
Using Real-time Java for Industrial Robot Control

Sven Gestegård Robertz
Department of

Computer Science
Lund University

sven@cs.lth.se

Roger Henriksson
Department of

Computer Science
Lund University

roger@cs.lth.se

Klas Nilsson
Department of

Computer Science
Lund University

klas@cs.lth.se

Anders Blomdell
Department of

Automatic Control
Lund University

anders.blomdell@control.lth.se

Ivan Tarasov
Department of

Applied Mathematics —
Control Processes

St. Petersburg State University,
Sun Microsystems

Ivan.Tarasov@sun.com

ABSTRACT
Safe languages like Java provide a much more programmer-
friendly environment than the low-level languages in which
real-time and embedded software have traditionally been
implemented. However, an obstacle for widespread use of
Java in control applications has been the predictability and
real-time performance of garbage collection, and the cum-
bersome memory management associated with RTSJ No-
HeapRealtimeThreads. The current version of the Sun Java
Real-Time System includes a real-time garbage collector,
and therefore, it is interesting to examine its feasibility for
robot motion control.

We have implemented a motion control system, and an ap-
plication, for an ABB IRB 340 industrial robot entirely in
real-time Java, using standard computer hardware, off-the-
shelf EtherCAT servo drives, and the Sun Java Real-Time
System 2.0 on Solaris 10. To our knowledge, this is the
first robot control system implemented entirely in Java and
executed on a certified virtual machine.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and application-based systems—Real-time and embedded sys-
tems; D.3.4 [Programming Languages]: Processors—Mem-
ory management, run-time environments; J.7 [Computer
Applications]: Computers in other systems—Real time,
Industrial control

General Terms
Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’07, September 26–28, 2007, Vienna, Austria.
Copyright 2007 ACM 978-59593-813-8/07/9 . ..$5.00

Keywords
Real-time, Java, garbage collection, industrial robot, motion
control

1. INTRODUCTION
The required flexibility in manufacturing implies that both
machine control and equipment interfaces need to be easy
to change for new application scenarios. Also, the trend for
shorter time to market and increased customization of the
manufactured products often result in configurations that
are quite dynamic, and therefore less suited for implemen-
tation in unsafe languages such as C or C++.

Automation equipment contains a variety of processors and
interfaces for the involved embedded systems, so portability
of (source and binary) code is an issue. But, in contrast to
other areas of embedded systems, power consumption is not
a big issue, as the machines consume a lot of energy for the
mechanical motions.

Another aspect is that controlled machines often need to be
simulated as part of the concept of digital factories, e.g. for
evaluation of suitable production line designs. These simu-
lations need to run on host computers, preferably without
recompiling (or even rewriting as today) the motion control
software.

In total this means that the software requirements get simi-
lar to those of Internet applications (portable execution with
language restrictions on data access), but with real-time re-
quirements. In other words, we would very much benefit
from implementing machine control systems in Java.

Up to now there has been a tradition to implement the time-
critical parts in C, and other parts (such as operator inter-
faces) in Java or other languages. In the following we explore
if using Java for low-level control is at all possible, using a
high-performance robot control system as a demanding test
case, and the Sun Java Real-Time System 2.0, as the test
platform.

1.1 Organization of the paper
Section 2 opens the discussion by presenting some key tech-
nologies for the implementation of the robot control system.
It goes on by presenting the robot control system itself, both
from hardware and software point-of-view in Section 3. The
experiences gained from the work is discussed in Section 4.
In Section 5, related work is presented, and Section 6 con-
cludes the paper.

2. BACKGROUND
There are a couple of technologies that can be said to be en-
abling technologies for making it possible for us to assemble
and implement the robot control system with relatively little
effort. One is the introduction of real-time garbage collec-
tion (RTGC) into the Sun Java Real-Time System 2.0 which
made it possible to utilize the standard Java memory model
for critical control threads and the other was EtherCAT, the
open field bus which made it easy to assemble off-the-shelf
hardware into a complete system.

