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Abstract—Semantic slot filling is one of the most challenging
problems in spoken language understanding (SLU). In this paper,
we propose to use recurrent neural networks (RNNs) for this task,
and present several novel architectures designed to efficiently
model past and future temporal dependencies. Specifically, we
implemented and compared several important RNN architec-
tures, including Elman, Jordan, and hybrid variants. To facilitate
reproducibility, we implemented these networks with the pub-
licly available Theano neural network toolkit and completed
experiments on the well-known airline travel information system
(ATIS) benchmark. In addition, we compared the approaches on
two custom SLU data sets from the entertainment and movies
domains. Our results show that the RNN-based models outper-
form the conditional random field (CRF) baseline by 2% in
absolute error reduction on the ATIS benchmark. We improve the
state-of-the-art by 0.5% in the Entertainment domain, and 6.7%
for the movies domain.

Index Terms—Recurrent neural network (RNN), slot filling,
spoken language understanding (SLU), word embedding.

I. INTRODUCTION

T HE term “spoken language understanding” (SLU) refers
to the targeted understanding of human speech directed

at machines [1]. The goal of such “targeted” understanding is
to convert the recognition of user input, , into a task-specific
semantic representation of the user’s intention, at each turn.
The dialog manager then interprets and decides on the most
appropriate system action, , exploiting semantic context, user
specific meta-information, such as geo-location and personal
preferences, and other contextual information.
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The semantic parsing of input utterances in SLU typically
consists of three tasks: domain detection, intent determination,
and slot filling. Originating from call routing systems, the
domain detection and intent determination tasks are typically
treated as semantic utterance classification problems [2], [3],
[4], [30], [62], [63]. Slot filling is typically treated as a sequence
classification problem in which contiguous sequences of words
are assigned semantic class labels. [5], [7], [31], [32], [33],
[34], [40], [55].

In this paper, following the success of deep learning methods
for semantic utterance classification such as domain detection
[30] and intent determination [13], [39], [50], we focus on
applying deep learning methods to slot filling. Standard ap-
proaches to solving the slot filling problem include generative
models, such as HMM/CFG composite models [31], [5], [53],
hidden vector state (HVS) model [33], and discriminative or
conditional models such as conditional random fields (CRFs)
[6], [7], [32], [34], [40], [51], [54] and support vector machines
(SVMs) [52]. Despite many years of research, the slot filling
task in SLU is still a challenging problem, and this has mo-
tivated the recent application of a number of very successful
continuous-space, neural net, and deep learning approaches,
e.g. [13], [15], [24], [30], [56], [64].

In light of the recent success of these methods, especially
the success of RNNs in language modeling [22], [23] and in
some preliminary SLU experiments [15], [24], [30], [56], in this
paper we carry out an in-depth investigation of RNNs for the slot
filling task of SLU. In this work, we implemented and compared
several important RNN architectures, including the Elman-type
networks [16], Jordan-type networks [17] and their variations.
To make the results easy to reproduce and rigorously compa-
rable, we implemented these models using the common Theano
neural network toolkit [25] and evaluated them on the stan-
dard ATIS (Airline Travel Information Systems) benchmark.
We also compared our results to a baseline using conditional
random fields (CRF). Our results show that on the ATIS task,
both Elman-type networks and Jordan-type networks outper-
form the CRF baseline substantially, and a bi-directional Jordan-
type network that takes into account both past and future depen-
dencies among slots works best.

In the next section, we formally define the semantic utterance
classification problem along with the slot filling task and present
the related work. In Section III, we propose a brief review of
deep learning for slot filling. Section IV more specifically de-
scribes our approach of RNN architectures for slot filling. We
describe sequence level optimization and decoding methods in
Section V. Experimental results are summarized and discussed
in Section VII.
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ATIS UTTERANCE EXAMPLE IOB REPRESENTATION

II. SLOT FILLING IN SPOKEN LANGUAGE UNDERSTANDING

A major task in spoken language understanding in goal-ori-
ented human-machine conversational understanding systems is
to automatically extract semantic concepts, or to fill in a set of
arguments or “slots” embedded in a semantic frame, in order to
achieve a goal in a human-machine dialogue.

