see the
outcome of using R queue compared with G queue.

B. GPU occupancy pattern

In the first experiment, we wanted to know the GPU
occupancy pattern of the G queue and the R queue. We
simulated five servers and fed 50 jobs, whose parameters
(arrival time, requested resources, etc.) were obtained from
the G queue’s log during a busy period (September 1 - 10,
2013), to our scheduler. We used this subset of all jobs and
five nodes of the system in order to more easily visualize the
occupancy pattern, which is the purpose of this experiment.

Fig. 7 and Fig. 8 show an example of the GPU occupancy
pattern of the G queue and the R queue respectively. The
x-axis shows the time since the start of the scheduler.
The y-axis shows the GPUs grouped by node. Because
each node has three GPUs, each group is divided into
three lines indicating GPU0, GPU1, and GPU2 of each
node respectively. A block indicates which GPU was being
occupied by a job. Blocks having the same color represent
the same job. The width of the blocks shows how long the
jobs use the GPUs. Note that we used the same simulated
job set for both queues. On G queue, each GPU-intensive job
is executed on the exclusively assigned nodes; there are no
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Figure 7. GPUs occupancy pattern on each server using G queue algorithm
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Figure 8. GPUs occupancy pattern on each server using R queue algorithm

shared nodes. Whenever the scheduler cannot find enough
nodes to satisfy the request of incoming jobs, these jobs
will have to wait. In contrast with the R queue, some nodes
are shared among jobs. In most of the time interval, the R
queue can process more jobs than the G queue. However,
the R queue also makes some jobs execute longer due to the
network contention. Despite that, the benefit of the ability to
execute more jobs overshadows its disadvantage when there
are a lot of jobs in the queue and not all the jobs request
the maximum number of GPUs per nodes.

From mathematics’ point of view, what R queue’s algo-
rithm tried to do is reducing the wait time of each job as
much as possible. The judgment of the algorithm is based
on information up to the present since it cannot know what
kind of jobs may come in the queue in the future. By doing
its best on starting currently waiting jobs as soon as possible,
it opens more opportunity for later submitted jobs to start
early. This reflects on the results shown in Fig. 7 and Fig. 8

C. The reduction of jobs lifetime on R queue

In the second experiment, we wanted to know how using
the R queue affects the wait time, the execution time, and
the lifetime of jobs. We used all 63,484 jobs from the job set
obtained from the G queue’s log. We generated 480 nodes,
which is the same number of nodes in TSUBAME2.5’s G

queue, and simulated the running of both the simplified G
queue and the R queue with these data.

Fig. 9, Fig. 10, and Fig. 11 show the jobs’ wait time
decrease, execution time decrease, and lifetime decrease,
respectively, between the simulated G queue and the R
queue. The “time decrease” means that the time on the G
queue minus the same time on the R queue; for example,
the “wait time decrease” of a job is the wait time of the job
in G queue minus the wait time of that job on R queue.

As shown in Fig. 9, the wait time of a job running on the
R queue decreased about 25.24% on average compared to
the same job running on the G queue. This was due to the R
queue allowing some jobs to use rCUDA. These jobs were
able to use the idle GPUs on the nodes already assigned to
the other jobs, thus they were able to start earlier. Note that
some jobs had their wait time increased due to some other
jobs taking longer to execute, which was due to the network
contention. However, only 0.81% of the jobs had their wait
time increased and the average increase was 3.51 minutes.

Regarding the execution time, many jobs got their ex-
ecution time increased as shown in Fig. 10; however, the
average time increase was only about 0.03%. This shows
that the R queue’s algorithm did well in keeping the effect
of the network contention low. Note that the positive value
of the x-axis was due to the error from using the step-wise
numerical method for the simulation.

Fig. 11 shows the lifetime decrease of the jobs set. As
shown, most of the jobs got their lifetime decreased by about
5.06% on average. This means the users got their jobs done
earlier when using R queue. Moreover, the average number
of idle GPUs was reduced from 78.02 on G queue to 66.56
on R queue, a 14.69% reduction.

D. Effect of reducing total number of nodes on R queue
Since the R queue can reduce the lifetime of jobs com-

pared with executing them on the G queue, we can apply
this benefit in another way. By reducing the number of nodes
serving the R queue, we can still achieve an average jobs’
lifetime similar to that of the G queue. We used the same
simulator but reduced the number of simulated nodes from
480 to 450 by 10-node step. The job set was the same as the
previous section. As shown in Table III, the average lifetime
of the jobs running on the R queue increased as the number
of nodes decreased; the reason is because there are fewer
resources for processing incoming jobs. According to the
simulation, when reducing the number of nodes by 20 we
still got the average lifetime of the jobs executing on the R
queue almost equal to those executing on the G queue.

