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Speech-in-noise perception is a major problem for users of cochlear implants (CIs), especially with

non-stationary background noise. Noise-reduction algorithms have produced benefits but relied on a

priori information about the target speaker and/or background noise. A recurrent neural network

(RNN) algorithm was developed for enhancing speech in non-stationary noise and its benefits were

evaluated for speech perception, using both objective measures and experiments with CI simulations

and CI users. The RNN was trained using speech from many talkers mixed with multi-talker or traffic

noise recordings. Its performance was evaluated using speech from an unseen talker mixed with dif-

ferent noise recordings of the same class, either babble or traffic noise. Objective measures indicated

benefits of using a recurrent over a feed-forward architecture, and predicted better speech intelligibil-

ity with than without the processing. The experimental results showed significantly improved intelli-

gibility of speech in babble noise but not in traffic noise. CI subjects rated the processed stimuli as

significantly better in terms of speech distortions, noise intrusiveness, and overall quality than unpro-

cessed stimuli for both babble and traffic noise. These results extend previous findings for CI users to

mostly unseen acoustic conditions with non-stationary noise. VC 2019 Author(s). All article content,

except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/1.5119226

[ICB] Pages: 705–718

I. INTRODUCTION

Despite great advances in cochlear implant (CI) technol-

ogy and the benefits that these provide, users of CIs still

encounter difficulties understanding speech in noisy environ-

ments, especially with non-stationary backgrounds such as

competing speech or traffic. CI users struggle more than

normal-hearing (NH) listeners in these conditions, partly due

to a decreased ability to make use of temporal fluctuations in

the background noise (Stickney et al., 2004; Cullington and

Zeng, 2008). Furthermore, the spectral resolution that a CI

can deliver is limited by the use of a small number of elec-

trodes whose outputs interact due to current spread (Carlyon

et al., 2007; Oxenham and Kreft, 2014). In addition, CI lis-

teners have poor sensitivity to the temporal fine structure of

sounds (Moore and Carlyon, 2005), and this may limit their

ability to perceptually segregate speech from interfering

sounds. As a result, CI users rely strongly on slowly varying

temporal-envelope information, and this makes them espe-

cially susceptible to the effects of modulated, or non-

stationary, interfering noise (Cullington and Zeng, 2008; Fu

et al., 1998). Previous studies have shown improved speech

intelligibility (SI) for speech in fluctuating noise using direc-

tional algorithms, but these depend on the assumption that

the target speech and masking noise are spatially separated

(Wouters and Vanden Berghe, 2001; Hersbach et al., 2012).

In addition, such algorithms usually require the user to face

the target talker, which is not always possible. Here, we

describe and evaluate a single-microphone algorithm that

operates without spatial information and can be applied in

conjunction with directional algorithms in CI speech pro-

cessors (Hersbach et al., 2012).

Conventional single-microphone speech enhancement

algorithms, such as those used in current CIs, are based on

statistical signal processing methods that include spectral

subtraction and wiener filtering (Boll, 1979; Scalart and

Filho, 1996). These have been shown to improve the intelli-

gibility of speech in stationary noise for CI users (Loizou

et al., 2005; Dawson et al., 2011; Mauger et al., 2012) and

NH listeners using CI simulations (Bolner et al., 2016; Lai

et al., 2018). Data-based algorithms using machine-learning

(ML) techniques, such as deep neural networks (DNNs) or

Gaussian mixture models (GMMs), were successful for

speech in non-stationary, multi-talker babble and achieved

significant SI improvements for NH (Kim et al., 2009;

Bentsen et al., 2018), hearing-impaired (HI; Healy et al.,

2013; Healy et al., 2015; Healy et al., 2019; Chen et al.,

2016; Monaghan et al., 2017; Bramsløw et al., 2018), and CI

listeners (Hu and Loizou, 2010; Goehring et al., 2017; Lai

et al., 2018). Improvements of more recent approaches over

earlier ones have been mainly driven by two factors: the use

of more powerful DNN-based regression systems instead of

classification systems, and the use of a ratio mask instead

of a binary mask as the training target (Madhu et al., 2013;a)Electronic mail: Tobias.Goehring@mrc-cbu.cam.ac.uk
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Bentsen et al., 2018). However, all of these algorithms made

use of some a priori information about the target speech

and/or interfering noise by using the same target speaker

(Lai et al., 2018; Chen et al., 2016), background noise

(Goehring et al., 2017), or both (Kim et al., 2009; Hu and

Loizou, 2010; Healy et al., 2013; Healy et al., 2015; Healy

et al., 2019; Goehring et al., 2017; Lai et al., 2018;

Bramsløw et al., 2018; Bentsen et al., 2018) for the training

and testing of the algorithm.

While the results of these studies are promising, in prac-

tice the application to CI speech processors requires an algo-

rithm to generalize to acoustic conditions that were not

presented during the training. Unfortunately, performance

has been found to drop substantially for unseen testing data

evaluated with objective intelligibility predictors (May and

Dau, 2014; Chen and Wang, 2017) and for a speaker-

independent over a speaker-dependent system evaluated

with CI users (Goehring et al., 2017). Recent computational

studies provide evidence that the generalization performance

of DNNs to unseen speakers or background noise can be

improved by using recurrent neural network (RNN) architec-

tures (Weninger et al., 2015; Chen and Wang, 2017; Kolbæk

et al., 2017). These differ from feed-forward architectures

by using recurrent connections, as well as feedback and gate

elements, to add temporal memory to the network (Graves

et al., 2013). One of the most successful RNN architectures

is the “long short-term memory” (LSTM) RNN architecture

that uses four gates to accumulate information about past

input and state data, and learns to manage this information

over time (Hochreiter and Schmidhuber, 1997; LeCun et al.,

2015). RNN-LSTM algorithms have shown improved gener-

alization using objective measures, but have not been evalu-

ated in listening studies with CI users. However, similar

types of LSTM-RNNs have recently been shown to provide

benefits for speech-in-noise perception for HI listeners

(Bramsløw et al., 2018; Keshavarzi et al., 2018; Keshavarzi

et al., 2019; Healy et al., 2019), and they represent a promis-

ing way for improving performance for CI users in condi-

tions with non-stationary noise that was not included in the

training data.