2.1 Real-time garbage collection
In order to satisfy the demands of hard real-time systems,
a technique must be found to schedule the GC work of a
concurrent GC such that the application is guaranteed to
meet all of its hard deadlines. One such scheduling tech-
nique was presented by Henriksson in [4]. That work focuses
on embedded systems which are assumed to have a number
of high-priority (typically periodic) threads that must meet
hard deadlines. It can be observed that in most embed-
ded systems, a relatively small number of such threads ex-
ist. Apart from these, low-priority (periodic or background)
threads are often executing with more relaxed deadline re-
quirements. This leads to the fundamental idea of Henriks-
son’s work, which is as follows: do not perform any GC work
when the high-priority threads are executing. Instead, as-
sign the work motivated by high-priority allocations to a sep-
arate GC thread which is run when no high-priority thread
is executing. When invoked, it performs an amount of GC
work proportional to the amount of memory allocated by the
high-priority threads. Since the garbage collector may tem-
porarily get behind with its work in this way, there must al-
ways be an amount of memory reserved for the high-priority
threads. Slightly modified generalized rate monotonic anal-
ysis can be used both for calculating the amount of memory
which need to be reserved and to verify that the garbage
collector thread will always keep up with the high-priority
threads. Garbage collection work motivated by low-priority
threads are performed incrementally at allocation time.

The effect of this scheme is that it makes it possible to guar-
antee hard real-time performance for threads that actually
require it in a system scheduled by a fixed-priority sched-
uler. It should be noted that by scheduling GC this way,
the critical high priority threads pay no penalty for allo-
cating memory, in contrast with traditional incremental GC
scheduling strategies, where each thread has to carry it’s
own weight as far as the CPU overhead of memory man-
agement is concerned. That is the key property, as in a
real-time system, fairness in scheduling is not desired — the
most critical threads should run with as small latency and
jitter as possible.

Figure 1: Sun RTGC scheduling in a memory-low
situation. The RTGC priority is boosted in order
to guarantee the availability of memory to critical
RealtimeThreads.

The described scheduling principle is not targeted at, or lim-
ited to, any particular GC algorithm. Any incremental GC
could be used, provided that the increments can be made
sufficiently small (typically around 10 microseconds) to keep
the latency suffered by high priority threads low.

Another important aspect of a real-time run-time system is
that it must provide isolation between high and low priority
threads, in the sense that no actions of a low priority thread
may cause a higher priority thread to miss a deadline. Since
memory is a global resource, this means that care has to be
taken that low priority threads are not allowed to allocate
memory if that would cause an out-of-memory situation in a
higher priority thread. That can be achieved by calculating
the allocation requirements of critical threads, and reserving
a sufficient amount for such allocations [5].

2.2 The Sun Java Real-Time System 2.0
The Sun Java RTS 2.0 is an implementation of the Real-
Time Specification for Java [2], and includes a real-time GC
based on the basic principles described described in the pre-
vious section [3]. The RTGC is fully concurrent and pre-
emptable by NoHeapRealtimeThreads and RealtimeThreads
with priorities higher than the RTGC. It is also suitable for
multiprocessor machines since it can run on one processor
while application threads can run in parallel on the other
processors.

Normally, all RealtimeThreads run with a priority higher
than the RTGC, but the RTGC is allowed to boost its pri-
ority in low-memory situations to a higher, programmer-
configurable, level as shown in Figure 1. RealtimeThreads
can thus be divided into two categories, critical threads with
a priority higher than the boosted RTGC priority and non-
critical. Critical RealtimeThreads are guaranteed to never
be preempted by the RTGC as long as the system is not
overloaded.

The critical RealtimeThreads are protected against exces-
sive allocations in low priority threads by reserving a cer-
tain amount of memory for exclusive use by critical threads.
This is done by setting the command line parameter RTGC-
CriticalReservedBytes.

An advantage of the Java RTS 2.0 garbage collector is that it
makes it possible to use RTSJ RealtimeThread instances for
hard real-time tasks, as they can run with a higher priority
than the GC. This removes one of the previous obstacles in
writing RTSJ code; it is now possible to use dynamic mem-
ory in real-time threads just like in standard Java, and to
share objects between real-time and non-real-time threads.

Another benefit of using Real-Time Java is the availability
of the standard Java libraries and the ability to use some
language features (notably, generics, since Sun RTJS 2.0 is
based upon Java 1.5).

2.3 EtherCAT
EtherCAT [1] is an open field bus technology, based on real-
time ethernet, originally developed by Beckhoff, providing
very efficient transmission of process data. The EtherCAT
protocol has an officially assigned Ether-type in the ethernet
frame, making it possible to transmit process data directly
in the ethernet frame while being compliant with the eth-
ernet standard. The fundamental item of communication
on the EtherCAT level is the telegram, and many telegrams
can be packed together in one single ethernet frame, each
addressing a particular area in the logical process image.