V. RELATED WORK

There are a lot of work trying to address heterogeneous
cluster scheduling problems; however, few has addressed
the GPU resource-assignment fragmentation problem. Yam-
agiwa and Wada [8] considered the resources usage con-
tention between CPU-based applications and GPU-based



Figure 9. Histogram of the jobs grouped by the difference between the
wait time of the jobs executing on the G queue and those executing on the
R queue

Figure 10. Histogram of the jobs grouped by the difference between the
execution time of the jobs executing on the G queue and those executing
on the R queue

Figure 11. Histogram of the jobs grouped by the difference between the
jobs’ lifetime (wait time + execution time) of the jobs executing on the G
queue and those executing on the R queue

applications. They showed that two GPU-intensive jobs
executing on the same node might suffer from competitive
resource access. For example, if the jobs use the same set of
GPUs, the execution on GPUs is serialized; therefore, they
both will suffer from GPU latency. Fortunately, this is not
the case for the R queue. Even if we do share nodes, we do

Table III
AVERAGE OF THE WAIT TIME DECREASE (SECONDS), THE EXECUTION

TIME DECREASE (SECONDS), AND THE LIFETIME DECREASE (SECONDS)
OF THE SIMULATED JOBS EXECUTING ON THE R QUEUE AND THOSE OF

THE SAME JOBS EXECUTING ON THE G QUEUE

# Nodes
Wait time Execution time Lifetime
decrease decrease decrease

Avg. STD Avg. STD Avg. STD
450 -901.49 4,236.04 -5.81 39.46 -907.29 4,238.53
460 -32.87 3,654.48 -4.55 35.27 -37.42 3,651.69
470 449.14 3,277.54 -4.31 34.41 444.83 3,272.51
480 963.60 6,678.48 -3.96 32.25 959.65 6,674.77

not share GPUs or CPUs between jobs.
Regarding research concerning multi-GPU system, Ravi

et al. [12] presented a scheduling method that takes the
possibility of a GPU-based job that can be executed on
CPUs into consideration. For example, LAMMPS can be
configured to either mainly do processing on GPUs, or
use only CPUs for processing. This possibility can increase
overall utilization of the system. If a job cannot be scheduled
to use GPUs due to not enough available resources, it can
be scheduled to use CPUs instead. Still, it relies on an
assumption that there are a lot of such jobs in the system,
which is not true in the TSUBAME2.5’s G queue. Also, they
did not address the GPU resource-assignment fragmentation
problem.

Another interesting one is [13]. They integrated integer-
programming optimization technique to SLURM scheduler
for GPU queue. The integer-programming optimization al-
lowed the scheduler to schedule jobs more wisely. Therefore,
the scheduler minimized the fragmentation of GPU re-
sources. However, their approach cannot remove the physical
boundary of nodes in the way we can when using our
proposed algorithm.

VI. CONCLUSION

This paper has considered the GPU resource-assignment
fragmentation problem on heterogeneous supercomputers
caused by job schedulers. The fragmentation prohibits the
efficient distribution of all GPU resources among multiple
jobs on a given node, resulting in some GPUs being left idle
even though there are jobs waiting. We have shown how
this problem persisted in the TSUBAME2.5’s GPU queue
(G queue) and proposed the use of rCUDA, which allowed
using GPUs remotely, to alleviate this problem. Due to the
fact that rCUDA causes applications to be more affected by
network contention, we have presented a model to predict
the increase in applications’ runtime when using rCUDA.
The model shows that the overhead of using rCUDA will
vary with effective network bandwidth. This suggests that
we should avoid having a lot of jobs using rCUDA running
at the same time. We also have proposed the R queue, which
is a job scheduler that supports rCUDA, as a replacement for
the G queue. We have shown, by way of simulation, how the



R queue allows a small subset of jobs to remotely use GPUs
on nodes that have been assigned to other jobs; this reduces
the amount of idle GPUs in the system, thus increases overall
resource utilization. We have extracted an actual job set from
the TSUBAME2.5’s G queue’s scheduler’s log and executed
it on the simulated G queue and the R queue. Our results
indicate that the jobs, after submission, complete on average
5% faster on the R queue than the G queue. The simulated
R queue has about 15% less idle GPUs than the G queue.
The algorithm of the R queue and the results also tell us that
by allowing a small subset of jobs to start early, the overall
utilization increases significantly. Besides this, we also show
another benefit of the R queue; that is it allows us the reduce
the number of nodes in the queue by approximately 4% (20
nodes) and still maintain the same jobs’ lifetime as with the
G queue; thus, using the R queue, we have more capacity
left for serving more jobs or for other usage.

VII. FUTURE WORK

Even though the simulation results show a good improve-
ment of the R queue over the G queue, the algorithm of
the R queue is still a heuristic algorithm. For the future,
we plan to analyze the scheduling pattern using online
optimization technique. It will allow us to model the queue
mathematically and compare the utilization of our algorithm
with the optimal one. Moreover, the R queue still does not
take scheduling based on network, such as network distance
between nodes, into account. Since rCUDA changes all
GPU-relevant communication into network communication,
R queue will cause some issues from the network’s point
of view. However, integrating multiple objectives into one
scheduler will complicate the algorithm; we plan to include
a technique of using multiple schedulers to achieve multiple
objectives, like in [9], [10], [11], into our work instead. This
will allow us to achieve higher utilization and mitigate the
network issue while keeping our algorithm simple.
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