In addition to the requirement for generalization to

unseen conditions, a constraint for the practical use of ML-

based algorithms in CI devices is a processing delay below

about 10–20 ms, to avoid subjective disturbance during

speech production and limit audio-visual asynchrony (Stone

and Moore, 1999; Goehring et al., 2018; Bramsløw et al.,

2018). Most of the studies described above used non-causal

signal processing by providing future frames to the input of

the neural network (for example, Healy et al., 2013; Healy

et al., 2015; Healy et al., 2019; Chen et al., 2016). This

could not be done in a hearing device due to the excessive

delay it would introduce. Other studies have used causal sig-

nal processing without future frames to stay within the toler-

able range of delays (Bolner et al., 2016; Monaghan et al.,

2017; Goehring et al., 2017; Bramsløw et al., 2018).

Another constraint is that current CI devices have lim-

ited computational power and memory. Furthermore, the

speech processor of CI devices is worn behind the ear of the

user, and therefore is limited in terms of battery power.

While this may improve in the future, the use of highly com-

plex ML architectures with millions of parameters and

extensive acoustic feature-extraction methods is unlikely to

yield a practical solution for next-generation CI devices. We

focussed on using a real-time-feasible, low-complexity

architecture with a small number of layers and processing

units in conjunction with simple acoustic features similar to

those extracted by CI speech processors to facilitate the prac-

tical application of the algorithm in future CI devices.

We used a RNN-based algorithm to process speech in

noise and assessed its benefits in terms of speech perception

with CIs in two listening experiments. The main research

question for both experiments was whether a RNN can gener-

alize to an unseen speaker and noise condition over a range of

signal-to-noise ratios (SNRs) that are relevant for CI users.

Initially, two objective SI prediction methods were used to

optimize and evaluate the RNN. The first experiment evalu-

ated performance of the RNN for speech in babble using CI

vocoder simulations presented to NH listeners (Oxenham and

Kreft, 2014; Grange et al., 2017; Fletcher et al., 2018). Two

simulated amounts of current spread were used to simulate CI

users with electrodes positioned close to or far from the stim-

ulated neural elements in an attempt to model the variability

that characterizes the CI population, and evaluate its effects

on the benefits of RNN processing over no processing. The

second experiment measured CI users’ speech-in-noise per-

formance for two realistic noise scenarios, multi-talker babble

and traffic noise. In addition, subjective speech quality ratings

were collected to determine if CI users preferred the RNN

processing over no processing. For both SI and quality com-

parisons with CI users, an ideal noise-reduction condition was

included for which the speech and background noise were

available separately, to evaluate the theoretical upper limit of

benefits that could be obtained with the algorithm.

II. ALGORITHM DESCRIPTION

A. Signal processing and RNN architecture

The RNN-based single-microphone algorithm is illus-

trated schematically in Fig. 1. The input signal was the

unprocessed (UN) speech in noise that was obtained by add-

ing the speech to the noise:

xðtÞ ¼ sðtÞ þ nðtÞ; (1)

where t is time, x is the speech in noise, s is the clean speech,

and n is the noise. The input signal was segmented into 20-

ms frames with 10-ms overlap between successive frames,

giving 320 samples per frame at a sampling rate of 16 kHz.

Acoustic features were extracted from each frame by

calculating the energy of a fast Fourier transform (FFT)-

based gammatone filterbank (Patterson et al., 1995) consist-

ing of 64 channels equally spaced on the equivalent rectan-

gular bandwidth (ERB)N-number scale (Glasberg and

Moore, 1990) with center frequencies from 50 to 8000Hz.

The gammatone features were obtained using Hanning-

windowed frames. We chose these simple features because

of the low computational requirements and based on a com-

parison study where gammatone features were only slightly

706 J. Acoust. Soc. Am. 146 (1), July 2019 Goehring et al.



inferior to a computationally much more complex feature set

(Chen et al., 2014). The acoustic features were scaled to

have zero mean and unit variance by subtracting the mean

and then dividing by the standard deviation calculated across

the whole set of training data. The target data for training the

RNN were the ideal ratio masks (IRMs) that were calculated

by passing the speech and noise signals separately through

the 64-channel gammatone filterbank and calculating the

wiener gain in the time-frequency (T-F) domain for each

frame j and frequency channel m,

IRMðj:mÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2ðj;mÞ

S2ðj;mÞ þ N2ðj;mÞ

s

; (2)

where S(j,m) and N(j,m) are the magnitudes of s(t) and n(t)

in the mth channel of frame j, respectively. The soft gain

function applied by the IRM was chosen here over the ideal

binary mask (IBM) because it generally leads to better

speech quality and intelligibility (Madhu et al., 2013). The

IRM also provides more precise information about the local

SNR in each T-F segment than the IBM during the training

of the algorithm. It has the additional advantage that no

threshold criterion has to be chosen or adapted, in contrast to

the IBM.