The simplest and most efficient way of communicating —
which was used in the presented application — is sending
EtherCAT telegrams directly in the ethernet frame. For
larger systems, there is also an option to put EtherCAT tele-
grams inside UDP datagrams, to allow more flexible network
topologies.

EtherCAT slaves introduce very small delays (in the order
of nanoseconds) as the ethernet frames are not received,
processed and then transmitted. Instead, frames are pro-
cessed on-the-fly using a fieldbus memory management unit
(FMMU), allowing each slave to read and write its process
data while the frame is being copied directly from input to
output. Addressing is also quite flexible and the data se-
quence is independent of the physical order of slaves on the
bus.

In addition to transmission of process data, mailbox-based
communication is possible, for instance using CANopen over
EtherCAT (CoE) service data objects (SDOs). It is possible
to send such mailbox telegrams in the same ethernet frame
as process data telegrams.

For our application, one of the main advantages of Ether-
CAT is that it doesn’t require any special hardware on the
master computer; a standard ethernet card is all that is re-
quired. Also, if the ethernet driver of the operating system
provides raw ethernet access with sufficient real-time perfor-
mance, no low-level driver implementation is required.

3. THE APPLICATION
The application developed for the real-time Java powered
robot demo at JavaOne 2007 was a portrait-drawing robot.
A digital camera was used to take pictures of attendees. The
pictures were vectorized and turned into robot paths which
were sent to the robot controller. Figure 2 shows a photo of
the robot from JavaOne 2007.

Figure 2: The robot, controller computer, and drive
rack at JavaOne 2007.

.

The computer running the controller was a Sun Ultra 40
workstation, a 4 way AMD machine, running Sun Java RTS
2.0 on Solaris 10. The etherCAT communication was done
using one of the built-in ethernet interfaces.

The motion controller consisted of a trajectory generator
running with 12 ms period time, and a position controller
running with 1 ms period time. Velocity and torque control
was done in the drive units. The application software was
written entirely in Java, with the exception of a few lines
of JNI code for sending raw ethernet packets. In addition
to the real-time control parts, there was a graphical user
interface providing an operator’s console and logging and
plotting of process values. These parts were run in ordinary
Java threads, at lower priority than both real-time threads
and the RTGC.

3.1 ABB IRB 340 robot
The robot used was an ABB IRB 340 FlexPicker, a very fast
and light pick-and-place robot. We used only the ABB robot
itself, and not the ABB controller. The robot is a parallel
kinematic robot, which differs from the traditional serial
robot (where each axis is in line relative to the preceding
one) in that the axes operate in parallel. That means that
such a robot can be made light and flexible but also that,
due to the simpler dynamics, it opens possibilities to control
them using computers and software other than that supplied
by the robot manufacturer.

3.2 Servo drives
A servo drive is an electronic amplifier used for driving an
electrical motor — in this application the AC motors in the
robot — using feedback control. The motors have resolvers
providing angle measurements and the drive controls the mo-
tor current in order to achieve a desired torque and velocity.
The power electronics part of the drive converts the three
phase mains feed to the phase currents required to drive a
particular type of motor.

Figure 3: Overview of the control data flow. The trajectory generator reads the robot path and generates
position and velocity references with 12 ms time step. Those are interpolated into 1 ms time steps by the
micro interpolator, and buffered. The position controller runs at 1 kHz, sampling the current motor positions,
computing and outputting velocity references to the motors.

The drives used in the presented application were Bechhoff
AX2006, with a rated current output of 6A, and a peak
output of 12A. The drive outputs were connected through
the standard ABB motor cable, but the resolver cables were
directly connected to the motors in the robot, bypassing
the ABB measurement electronics. The communication be-
tween the Java controller and the drives was done over an
EtherCAT bus.

3.3 Robot motion control
The robot motion control in the presented application has
two main parts, trajectory generation and position control.
The former is run at 12 ms and takes the robot path, which
is simply a list of coordinates, and computes a trajectory, a
fine-grained list of coordinates and velocities for each 12 ms
period. The trajectory generation takes the physical con-
straints of the robot and work cell into account, e.g., maxi-
mum speed and acceleration, and the allowed working area
of the robot. From the trajectory, the position and veloc-
ity references are interpolated down to 1 ms intervals, and
sent to the position controller, which runs the feedback loop,
computing motor velocities based on the references and mea-
sured motor positions.