An example sentence is provided here, with domain, intent,
and slot/concept annotations illustrated, along with typical
domain-independent named entities. This example follows the
popular in/out/begin (IOB) representation, where Boston and
New York are the departure and arrival cities specified as the
slot values in the user’s utterance, respectively.

While the concept of using semantic frames (templates) is
motivated by the case frames of the artificial intelligence area,
the slots are very specific to the target domain and finding values
of properties from automatically recognized spoken utterances
may suffer from automatic speech recognition errors and poor
modeling of natural language variability in expressing the same
concept. For these reasons, spoken language understanding re-
searchers employed statistical methods. These approaches in-
clude generative models such as hidden Markov models, dis-
criminative classification methods such as CRFs, knowledge-
based methods, and probabilistic context free grammars. A de-
tailed survey of these earlier approaches can be found in [7].

For the slot filling task, the input is the sentence consisting of
a sequence of words, ,and the output is a sequence of slot/con-
cept IDs, , one for each word. In the statistical SLU systems,
the task is often formalized as a pattern recognition problem:
Given the word sequence , the goal of SLU is to find the se-
mantic representation of the slot sequence that has the max-
imum a posteriori probability .

In the generative model framework, the Bayes rule is applied:

The objective function of a generative model is then to max-
imize the joint probability given a
training sample of , and its semantic annotation, .

The first generative model, used by both the AT&T
CHRONUS system [31] and the BBN Hidden Understanding
Model (HUM) [35], assumes a deterministic one-to-one corre-
spondence between model states and the segments, i.e., there
is only one segment per state, and the order of the segments
follows that of the states.

As another extension, in the Hidden Vector State model the
states in the Markov chain representation encode all the struc-
ture information about the tree using stacks, so the semantic
tree structure (excluding words) can be reconstructed from the
hidden vector state sequence. The model imposes a hard limit
on the maximum depth of the stack, so the number of the states
becomes finite, and the prior model becomes the Markov chain
in an HMM [33].

Recently, discriminative methods have become more pop-
ular. One of the most successful approaches for slot filling is the
conditional random field (CRF) [6] and its variants. Given the
input word sequence , the linear-chain CRF
models the conditional probability of a concept/slot sequence

as follows:

(1)

where

(2)

and are features extracted from the current
and previous states and , plus a window of words around
the current word , with a window size of .

CRFs have first been used for slot filling by Raymond and
Riccardi [33]. CRF models have been shown to outperform
conventional generative models. Other discriminative methods
such as the semantic tuple classifier based on SVMs [36] has
the same main idea of semantic classification trees as used by
the Chanel system [37], where local probability functions are
used, i.e., each phrase is separately considered to be a slot given
features. More formally,

(3)

These methods treat the classification algorithm as a black
box implementation of linear or log-linear approaches but
require good feature engineering. As discussed in [57], [13],
one promising direction with deep learning architectures is in-
tegrating both feature design and classification into the learning
procedure.

III. DEEP LEARNING REVIEW

In comparison to the above described techniques, deep
learning uses many layers of neural networks [57]. It has made
strong impacts on applications ranging from automatic speech
recognition [8], [69], [70] to image recognition [10].

A distinguishing feature of NLP applications of deep learning
is that inputs are symbols from a large vocabulary, which led
the initial work on neural language modeling [26] to suggest
map words to a learned distributed representation either in the
input or output layers (or both), with those embeddings learned
jointly with the task. Following this principle, a variety of neural
net architectures and training approaches have been success-
fully applied [11], [13], [20], [22], [23], [39], [49], [58], [59],
[60], [61], [65], [66]. Particularly, RNNs [22], [23], [49] are
also widely used in NLP. One can represent an input symbol
as a one-hot vector, i.e., containing zeros except for one com-
ponent equal to one, and this weight vector is considered as a
low-dimensional continuous valued vector representation of the
original input, called word embedding. Critically, in this vector
space, similar words that have occurred syntactically and se-
mantically tend to be placed by the learning procedure close
to each other, and relationships between words are preserved.
Thus, adjusting the model parameters to increase the objec-
tive function for a training example which involves a partic-
ular word tends to improve performances for similar words in
similar context, thereby greatly improving generalization and
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Fig. 1. Three types neural networks. (a) Feed-forward NN; (b) Elman-RNN;
(c) Jordan-RNN.

addressing the curse-of-dimensionality obstacle faced with tra-
ditional n-gram non-parametric models [26].