The RNN consisted of an input layer, two hidden LSTM

layers with 128 units, followed by a fully connected layer

with 64 sigmoidal units as the output layer. The LSTM proc-

essed a five-timestep input wherein each timestep was

related to acoustic features extracted from a single frame of

the input signal (noisy speech); steps 1, 2, 3, 4, and 5 corre-

sponded to successive frames j-4, j-3, j-2, j-1, and j,

respectively. We selected this architecture based on previous

studies using HI listeners (Keshavarzi et al., 2018;

Keshavarzi et al., 2019). The RNN estimated the IRM for

frame j as its output (estimated ratio mask, ERM).

The ML-frameworks TFlearn and Tensorflow were used

to construct, train, and test the RNN (Abadi et al., 2016;

Tang, 2016). The “adam” algorithm (Kingma and Ba, 2014),

a method for stochastic optimization, was used as the train-

ing algorithm with the goal of minimizing the mean square

error (MSE) between the ERM and IRM. The learning rate

was set to 0.001, the batch size was 1024, and otherwise the

default settings were used for adam, as specified by TFlearn.

An early stopping criterion was used to choose the best-

performing model for a validation dataset that consisted of

about one-third of the testing data. Performance for the vali-

dation dataset did not improve significantly after one presen-

tation of the full training dataset (an epoch). Instead,

performance decreased with more than two epochs, as indi-

cated by an increased MSE between the ERM and IRM

when testing at SNRs of 0, 5, and 10 dB (the MSE increased

by up to 30% for ten epochs vs one epoch of training). This

behaviour indicated that the RNN was overfitting the train-

ing data, which could not be avoided when using dropout

regularization with a proportion of 20% (Srivastava et al.,

2014). It seems likely that, because of the large mismatch

between training and validation data (different speaker, noise

recording and partly SNR), multiple presentations of the

same training data would not improve performance on the

validation data. Therefore, we chose to perform only one

epoch of training to avoid overfitting the training data and

maximise performance for the validation data. One epoch of

training comprised 3185 parameter updates with gradients

computed over batches of 1024 frames each (about 2 utteran-

ces per batch), but took only a few minutes on a modern lap-

top computer. Performance was found to be very similar for

several RNN models that were trained on a single epoch

each, confirming the robustness and efficiency of the adam

algorithm. This approach also serves as a proof-of-concept

for a system that could be quickly re-trained in practice to

adapt to a new acoustic environment. This could, for exam-

ple, be performed on a mobile device.

After the network had been trained, the ERM and IRM

were used to process the noisy speech in each frame (by

element-wise multiplication in the T-F domain) so as to

attenuate T-F segments with low SNR while maintaining

segments with high SNR. To avoid extreme changes in gain

and preserve an awareness of the acoustic environment, the

applied gain was limited to values in the range from 0.1 to 1

for both the ERM and IRM,

YIRMðj;mÞ ¼ maxðIRMðj;mÞ; 0:1ÞXðj;mÞ;

YPRðj;mÞ ¼ maxðERMðj;mÞ; 0:1ÞXðj;mÞ; (3)

where YIRM(j,m) and YPR(j,m) (PR indicates conditions pro-

cessed with the ERM) are the magnitudes for the mth chan-

nel and frame j of the speech in noise after weighting with

the IRMs and ERMs, respectively. For both YIRM and YPR,

the modified magnitudes from the processed frames were

FIG. 1. (Color online) Schematic diagram of the RNN algorithm and signal

processing framework.
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combined with the noisy phases of the speech-in-noise signal

x(t) to obtain the output signals yIRM(t) and yPR(t), using the

overlap-add operation and Hanning windowing. The output

signals were presented acoustically to allow similar testing

conditions for NH listeners and CI users. All stimuli were

equalized to have the same root-mean-square (RMS) level

after the processing.

B. Training and testing data

The speech data used for training the RNN consisted of

sentences taken from CSTR VCTK, a British-English multi-

speaker corpus with a variety of accents (available online

from the University of Edinburgh; Veaux et al., 2016). We

used 100 sentences from each of 80 speakers (40 female) to

obtain a speech training dataset of 8000 sentences in total.

The multi-talker babble used for training consisted of 25

real-world recordings of various multi-talker babbles

(recorded from cafeterias, canteens, cafes, and shopping

malls) obtained from Freesound Datasets (Fonseca et al.,

2017). Recordings ranged in length from 5 to 81 s and were

concatenated to form the training babble, giving a total duration

of about 17 min. Traffic noise training data were generated

using 25 real-world recordings of various traffic noises

(recorded on motorways and public streets with cars passing

by), also obtained from Freesound Datasets, and with a total

duration of 8.5 min. The speech-in-noise data used for training

were then generated by mixing the speech data (VCTK) with

random cuts of either the babble or traffic noise at 5 dB SNR to

obtain two separate training datasets, one for babble and one

for traffic, each with 8000 utterances and a length of about 9 h.

This SNR was chosen to represent a challenging condition in

which CI users struggle to understand speech in babble.

For the first evaluation based on objective measures, the

speech-in-noise data used for testing the algorithm in babble

were generated from the Bamford-Kowal-Bench (BKB) sen-

tences (English, spoken by a male talker; Bench et al., 1979)

mixed with different multi-talker babble recordings at SNRs

of 0, 5, and 10 dB. Six babbles with 2, 4, 8, 16, 32, and 64

talkers were generated to evaluate the objective measures

(Sec. II 3), using sentences from the TIMIT corpus

(Garofolo et al., 1993). Each babble had equal numbers of

male and female talkers and a duration of 1 min. These

multi-talker babbles were filtered to have the same long-

term spectrum as the BKB sentences.