The controller used for the position control is a proportional
controller with feed-forward. The output signal is the sum of
two parts, one proportional to the error, and one depending
on the desired velocity in the trajectory. I.e.,

v = Kfb (xref − x) + Kff vff .

The feed-forward part is useful as it allows the controller
to follow the desired path more closely; with the feedback
control alone, there has to be a control error (x 6= xref) for
a non-zero output to be generated. With feed-forward, a
control signal can be generated without such an error.

3.4 Java implementation
The control was performed by two RealtimeThreads, run-
ning at 12 ms and 1 ms, respectively. Both the position
controllers and the EtherCAT I/O (reading positions and
sending velocity references) were done in the context of the
1 ms thread. as sketched in Figure 3. It is worth noting
that the control did not use NoHeapRealtimeThreads.

The micro-interpolator, or joint interpolator, is implemented
as a buffer, where the interpolation is done on the“slow”side,
to minimize latency and jitter in the fast position control
loop.

The real-time demands of the sampler thread, driving the
position control, come both from the control itself (jitter in
the sampling causes degraded control performance and may
even cause instability), and from the fact that the servo
drives have a safety feature requiring periodic sampling; if
the jitter gets too high, the motors are stopped.

Figure 4 shows an overview of the major classes of the robot
application. RobotApplication is the main class, and con-
nects the three parts of the system; an AbstractRobot in-
stance providing an interface to the robots sensors and ac-
tuators, the DrawingRefGen responsible for reading paths
and generating trajectories, and the RobotSampler driving
the feedback control loop.

There are two I/O abstractions; IOTrigger and IOGroup.
The former provides an interface for triggering I/O oper-
ations like sending EtherCAT telegrams. The latter con-
tains the structured interface to the data. For instance, in
this application the IOGroup consists of four VelocityIO ob-

Figure 4: Class diagram of the central parts of the
robot application.

Figure 5: Class diagram showing the specialized
EtherCAT robot.

jects, which have operations for reading motor positions and
outputting motor velocities. If torque control were desired
instead of velocity control, an IOGroup with the correspond-
ing TorqueIO objects would be implemented.

Figure 5 shows how the concrete class EtherCATRobot re-
lates to the EtherCAT slave class and the I/O interfaces.
This class contains the knowledge about the EtherCAT spe-
cific details of communication, implemented in the Ether-
CATRobotIO class.

3.5 EtherCAT protocol implementation
The EtherCAT master code has two main pieces of function-
ality: configuration of the slaves and transmission of process
data. The former is carried out by a non-real-time supervi-
sor thread, monitoring the state of the bus (number of slaves,
etc), and reacting to any changes. That includes assigning
station addresses, configuring process data objects, setting
up FMMUs, and so on. Transmission of process data is done
through I/O objects (IOTriggers), which cause EtherCAT
logical read/write telegrams to be sent on the bus. The pe-
riodic thread driving I/O and the feedback control typically
has the following structure:

while (operational) {

ioTrigger.doInput();

controller.doControl();

ioTrigger.doOutput();

waitForNextPeriod();

}

The EtherCAT master does, in itself, not depend on any
real-time Java classes. The transmission and reception of
process values must — if hard real-time is required — be
done in a real-time thread, but for applications with less
strict timing requirements the EtherCAT master can be run
on any Java virtual machine.

We will now briefly describe the EtherCAT master imple-
mentation. Figure 6 shows a diagram of the core classes
of the EtherCAT master code. The central class is Master,
which is responsible for monitoring the state of the bus, and
reacting to changes. When a new slave is discovered the cor-

responding SlaveFactory will instantiate a new Slave object
(based on manufacturer ID and product ID codes read from
the slave). For each slave type, there is a specialization of
the Slave class describing that particular device.

The SlaveHandler manages information about the process
data layout (by reading the list of process data objects (PDOs)
from the slaves) and sets up the slaves for the desired mode
of operation. It also contains an IOHandler class, which con-
tains the methods for packing and unpacking process data
in EtherCAT telegrams.

The different Telegram classes handles packing and unpack-
ing the corresponding EtherCAT telegram into an ethernet
frame. Telegrams can be logical (reading/writing/reading
and writing a FMMU mapped address), or physical (with
single slave addressing based on bus position (AP) or as-
signed address (NP) or broadcast to all slaves).