One way of building a deep model for slot filling is to
stack several neural network layers on top of each other.
This approach was taken in [27], which used deep belief net-
works (DBNs), and showed superior results to a CRF baseline
on ATIS. The DBNs were built with a stack of Restricted
Boltzmann Machines (RBMs) [12]. The RBM layers were
pre-trained to initialize the weights. Then the well-known
back-propagation algorithm was used to fine-tune the weights
of the deep network in a discriminative fashion. Once the
individual local models are trained, Viterbi decoding is carried
out to find the best slot sequence given the sequence of words.

In contrast to using DBNs, we propose recurrent neural net-
works (RNNs). The basic RNNs used in language modeling read
an input word and predict the next word. For SLU, these models
are modified to take a word and possibly other features as input,
and to output a slot value for each word. We will describe RNNs
in detail in the following section.

IV. RECURRENT NEURAL NETWORKS FOR SLOT-FILLING

We provide here a description of the RNN models used for
the slot filling task.

A. Word Embeddings

The main input to a RNN is a one-hot representation of the
next input word. The first-layer weight matrix defines a vector
of weights for each word, whose dimensionality is equal to
the size of the hidden layer (Fig. 1)–typically a few hundred.
This provides a continuous-space representation for each word.
These neural word embeddings [26] may be trained a-priori on
external data such as the Wikipedia, with a variety of models
ranging from shallow neural networks [21] to convolutional
neural networks [20] and RNNs [22]. Such word embeddings
actually present interesting properties [23] and tend to cluster
[20] when their semantics are similar

While [15][24] suggest initializing the embedding vectors
with unsupervised vised learned features and then fine-tune
it on the task of interest, we found that directly learning the
embedding vectors initialized from random values led to the
same performance on the ATIS dataset, when using the SENNA
word embeddings (http://ml.nec-labs.com/senna/). While this
behavior seems very specific to ATIS, we considered extensive
experiments about different unsupervised initialization tech-
niques out of the scope of this paper. Word embeddings were
initialized randomly in our experiments.

B. Context Word Window

Before considering any temporal feedback, one can start with
a context word window as input for the model. It allows one to

capture short-term temporal dependencies given the words sur-
rounding the word of interest. Given the dimension of the
word embedding and the size of the vocabulary, we con-
struct the -context word window as the ordered concatenation
of word embedding vectors, i.e. previous word followed
by the word of interest and next words, with the following dot
product:

where corresponds to the embedding matrix
replicated vertically times and

corresponds to
the concatenation of one-hot word index vectors .

...

...
The index of word in the vocabulary

In this window approach, one might wonder how to build a
-context window for the first/last words of the sentence. We

work around this border effect problem by padding the begin-
ning and the end of sentences times with a special token.
Below, we depict an example of building a context window of
size 3 around the word “from”:

In this example, is a 3-word context window around the
-th word “from.” corresponds to the appropriate line in

the embedding matrix mapping the word “from” to its word
embedding. Finally, gives the ordered concatenated word
embeddings vector for the sequence of words in .

C. Elman, Jordan and Hybrid Architectures

As in [15], we describe here the two most common RNN
architectures in the literature: the Elman [16] and Jordan [17]
models. The architectures of these models are illustrated in
Fig. 1.

In contrast with classic feed-forward neural networks, the
Elman neural network keeps track of the previous hidden layer
states through its recurrent connections. Hence, the hidden layer
at time can be viewed as a state summarizing past inputs along
with the current input. Mathematically, Elman dynamics with

hidden nodes at each of the hidden layers are depicted
below:

(4)

(5)

where we used the non-linear sigmoid function applied element
wise for the hidden layer and

are parameter vectors to be learned. The superscript denotes
the depth of the hidden layers and represents the recurrent
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weights connection. The posterior probabilities of the classifier
for each class are then given by the softmax function applied to
the hidden state:

(6)

Where correspond to the weights of the softmax top layer.
The learning part then consists of tuning the parameters

of the RNN with output classes. Precisely, the matrix shapes
are

and . For training, we use
stochastic gradient descent, with the parameters being updated
after computing the gradient for each one of the sentences in our
training set , towards minimizing the negative log-likelihood.
Note that a sentence is considered as a tuple of words and a
tuple of slots:

(7)

Note that the length of each sentence can vary among the
training samples and the context word window size is a hyper-
parameter.