For the test stimuli in the listening experiments, the 20-

talker babble from Auditec (St. Louis, MO) was used, as in

previous publications (e.g., Goehring et al., 2017). For the

second listening experiment, we also used a traffic noise

recording (“Traffic02”) obtained from MusicRadar, available

online.1 The dataset used for testing the RNN algorithm in

the listening experiments consisted of 270 sentences (18

lists) from the BKB corpus mixed with either the 20-talker

babble or the traffic noise at SNRs between �10 and 20 dB

(in 2-dB steps). We generated a second set for evaluation

with the objective measures with these stimuli at SNRs of 0,

5, and 10 dB. It should be noted that the RNN was evaluated

using a range of SNRs, both higher and lower than used for

training. Furthermore, all speech and noise recordings used

for the objective measures and listening experiments were

not part of the training data, and there were two separate

conditions for training and testing two RNNs: one for babble

and one for traffic.

C. RNN performance evaluation using objective
measures

As a preliminary evaluation and to quantitatively com-

pare the performance of the RNN to that for previous stud-

ies, the RNN was evaluated using two objective SI

measures, the short-time objective intelligibility metric

(STOI; Taal et al., 2011), and the normalized-covariance

metric (NCM; Holube and Kollmeier, 1996), using utteran-

ces from the two objective-measure datasets. Both NCM and

STOI are intrusive SI prediction methods that use the clean

speech signal as reference for the speech signal under test.

The NCM applies a filter bank to both signals, extracts the

temporal envelope for each filter channel, and calculates a

weighted sum over the normalized covariance (linear corre-

lation) between the envelopes of the reference and the test

signals in each filter bank channel. The STOI follows a simi-

lar method but calculates the mean of the linear correlation

coefficients between the filter bank envelopes of the signals

in 384-ms long time frames. NCM and STOI have been used

in previous studies for predicting the effects on SI of speech

enhancement algorithms based on T-F masks. The first eval-

uation compared the predicted SI produced by the RNN

algorithm for speech-in-babble noise for conditions with dif-

ferent numbers of competing talkers in the babble. Twenty

BKB sentences from the testing data were mixed with ran-

dom cuts of the 6 artificially generated multi-talker babbles

with between 2 and 64 talkers (2T–64T) and the 20-talker

babble. Each babble was mixed at SNRs of 0, 5, and 10 dB.

Note that the 20T babble was not filtered to have the same

long-term spectrum as the BKB sentences, but was used in

its original form, as for the listening experiments.

The results for the speech-in-noise processed with the

RNN algorithm (2T–64T) are shown in Fig. 2, together with

the mean scores (across babble types) for the UN and ideal

(IRM) conditions. The RNN processing improved the NCM

scores over those for condition UN for babble with two or

more talkers and improved the STOI scores for babble with

four or more talkers. For condition UN, the NCM metric pre-

dicted an increase in SI with increasing number of talkers

(from 0.45 for 2T to 0.61 for 64T at 0 dB SNR), whereas the

STOI metric predicted SI to vary only slightly with the num-

ber of talkers (not shown). The improvement in predicted SI

produced by processing with the RNN increased with

increasing number of talkers. Both the STOI and NCM pre-

dicted slightly smaller improvements for the 20T babble

(from Auditec, St. Louis, MO) than for the other babbles,

especially at 0 dB SNR. Overall, these results indicate that

the RNN processing generalized well over babbles with

8–64 competing talkers.

The second performance evaluation compared the feed-

forward DNN architecture as used in Goehring et al. (2017)

and the RNN architecture used here. The number of hidden

units and layers of the DNN were made to be similar to those

708 J. Acoust. Soc. Am. 146 (1), July 2019 Goehring et al.



for the RNN and the same feature set was used. The training

data and training procedure were the same as for the RNN.

The results for speech in the 20T babble are shown in Fig. 3.

The NCM metric predicted larger improvements in SI for

the RNN than for the DNN for all three SNRs, while the

STOI metric predicted larger improvements for the SNRs of

0 and 10 dB with similar outcomes for the SNR of 5 dB. On

average, the relative improvements predicted by STOI and

NCM were 38% for the DNN and 46% for the RNN, indicat-

ing an advantage of the RNN of about 8 percentage points. It

should be noted that the RNN provided the largest benefit

over the DNN of about 15 percentage points on average for

the SNR of 10 dB, which represents a condition that is chal-

lenging for many CI users (Boyle et al., 2013; Goehring

et al., 2017; Croghan and Smith, 2018).

Several measures of the accuracy of the ERM were also

calculated, including the MSE, the classification score (HIT-

FA score calculated as hit rate, HIT, minus false-alarm rate,

FA; Kim et al., 2009; Goehring et al., 2017), and the NCM

and STOI scores for the RNN-processed signals used for the

listening experiments. The results are shown in Table I for

both babble (20T) and traffic noise and for three SNRs, 0, 5,

and 10 dB. Scores are shown for the RNN trained using the

same class of noise (RNN-B for babble and RNN-T for traf-

fic), and the RNN trained on babble but tested with traffic

noise and vice versa. Based on the NCM and STOI scores

for condition UN, babble was predicted to lead to lower SI

than the traffic noise by an amount equivalent to a change in

FIG. 2. NCM and STOI scores for seven multi-talker babbles using 2–64 different talkers (2T–64T) and at 0, 5, and 10 dB SNR. UN, PR, and IRM scores are

shown for each noise condition.