4. EXPERIENCES
From a programmer’s point of view, being able to access the
heap in the real-time parts of the code means that the design
of the system can be made in a more straight-forward way,
than if some of the more restricted memory management
models had been used. Even though the controller does
very little dynamic memory allocations during steady-state
operation, having the possibility to occasionally do so allows
a simpler code structure.

More imporantly, it makes it possible to use the same thread
object both for the non-real-time setup phase, where a lot of
object allocations take place, and the steady-state real-time
phase. That proved very valuable for the EtherCAT master,
as setting up the bus is very dynamic, due to the plug-and-
play nature of the bus. For instance, when new slaves are
discovered on the bus (typically at startup) a lot of infor-
mation is sent between the master and the slave, including
station address, mailbox configurations, process data map-
pings, etc., and having the possibility to build dynamic data
structures in a straight-forward way makes the implementa-
tion easier.

By contrast, after the system has been set up and entered
the steady state cyclic operation, the system is very static,
and little or no dynamic memory allocation is done. Thus,
the steady-state part could be implemented without using
heap access, but the changes between setup and steady state
get simpler, and the volume of code smaller, by having Re-
altimeThreads that can perform real-time tasks in the kilo-
hertz range.

The non-real-time parts of the system, on the other hand,
are quite allocation intensive. When running the graphical
user interface and plotting process values (reference, actual
position, velocity) during operation, with 1 ms resolution,
the system performed a GC cycle every 5 seconds.

The RTGC scheduling of Sun RTS 2.0, allowing Realtime-
Threads to run at a higher priority than the garbage col-
lector, introduces the risk of starving the GC thread which
leads to stop-the-world GC. However, tuning the RTGC-
CriticalReservedBytes parameter was enough to eliminate
deadline misses due to memory management.

Figure 6: Class diagram of the central parts of the EtherCAT master.

From analyzing GC logs, we saw that at every garbage col-
lection, the GC reclaimed most of the allocated memory
since last cycle, so that the space used by the live objects in
steady state was roughly constant. The amount of memory
reclaimed during each of the garbage collections was greater
than the steady state memory usage by an order of a mag-
nitude, indicating that a lot of short-lived objects was allo-
cated in the non-real-time parts. The GC logs also show that
the GC doesn’t block any of the threads, which means that
the garbage collector was using the multi-CPU/multicore
features of the system efficiently.

Ethernet timing measurements
For practical use in a control application, the real-time per-
formance of all parts of the system is important. In a con-
trol application, apart from the VM itself, the I/O drivers in
the operating system are important.The system presented in
this paper relies on raw Ethernet frames that are accessed
using a Java JNI wrapper around the Solaris DLPI interface.
We will now briefly present some experimental evaluation of
that wrapper.

Figure 7 shows measured network delays, from the time an
ethernet frame is sent in the Java code until it is received:

long t1 = System.nanoTime();
ethernet.send(sendPacket);
long t2 = System.nanoTime();
ethernet.receive(receivePacket, 10);
long t3 = System.nanoTime();
long sendDelay = t2 - t1;
long receiveDelay = t3 - t2;
long totalDelay = t3 - t1;

Nearly all packages return within 50 µs, but out of 107

packages, 300 had a delay larger than 400 µs. To study the
effects of cache pressure and critical paths shared between
ethernet driver and other kernel code, a disturbance task
was run:

repeat 100 \
find /usr /export -type f -exec wc {} \; >/dev/null

When running without additional load, the CPU usage was
less than 2%, with the find process, one of the processors
was fully occupied. About 60 µs of the delay is due to cache
misses, as can be seen from the less steep slope when there
is concurrent disk activity. Other (probably critical sections
in the kernel) interactions add an extra delay of up to 500
µs. I.e. using the Solaris ethernet driver may cause jitter
of up to around 500 µs (when using only a single ethernet
interface; using another interface adds another 300 µs).

Figure 8 shows the same program running on a dedicated
processor set. Now, the effects of running a competing find
task are barely visible, but it can be noted that the frac-
tion of packets that experience a delay of more than 400µ is
slightly higher in the idle processor set example (2 · 10−4 as
opposed to 8 · 10e−5).