The Jordan RNN is similar to the Elman-type network except
that the recurrent connections take their input from the output
posterior probabilities:

(8)

where and are additional
parameters to tune. As pointed out in [15], three different
options can be considered for the feedback connections:
(a) , (b) a one-hot vector with an active bit for

or even (c) the ground truth label for
training. Empirically [15], none of these options significantly
outperformed all others.

In this work, we focused on the Elman-type, Jordan-type and
hybrid versions of RNNs. The hybrid version corresponds to a
combination of the recurrences from the Jordan and the Elman
models:

D. Forward, Backward and Bidirectional Variants

In slot filling, useful information can be extracted from the
future and we do not necessarily have to process the sequence
online in a single forward pass. It is also possible to take into ac-
count future information with a single backward pass but still,
this approach uses only partial information available. A more
appealing model would consider both past and future informa-
tion at the same time: it corresponds to the bi-directional Elman
[18][19] or Jordan [15] RNN.

We describe the bidirectional variant only for the first layer
since it is straightforward to build upper layers as we did pre-
viously for the Elman RNN. First, we define the forward
and the backward hidden layers:

where corresponds to the weights for the forward pass and
for the backward pass. The superscript corresponds to the

recurrent weights.
The bidirectional hidden layer then takes as input the

forward and backward hidden layers:

where are the weights for the context window input,
projects the forward pass hidden layer of the previous time step
(past), and the backward hidden layer of the next time step
(future).

V. SEQUENCE LEVEL OPTIMIZATION AND DECODING

The previous architectures are optimized based on a
tag-by-tag likelihood as opposed to a sequence-level objective
function. In common with Maximum Entropy Markov Model
(MEMM) [28] models, the RNNs produce a sequence of
locally-normalized output distributions, one for each word po-
sition. Thus, it can suffer from the same label bias [6] problem.
To ameliorate these problems, we propose two methods: Viterbi
decoding with slot language models and recurrent CRF.

A. Slot Language Models

As just mentioned, one advantage of CRF models over RNN
models is that it is performing global sequence optimization
using tag level features. In order to approximate this behavior,
and optimize the sentence level tag sequence, we explicitly ap-
plied the Viterbi [40] algorithm. To this end, a second order
Markov model has been formed, using the slot tags, as
states, where the state transition probabilities, are
obtained using a trigram tag language model (LM). The tag level
posterior probabilities obtained from the RNN were used when
computing the state observation likelihoods.

As is often done in the speech community, when combining
probabilistic models of different types, it is advantageous
to weight the contributions of the language and observa-
tion models differently. We do so by introducing a tunable
model combination weight, , whose value is optimized on
held-out data. For computation, we used the SRILM toolkit
(http://www.speech.sri.com/projects/srilm/).
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B. Recurrent CRF

The second scheme uses the objective function of a CRF,
and trains RNN parameters according to this objective function.
In this scheme, the whole set of model parameters, including
transition probabilities and RNN parameters, are jointly trained,
taking advantage of the sequence-level discrimination ability of
the CRF and the feature learning ability of the RNN. Because the
second scheme is a CRF with features generated from an RNN,
we call it a recurrent conditional random field (R-CRF) [41],
[42]. The R-CRF differs from previous works that use CRFs
with feed-forward neural networks [43], [44] and convolutional
neural networks [45], in that the R-CRF uses RNNs for feature
extraction–using RNNs is motivated by its strong performances
on natural language processing tasks. The R-CRF also differs
from works in sequence training of DNN/HMM hybrid systems
[46]–[48] for speech recognition, which use DNNs and HMMs,
in that R-CRF uses the CRF objective and RNNs.

The R-CRF objective function is the same as Eq. (1) defined
for the CRF, except that its features are from the RNN. That is,
the features in the CRF objective function (2)
now consist of transition feature and tag-specific
feature from the RNN. Note that since features are
extracted from an RNN, they are sensitive to inputs back to time

. Eq. (2) is re-written as follows

(9)

In a CRF, is fixed and is usually a binary
value of one or zero, so the only parameters to learn are the
weights . In contrast, the R-CRF uses RNNs to output

, which itself can be tuned by exploiting error
back-propagation to obtain gradients. To avoid the label-bias
problem [6] that motivated CRFs, the R-CRF uses un-normal-
ized scores from the activations before the softmax layer as
features . In the future, we would like to investigate
using activations from other layers of RNNs.