FIG. 3. STOI and NCM scores for speech in the 20T babble at 0, 5, and 10

dB SNR for conditions UN, DNN, RNN, and IRM.

TABLE I. Objective measure scores: HIT-FA alarm rates (with FA scores

in brackets), MSE between ERM and IRM, and NCM and STOI scores for

the RNN algorithms used in the listening experiment, RNN-B and RNN-T,

and UN and IRM in both test noise conditions (20-talker babble and traffic

noises) and three SNRs. Results are shown both for matched-noise (RNN-B

in babble, RNN-T in traffic) and unmatched-noise (RNN-B in traffic, RNN-

T in babble) conditions between training and testing.

Tested with babble noise Tested with traffic noise

Metric SNR UN RNN-B RNN-T IRM UN RNN-T RNN-B IRM

HIT-FA

(FA)

0 65 (18) 30 (53) 74 (18) 71 (14)

5 78 (9) 46 (42) 80 (10) 77 (9)

10 82 (3) 62 (25) 84 (6) 79 (4)

MSE 0 0.079 0.230 0.064 0.061

5 0.039 0.170 0.037 0.041

10 0.028 0.100 0.028 0.036

STOI 0 0.71 0.77 0.74 0.91 0.82 0.86 0.85 0.94

5 0.82 0.87 0.86 0.94 0.90 0.92 0.91 0.96

10 0.90 0.93 0.92 0.96 0.94 0.95 0.95 0.98

NCM 0 0.55 0.71 0.63 0.92 0.72 0.81 0.79 0.96

5 0.74 0.87 0.82 0.96 0.85 0.91 0.90 0.98

10 0.89 0.95 0.94 0.99 0.93 0.96 0.95 0.99
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SNR of about 5 dB. As expected, the RNN models that were

trained on a specific type of noise performed best for a noise

of that type. For cross-testing, RNN-B performed well with

traffic noise, with only slight decreases in estimation accu-

racy and NCM and STOI values compared to RNN-T.

However, the scores for HIT-FA, MSE, and NCM for speech

in babble processed with RNN-T were all substantially

worse than for babble processed with RNN-B. This suggests

that training the RNN using a more difficult noise type (bab-

ble) can lead to good generalization to an easier noise type

(traffic), but the converse is not the case. In general, the

objective measures indicated good estimation performance

in terms of HIT-FA scores with acceptable levels of FA

(<20%; Hu and Loizou, 2010) and large improvements for

conditions RNN-B and RNN-T over condition UP, as pre-

dicted by NCM and STOI. The RNN processing often led to

at least 50% of the improvement that the IRM achieved.

III. LISTENING EXPERIMENT 1: CI SIMULATIONS

A. Subjects

Ten native speakers of British English (five female,

with an average age of 35 yr and a range of 20–61 yr) with

self-reported normal hearing were tested. The subjects were

blind as to which condition was being presented and

unaware of the goal of the experiment until after testing was

complete. Subjects were not used to listening to CI simula-

tions based on vocoder processing. The study was part of a

larger research program that was approved by the National

Research Ethics committee for the East of England. Before

commencing, subjects gave their informed consent and

were informed that they could withdraw from the study at

any point.

B. CI simulation and listening procedure

All stimuli were processed using the SPIRAL vocoder to

simulate CI processing (Grange et al., 2017). SPIRAL decou-

ples the analysis and carrier stages of the vocoder processing

and combines a continuous mixture of envelopes from the

analysis filters with a large number of carrier tones to simu-

late current spread and/or neural degeneration along the

cochlea. It has been argued that the SPIRAL vocoder provides

a more accurate simulation of the perceptual effects of current

spread on speech perception than traditional noise-band or

tone vocoders (Shannon et al., 1995; Oxenham and Kreft,

2014), and resulting speech scores more accurately match

those obtained from CI listeners (Grange et al., 2017;

Fletcher et al., 2018). We used 16 analysis filter bands within

SPIRAL to represent the 16 electrode channels in CIs from

Advanced Bionics (AB, Valencia, CA), and used two current

decay slopes of �8 and �16 dB/oct to simulate the effects of

current spread observed with typical CIs (Oxenham and

Kreft, 2014). The evaluation stimuli (each at SNRs from �10

to 20 dB) were processed with the SPIRAL vocoder using a

sampling rate of 16 kHz and presented to the left ear of the

subjects using Sennheiser HD650 circumaural headphones

(Sennheiser, Wedemark, Germany) connected to a Roland

Quad-Capture external soundcard (Roland, Hamamatsu,

Japan). The setup was calibrated with a KEMAR Artificial

Head (GRAS, Holte, Denmark) and HP3561A Signal

Analyzer (Hewlett-Packard, Palo Alto, CA) to give a presen-

tation level of 65 dB sound pressure level (SPL), using a noise

stimulus with the same long-term spectrum as the target

speech. Testing was performed in a sound-attenuating room.

To let the subjects acclimatize to the CI simulation, the

test started with the presentation of ten practice sentences in

quiet, ten sentences in babble and UN, and ten sentences in

babble processed with the RNN algorithm (PR) at 10 dB

SNR with the text presented on a screen (and equally split

between current spread settings of �8 and �16 dB/oct).

Next, a one-up, one-down adaptive procedure (MacLeod and

Summerfield, 1990) was used to measure the speech recep-

tion threshold (SRT) at which 50% of the sentences in bab-

ble were understood correctly. A trial was deemed correct if

all three keywords in that sentence were correctly repeated

by the subject. The starting SNR was �4 dB, which was cho-

sen to give low intelligibility, and the step size was 2 dB.