For the presented application, the real-time performance was

Figure 7: Network delays. The x-axis shows sec-
onds of delay, and the y-axis shows the fraction of
requests not serviced within that time. The left plot
shows measurements with an otherwise idle system,
the right plot shows the effects of concurrent disk
accesses and CPU activity.

sufficient. Otherwise, it would be possible to write a new
ethernet driver to be used for the EtherCAT communication
— especially so as it is a very simple protocol, which does
not require a full TCP/IP stack or even advanced package
buffering, etc.

5. RELATED WORK
The main advantage of having a real-time GC is that hard
real-time code can be written without using NoHeapReal-
timeThreads, and thus avoiding the cumbersome memory
management associated with them. Another way of dealing
with that problem is the recently presented eventrons [6].

The presented application has an allocation behaviour that
makes it possible to implement using eventrons; much allo-
cation is done during the non-real-time setup phase but in
steady-state operation, very little allocation is performed in
the hard real-time parts, but there is still communication
between real-time and non-real-time code.

While programming with eventrons requires less effort than
when using NHRTs, it still is more restrictive than using
RealtimeThreads and a RTGC. Therefore, for tasks with
sampling rates of up to a few kHz, using RealtimeThreads
gives sufficient real-time performance, and leaves more flex-
ibility to the programmer.

6. CONCLUSION
We have implemented a control system for an industrial
robot entirely in Java, and discussed our experiences from
the work.

In the presented application, RealtimeThreads were used for
all the time-critical tasks, including the 1 kHz position con-
trol loop. Being able to access the heap from the real-time
threads allows a much simpler design, and makes all the
benefits of dynamic memory and automatic memory man-
agement available to the real-time programmer.

The use of a safe object-oriented language such as Java, and
EtherCAT based communication (which requires no special
hardware on the control computer — just an ethernet in-
terface — and no driver development), made it possible to
develop the application quite rapidly. The EtherCAT mas-

Figure 8: Network delays when the test task is
mapped to a processor set.

ter and the low-level control code was written from scratch
by two persons in less than three months.

Java SE compatibility makes development of real-time soft-
ware much easier, as the bulk of the code can be developed
and tested on a normal desktop system and a standard JVM.
In the presented project, most of the control code (kinemat-
ics, trajectory generation, etc.) and the EtherCAT master
code was developed and tested in this way. Of course, care
has to be taken when writing code that will eventually run
in the context of a real-time thread, but that only requires
sound real-time programming, not a real-time run-time sys-
tem. Furthermore, this makes the code very portable, and
we’re planning an open source release of the code.

In robotics, safety and predictability are critical, for instance
when machine motions are controlled next to a human op-
erator. However, standard off-the-shelf types of computing
systems can still be used since it is permitted to stop the
machine in case of a fault or error. That is, systems may
need to be safe but not safety critical (as, for instance, a
drive-by-wire system in car), and networking does not need
to be redundant.

Based on our experiences we believe that real-time Java is
a feasible alternative for industrial control applications. To
our knowledge, this is the first robot controller implemented
entirely in Java and excecuted on a certified virtual machine.

Acknowledgements
Greg Bollella and Keith Hargrove, Sun Microsystems, did
much of the high-level application implementation. The al-
gorithms for the robot kinematics and trajectory generation
were implemented by Tomas Olsson and Mathias Haage,
Lund University. We also want to thank ABB and Beckhoff
for valuable support. This work was partially financed by
Sun Microsystems. The EtherCAT master development was
partially financed by the EU FP6 project SMERobot.

7. REFERENCES
[1] Ethercat technology group web site.

http://www.ethercat.org/.

[2] G. Bollella et al. The Real-Time Specification for Java.
Addison-Wesley, 2001.

[3] B. Delsart, T. Printezis, G. Bollella, and D. Hofert. A
real-time garbage collector for a real-time java virtual
machine. Technical session 2901, JavaOne conference,
2007.

[4] R. Henriksson. Scheduling Garbage Collection in
Embedded Systems. PhD thesis, Department of
Computer Science, Lund University, 1998.

[5] S. G. Robertz. Applying priorities to memory
allocation. In Proceedings of the 2002 International
Symposium on Memory Management (ISMM’02),
Berlin, Germany, June 2002.

[6] D. Spoonhower, J. Auerbach, D. F. Bacon, P. Cheng,
and D. Grove. Eventrons: A safe programming
construct for high-frequency hard real-time
applications. In Proceedings of the ACM SIGPLAN
2006 Conference on Programming Language Design and
Implementation (PLDI’06), Ottawa, Ontario, Canada,
June 2006.