The R-CRF has additional transition features to estimate.
The transition features are actually the transition probabilities
between tags. Therefore the size of this feature set is
with the number of slots. The number of RNN parameters is

. Usually the relation among vocabulary
size , hidden layer size and slot number is

. Therefore, the number of additional transition features
is small in comparison.

Decoding from the R-CRF uses the Viterbi algorithm. The
cost introduced from computing transition scores is and

is the length of a sentence. In comparison to the computational
cost of in the RNN, the additional cost from transition
scores is small.

VI. EXPERIMENTAL RESULTS

In this section we present our experimental results for the slot
filling task using the proposed approaches.

A. Datasets

We used the ATIS corpus as used extensively by the SLU
community, e.g. [1], [7], [29], [38]. The original training data
include 4978 utterances selected from Class A (context inde-
pendent) training data in the ATIS-2 and ATIS-3 corpora. In this
work, we randomly sampled 20% of the original training data
as the held-out validation set, and used the left 80% data as the
model training set. The test set contains 893 utterances from the
ATIS-3 Nov93 and Dec94 datasets. This dataset has 128 unique
tags, as created by [34] from the original annotations. In our first
set of experiments on several training methods and different di-
rectional architectures, we only used lexical features in the ex-
periments. Then, in order to compare with other results, we in-
corporated additional features in the RNN architecture.

In our experiments, we preprocessed the data as in [24]. Note
that authors in [13], [15], [27], [29], [38] used a different prepro-
cessing technique, and hence their results are not directly com-
parable. However, the best numbers reported on ATIS by [27]
are 95.3% F1-score on manual transcriptions with DBNs, using
word and named entity features (in comparison to their CRF
baseline of 94.4%).

As additional sets of experiments, we report results on two
other custom datasets focusing on movies [39] and entertain-
ment. Each word has been manually assigned a slot using the
IOB schema as described earlier.

B. Baseline and Models

On these datasets, Conditional Random Fields (CRF) are
commonly used as a baseline [7]. The input of the CRF cor-
responds to a binary encoding of N-grams inside a context
window. For all datasets, we carefully tuned the regularization
parameters of the CRF and the size of the context window
using 5-fold cross-validation. Meanwhile, we also trained a
feed-forward network (FFN) for slot filling, with the architec-
ture shown in Fig 1(a). The size of the context window for FFN
is tuned using 5-fold cross-validation.

C. RNN Versus Baselines and Stochastic Training Versus

Sentence Mini-batch Updates

Different ways of training the models were tested. In our
experiments, the stochastic version considered a single (word,
label) couple at a time for each update while the sentence
mini-batch processed the whole sentence before updating
the parameters. Due to modern computing architectures, per-
forming updates after each example considerably increases
training time. A way to process many examples in a shorter
amount of time and exploit inherent parallelism and cache
mechanisms of modern computers relies on updating parame-
ters after examining a whole mini-batch of sentences.

First, we ran 200 experiments with random sampling [14] of
the hyper-parameters. The sampling choices for each hyper-pa-
rameter were for the depth, , the context size,

, the embedding dimension, and
3 different random seed values. The learning rate was sampled
from a uniform distribution in the range . The em-
bedding matrix and the weight matrices were initialized from
the uniform in the range . We performed early-stopping
over 100 epochs, keeping the parameters that gave the best per-
formance on the held-out validation set measured after each
training epoch (pass on the training set).
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TABLE I
TEST SET F1-SCORE OF THE DIFFERENT MODELS AFTER 200 RUNS
OF RANDOM SAMPLING OF THE HYPER-PARAMETERS. ALL MODELS

ARE TRAINED USING THE STOCHASTIC GRADIENT APPROACH

TABLE II
MEASUREMENT OF THE IMPACT OF USING DIFFERENT WAYS OF TRAINING

THE MODELS AND RANDOM SEED ON THE PERFORMANCE

The F1-measure on the test set of each method was computed
after the hyper-parameter search. Results are reported in Table I.
All the RNN variants and the FFN model outperform the CRF
baseline. And all the RNN variants outperform the FFN model,
too.