The first sentence from a randomly chosen list was repeated

until it was correctly understood before the remaining 14

sentences from that list were presented in random order. The

average SNR used with the last ten sentences was taken as

the SRT for that run. If the adaptive procedure called for a

SNR below �10 dB, the SNR was kept at �10 dB, but the

adaptive track continued (this was never the case for condi-

tions UN and PR. There were two processing conditions

(UN,PR) and two current spread simulations (�8,�16 dB/

oct), giving four conditions in total. Three runs were per-

formed for each condition, giving 12 runs in total. The order

of the 12 runs was randomized for each subject. Note that

only the 20T babble was used, as the objective measures pre-

dicted this to be more difficult than the traffic-noise

condition.

C. Results

Figure 4 shows individual results for the ten subjects and

the group average for conditions UN and PR and both simu-

lated current spread values. As expected, the SRTs were

lower (better) for the �16 dB/oct condition than for the

�8 dB/oct condition by 4.7 dB for condition UN and 6.2 dB

for condition PR. For the simulated current spread of �16

dB/oct, the average SRT was 7.3 dB for condition UN and

4.4 dB for condition PR. All ten subjects showed lower SRTs

for PR than for UN, the difference ranging from 1.5 to 4.5

dB. For the simulated current spread of �8 dB/oct, the aver-

age SRT was 12 dB for condition UN and 10.6 dB for condi-

tion PR. All subjects but one showed better speech reception

for condition PR than for condition UN, the difference rang-

ing from �1.0 to 2.8 dB. A two-way, repeated-measures anal-

ysis of variance (ANOVA) was conducted with factors

processing condition (UN and PR) and simulated current

spread (�8 dB/Oct and �16 dB/Oct). There were significant

effects of processing condition [F(1,9)¼ 43.6, p < 0.001],

simulated current spread [F(1,9)¼ 93.8, p < 0.001], and a

significant interaction [F(1,9)¼ 5.9, p¼ 0.022]. Post hoc tests

with Bonferroni correction for each of the two simulated cur-

rent spread settings showed significant differences between
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UN and PR for both �8 dB/Oct [t(9)¼ 3.3, p¼ 0.009] and

�16 dB/Oct [t(9)¼ 8.8, p < 0.001] current spreads.

D. Discussion

The results were consistent with the predictions of the

objective measures and showed substantial mean benefits in

SRT of between 1.4 and 2.9 dB for speech in 20T babble.

There were significant effects of the simulated current

spread, with higher SRTs (worse performance) for the

�8 dB/oct spread and a larger benefit of the RNN processing

for the �16 dB/oct spread. While the former effect was

expected due to the greater spectral smearing produced by

the �8 dB/oct spread, the latter effect was somewhat surpris-

ing, as it may indicate that the RNN processing would be

less beneficial for CI listeners with lower spectral resolution.

However, the most likely explanation for the reduced benefit

of the RNN processing with the greater current spread is the

fact that with this spread some listeners struggled to under-

stand the speech even without babble. This explanation is

supported by the observation that the two subjects who per-

formed worst in condition UN (S8,S9) also received the

smallest benefit (S9) or even a degradation of performance

with PR (S8). In contrast, the two subjects with the best per-

formance in condition UN (S1 and S3) showed substantial

benefits in SRT of 1.9 and 2.5 dB. It is likely that the simu-

lated spread of �8 dB/oct is more suitable for simulating CI

users who struggle with speech understanding in quiet than

for simulating CI users who mainly struggle when noise is

present. For the simulated current spread of �16 dB/oct, the

average SRT for condition UN was 7.3 dB (ranging from 5.9

to 8.7 dB), which is consistent with SRTs obtained with

well-performing CI users (e.g., 6.7 dB for the same 20T bab-

ble in Goehring et al., 2017; 7.9 dB for a 4T babble in

Croghan and Smith, 2018). Our SRTs are also consistent

with those of Grange et al. (2017), who reported that for

speech-shaped noise a current spread setting of �16 dB/oct

yielded SRTs with SPIRAL that matched those found for CI

users.

IV. LISTENING EXPERIMENT 2: CI USERS

A. Subjects

Ten post- or peri-lingually deafened native speakers of

British English were tested (six female, mean age of 65 years

with a range from 49 to 74 years). Subjects were unilaterally

implanted users of an AB HiRes 90K CI with a minimum of

3 years of experience with their device (mean duration of

implant use of 5.5 years). During testing, the subjects listened

only with their implanted ear. If a subject usually wore a hear-

ing aid in the other ear, it was taken off during the experi-

ment. Prior to the experiment, the most recent clinical map

was obtained for each subject (usage experience with the cur-

rent maps ranged from 10 months to 2 years). Demographic

and device information for the subjects is given in Table II.

The study was part of a larger research program that

was approved by the National Research Ethics committee

for the East of England. Before commencing, subjects gave

their informed consent and were informed that they could

withdraw from the study at any point. Subjects were paid for

taking part and reimbursed for travel expenses.

B. Technical setup and study design

The acoustic stimuli were presented via a Harmony

speech processor (AB, Valencia, CA) that was battery pow-

ered and worn by the subject during the listening tests. The

stimuli were delivered to the subject using an external USB

soundcard (Roland UA-55 Quad-Capture USB, Hamamatsu,

Japan) that was connected to the auxiliary (AUX) input port

of the processor with an audio cable provided by AB, and

with the input from the microphone disabled. The use of a

clinical AB speech processor for this part of the experiment

ensured that the stimuli did not exceed limitations in output

current and comfortable listening levels, as specified in the

individual clinical map of the subject. The most recent clini-

cal map of the subjects was used, and adaptive pre-

processing functions were switched off (e.g., adaptive noise

reduction). Most subjects used a AB HiRes Optima-S

FIG. 4. (Top) Individual and group mean (M) SRTs for the NH subjects listening to CI simulations for conditions UN and PR and the two simulated current

spread settings of �8 dB/Oct and �16 dB/Oct. The background was 20T babble. (Bottom) The difference in SRT between conditions UN and PR.
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strategy but S5 used a AB HiRes-S Fidelity 120 strategy.

Subjects were allowed to take breaks when required, and the

whole testing procedure took about 2.5 h.

Initially, the input to the speech processor was adjusted

to the most comfortable level using a randomly chosen sen-

tence in quiet. The level was then kept constant. An adaptive

procedure similar to that for experiment 1 was used to mea-

sure the SRT. There were three processing conditions (UN,

PR, IRM) and two noise conditions (babble and traffic

noise), giving six conditions in total. The two noise condi-

tions were tested in two separate blocks whose order was

counterbalanced across subjects. Three runs were performed

for each condition. The order of the nine runs per block was

randomized for each subject.

After the SI measurements were completed, a subjective

quality rating procedure was used in accordance with ITU-T

P.835 (Hu and Loizou, 2008). Subjects were asked to rate

the stimuli in terms of speech distortions (SDs), background

noise intrusiveness (NI), and overall speech quality (OQ).

Subjects used a graphical user interface (GUI; programmed

in MATLAB, MathWorks, Natick, MA) that allowed them to

play a sentence in noise by clicking on one of three cursors

(numbered 1–3), one for each processing condition (UN, PR,

IRM). The task was to place the three cursors on continuous

scales arranged horizontally in the GUI window (with labels

left and right: for SD, “not distorted” to “very distorted”; for

NI, “not intrusive” to “very intrusive”; for OQ, “bad quality”

to “excellent quality”). For each trial, with a given sentence

in noise, the subject had to position each of the three cursors

in each of the three types of scale, giving nine judgments per

trial. For every trial, the initial locations of the cursors within

the scales were chosen randomly and the scales were

assigned to a range of arbitrary units from 0 to 100, with

higher scores reflecting better ratings. In total, each subject

completed 20 trials, based on 20 sentences drawn from the

BKB corpus and mixed with either babble or traffic noise

(10 sentences per noise, equally split between SNRs of 10

and 4 dB). The subjects were blind as to which condition

was being presented and which condition was associated

with each cursor.

C. Results

Figure 5 shows box plots of the SRTs for the three proc-

essing conditions for speech in babble (left) and traffic noise

(right). Overall performance was best for condition IRM,

with SRTs of �8.0 and �8.6 dB (close to the minimum of

�10 dB) in babble and traffic noise, respectively, and worst

for condition UN, with SRTs of 7.9 and 2.8 dB, respectively.

The RNN algorithm (PR) led to improvements in SRTs rela-

tive to condition UN by 3.4 and 2 dB for babble and traffic

noise, respectively.

A two-way, repeated-measures ANOVA was conducted

with factors processing condition (UN, PR, and IRM) and noise

type (babble, traffic). There were significant effects of process-

ing condition [F(2,18)¼ 273.2, p < 0.001] and noise type

[F(1,9)¼ 53.3, p < 0.001] and a significant interaction

[F(2,18)¼ 14.6, p < 0.001]. Mauchly’s test showed no viola-

tion of sphericity for any of these effects. Bonferroni-corrected

post hoc tests revealed highly significant differences between

all three pairs of processing conditions (UN vs PR, p¼ 0.006;

UN vs IRM, p < 0.001; PR vs IRM, p < 0.001).

The performance of the RNN algorithm was assessed

further by comparing the SRTs for conditions UN and PR

without including the IRM condition. The individual SRTs

for conditions UN and PR are shown in Fig. 6. For the

TABLE II. Subject demographics: sex, age (years), etiology of deafness, duration since implanted (years), duration of deafness (years), device type, electrode

type, coding strategy, pulse width (ls), and implanted ear. (n.a., not available.)

Subject Identifier Sex Age Etiology of deafness

Duration

implanted

Duration of

deafness Device Electrode Strategy

Pulse

width

Implanted

ear

S1 AB25 f 65 Sinus infection/post-ling. 3 34 Naida Q90 HiFocus MS HiRes Optima-S 18 R

S2 AB6 f 70 Unknown/peri-lingually 6 65 Naida Q70 HiFocus 1J HiRes Optima-S 35 R

S3 AB20 m 73 Unknown/post-lingually 3 45 Naida Q90 HiFocus MS HiRes Optima-S 29.6 R

S4 AB2 f 59 Possible otoxicity/post-lingually 3 58 Naida Q70 HiFocus 1J HiRes Optima-S 31.4 L

S5 AB5 m 76 Otosclerosis/post-lingually 9 27 Harmony 90K HiFocus 1J HiRes-S w/

Fidelity 120

18 L

S6 AB23 f 57 Enlarged vestibular aqueduct/

post-lingually

3 58 Naida Q90 HiFocus MS HiRes Optima-S 23.3 R

S7 AB24 f 49 Unknown/post-lingually 3 4 Naida Q90 HiFocus MS HiRes Optima-S 36.8 L

S8 AB3 m 72 Otosclerosis/post-lingually

progression

11 36 Naida Q70 HiFocus 1J HiRes Optima-S 29.6 L

S9 AB26 f 57 Unknown/post-lingually 5 21 Naida Q70 HiFocus MS HiRes Optima-S 22.4 L

S10 AB19 m 74 Unknown 3 n.a. Naida Q90 HiFocus MS HiRes Optima-S 30.5 L

FIG. 5. (Color online) CI group mean SRTs (circles) and box plots for con-

ditions UN, PR, and IRM for speech in babble and traffic noise.
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babble, all subjects performed better with PR than with UN

with a mean benefit of 3.4 dB. For the traffic noise, results

were mixed, with six subjects showing benefits with PR and

four subjects showing worse SRTs. A two-way, repeated-

measures ANOVA was conducted with factors processing

condition (UN and PR) and noise type (babble and traffic).