Then, given the best hyper-parameters found previously on
the validation set, we report the average, minimum, maximum
and variance of the test set accuracy over 50 additional runs by
varying only the random seed. In our case, the random initial-
ization seed impacted the way we initialized the parameters and
how we shuffled the samples at each epoch. Note that for the
Hybrid RNN and stochastic updates, the score obtained during
hyper-parameters search corresponds to the max of the valida-
tion set score over different random seeds. The results are pre-
sented in Table II. The observed variances from the mean are in
the range of 0.3%, which is consistent with the 0.6% reported in
[24] with the 95% significance level based on the binomial test.
We also observe that stochastic (STO) performs better than sen-
tence mini-batches (MB) on average. In a large-scale setting, it
is always more beneficial to perform sentence mini-batches as
it reduces the training complexity. On our small ATIS bench-
mark, it took about the same number of epochs for convergence
for both training schemes STO and MB, but each epoch took
longer with STO.

D. Local Context Window and Bi-Directional Models

The slot-filling task is an off-line task, i.e., we have access
to the whole sentence at prediction time. It should be beneficial
to take advantage of all future and past available information
at any time step. One way to do it consists of using bidirec-
tional models to encode the future and past information in the
input. The bidirectional approach relies on the capacity of the
network to summarize the past and future history through its
hidden state. Here, we compare the bidirectional approach with
the local context window where the future and past information
is fed as input to the model. Therefore, rather than considering

TABLE III
F1-SCORE OF SINGLE AND BI-DIRECTIONAL MODELS WITH OR W/O

CONTEXT WINDOWS. WE REPORT THE BEST CONTEXT WINDOW SIZE
HYPER-PARAMETER AS THE NUMBER IN THE ROUND BRACKETS

TABLE IV
PERFORMANCE WITH NAMED ENTITY FEATURES

a single word here, the context window allows us to encode the
future and past information in the input.

We ran a set of experiments for different architectures with
different context-window sizes and no local context window
and compare the results to a CRF using either unigram or
N-grams. Results are summarized in Table III. Note that the
CRF using no context window (e.g., using unigram features
only) performs significantly worse than the CRF using a context
window (e.g., using up to 9-gram features).

The absence of a context window affects the performance of
the Elman RNN (-1.83%), and it considerably damages the ac-
curacy of the Jordan RNN (-29.00%). We believe this is because
the output layer is much more constrained than the hidden layer,
thus making less information available through recurrence. The
softmax layer defines a probability and all its components sum
to 1. The components are tied together, limiting their degree of
freedom. In a classic hidden layer, none of the component is tied
to the others, giving the Elman hidden layer a bit more power
of expression than the Jordan softmax layer. A context window
provides further improvements, while the bidirectional architec-
ture does not benefit any of the models.

E. Incorporating Additional Features

Most of the time, additional information such as look-up ta-
bles or clustering of words into categories is available. At some
point, in order to obtain the best performance, we want to in-
tegrate this information in the RNN architecture. At the model
level, we concatenated the Named Entity (NE) information fea-
ture as a one-hot vector feeding both to the context window
input and the softmax layer [49].

For the ATIS dataset, we used the gazetteers of flight related
entities, such as airline or airport names as named entities. In
Table IV, we can observe that it yields significant performance
gains for all methods, RNN and CRF included.

F. ASR Setting

In order to show the robustness of the RNN approaches, we
have also performed experiments using the automatic speech
recognition (ASR) outputs of the test set. The input for SLU is
the recognition hypothesis from a generic dictation ASR system
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TABLE V
COMPARISON BETWEEN MANUALLY LABELED WORD AND ASR OUTPUT

and has a word error rate (WER) of 13.8%. While this is signif-
icantly higher than the best reported performances of about 5%
WER [4], this provides a more challenging and realistic frame-
work. Note that the model trained with manual transcriptions is
kept the same.

Table V presents these results. As seen, the performance
drops significantly for all cases, though RNN models continue
to outperform the CRF baseline. We also notice that under the
ASR condition, all three types of RNN perform similar to each
other.

G. Entertainment Dataset

As an additional experiment, we ran our best models on a
custom dataset from the entertainment domain. Table VI shows
these results. For this dataset, the CRF outperformed RNN ap-
proaches. There are two reasons for this:

• The ATIS and Entertainment datasets are semantically very
different. While the main task in ATIS is disambiguating
between a departure and an arrival city/date, for the enter-
tainment domain, the main challenge is detecting longer
phrases such as movie names.

• While RNNs are powerful, the tag classification is still
local, and the overall sentence tag sequence is not opti-
mized directly as with CRFs.

However, as we shall cover in the next sections, the per-
formance of the RNN approach can be improved using three
techniques: Viterbi decoding, Dropout regularization, and fu-
sion with the CRF framework.

H. Slot Language Models and Decoding

Using the Viterbi algorithm with the output probabilities of
the RNN boosts the performance of the network in the Enter-
tainment domain, while on ATIS, the improvement is much less
significant. This shows the importance of modeling the slot de-
pendencies explicitly and demonstrates the power of dynamic
programing.

I. Dropout Regularization

While deep networks have more capacity to represent func-
tions than CRFs, they might suffer from overfitting. Dropout
[10] is a powerful way to regularize deep neural networks. It
is implemented by randomly setting some of the hidden units to
zero with probability during training, then dividing the param-
eters by during testing. In fact, this is an efficient and ap-
proximate way of training an exponential number of networks
that share parameters and then averaging their answer, much
like an ensemble. We have found it further improves the perfor-
mance on the Entertainment dataset, and beats the CRF by 0.5%
as seen in Table VI (i.e., 91.14% vs. 90.64%).

J. R-CRF Results

We now compare the RNN and R-CRF models on the ATIS,
Movies and Entertainment datasets. For this comparison,

TABLE VI
COMPARISON WITH VITERBI DECODING WITH DIFFERENT

METHODS ON SEVERAL DATASETS

TABLE VII
COMPARISON WITH R-CRF AND RNN ON ATIS,

MOVIES, AND ENTERTAINMENT DATASETS

we have implemented the models with C code rather than
Theano. On the ATIS data, the training features include word
and named-entity information as described in [29], which aligns
to the “ ” line in Table IV. Note that performances
between RNNs in Theano and C implementations are slightly
different on ATIS. The C implementation of RNNs obtained
96.29% F1 score and Theano obtained 96.24% F1 score. We
used a context window of 3 for bag-of-word feature [24]. In
this experiment, the RNN and R-CRF both are of the Elman
type and use a 100-dimension hidden layer. On the Movies
data, there are four types of features. The n-gram features
are unigrams and bi-grams appeared in the training data. The
regular expression features are those tokens, such as zip code
and addresses, that can be defined in regular expressions.
The dictionary features include domain-general knowledge
sources such as US cities and domain-specific knowledge
sources such as hotel names, restaurant names, etc. The con-
text-free-grammar features are those tokens that are hard to be
defined in a regular expression but have context free generation
rules such as time and date. Both RNNs and CRFs are optimal
for the respective systems on the ATIS and Movies domains.
On the Entertainment dataset, both RNN and R-CRF used 400
hidden layer dimension and momentum of 0.6. Features include
a context window of 3 as a bag-of-words. The learning rate for
RNNs is 0.1 and for R-CRFs it is 0.001.
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As shown in Table VII, the RNNs outperform CRFs on ATIS
and Movies datasets. Using the R-CRF produces an improved
F1 score on ATIS. The improvement is particularly significant
on Movies data, because of the strong dependencies between
labels. For instance, a movie name has many words and each of
them has to have the same label of “movie_name.” Therefore,
it is beneficial to incorporate dependencies between labels, and
train at the sequence level. On the Entertainment dataset, the
RNN and R-CRF did not perform as well as the CRF. However,
results confirm that the R-CRF improves over a basic RNN.

VII. CONCLUSIONS

We have proposed the use of recurrent neural networks for
the SLU slot filling task, and performed a careful comparison
of the standard RNN architectures, as well as hybrid, bi-direc-
tional, and CRF extensions. Similar to the previous work on
application of deep learning methods for intent determination
and domain detection, we find that these models have compet-
itive performances and have improved performances over the
use of CRF models. The new models set a new state-of-the-art
in this area. Investigation of deep learning techniques for more
complex SLU tasks, for example ones that involve hierarchical
semantic frames, is part of future work. Further, the recurrent
neural networks for the SLU application as presented in this
paper can be generalized to other types of speech-centric infor-
mation processing tasks [67], [68].
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