There were significant effects of processing condition

[F(1,9)¼ 72.5, p¼ 0.002] and noise type [F(1,9)¼ 86.8, p

< 0.001] but no significant interaction [F(1,9)¼ 2.6,

p¼ 0.144]. Post hoc tests with Bonferroni correction for

each of the two noise types showed a significant difference

between conditions UN and PR for babble [t(9)¼ 7.2, p

< 0.001] but not for traffic [t(9)¼ 1.9, p¼ 0.077].

The results of the subjective rating procedure are shown

in Fig. 7 for each processing condition and noise type. Mean

scores were higher for condition PR than for condition UN

for all conditions, with improvements ranging from 17 to 50

units for babble and 12 to 33 units for traffic noise. The

improvements were larger for NI than for SD. The benefits

for OQ were intermediate. Condition IRM was always rated

highest, with improvements over UN from 23 to 55 units for

babble and 21 to 59 units for traffic noise. The magnitude of

the improvements for IRM over UN was similar across the

different types of ratings. For both PR and IRM, there were

smaller benefits in terms of SD at 4 dB SNR, due to better

ratings for condition UN.

A four-way, repeated-measures ANOVA was conducted

with factors rating scale (SD, NI, and OQ), SNR (4 and 10

dB), processing condition (UN, PR, and IRM), and noise type

(babble and traffic). To reduce the effects of the bounded range

of the rating scores, for statistical analysis the scores were

transformed using the rationalized arcsine transform (RAU;

Studebaker, 1985). Following this transform, the scores for

each condition were approximately normally distributed. There

were significant effects of SNR [F(1,9)¼ 24.9, p¼ 0.001],

processing condition [F(1.1,10.1)¼ 35.5, p < 0.001, using the

Greenhouse-Geisser correction for a violation of sphericity]

and noise type [F(1,9)¼ 45.7, p < 0.001] and significant inter-

actions between rating scale and processing condition

[F(1.9,17.9)¼ 8.0, p¼ 0.004] and between SNR and process-

ing condition [F(1.5,13.7)¼ 16.5, p < 0.001]. No further

effects were significant. For the main effect of processing con-

dition, post hoc tests with Bonferroni correction showed signif-

icant differences between conditions UN and PR (p¼ 0.002),

UN and IRM (p < 0.001), and PR and IRM (p¼ 0.001).

D. Discussion

The results for CI subjects showed significant improve-

ments in SRTs with the RNN processing over condition UN

for the babble but not for the traffic noise. SRTs improved

with the RNN processing for all CI subjects for the babble

noise, but only for six out of ten subjects for the traffic noise.

SRTs were generally higher for the speech in babble than for

the speech in traffic noise, with a mean difference of 5.1 dB

for the UN stimuli. This may partly explain the observed dif-

ference in outcomes, as the RNN algorithm is likely to intro-

duce more estimation errors at lower SNRs. Furthermore,

the traffic noise was highly non-stationary with very slow

modulations of amplitude (e.g., the sound of a car or bus

passing by), and this led to strongly time-varying masking of

the speech. The local SNR was likely to be strongly negative

for the more masked parts of the speech, resulting in large

estimation errors of the RNN algorithm and therefore no

benefits or even some degradation of SI for those parts. This

effect may have been exacerbated by the high SNR of 5 dB

used for training of the RNN algorithm. This was chosen

beforehand based on typical performance with the babble

background, but it was less appropriate for the easier traffic

noise background.

The subjective ratings showed that, relative to condition

UN, the RNN processing gave significant benefits in terms

of less SD, less intrusiveness of the background noise, and

better OQ for both babble and traffic noise. These benefits

were larger for the babble background than for the traffic

noise background, consistent with the SRTs. While there

were substantial improvements of between 12 and 55 units

for PR over UN, the IRM condition was rated best in all

comparisons, reflecting the limited accuracy of the ERM.

FIG. 6. (Top) Individual and group mean (M) SRTs for the CI subjects and conditions UN and PR for babble and traffic noise. (Bottom) The difference in

SRTs between conditions UN and PR.
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Improvements in subjective ratings were larger for NI than

for SDs by about a factor of 2. This indicates that the RNN

algorithm was successful in reducing the background noise

while keeping SDs at tolerable levels. However, the RNN

algorithm led to smaller benefits in terms of SDs for the

lower SNR than for the higher one due to better ratings of

SDs for condition UN. This may have occurred because of

larger estimation errors at the lower SNR, leading to SDs

with the RNN that were more comparable to those for condi-

tion UN. It may also have occurred because some CI sub-

jects struggled to “hear out” the speech signal from the

background at the lower SNR with condition UN and there-

fore gave ratings of less distortions of the speech than for the

higher SNR.

The results for condition IRM showed large improve-

ments of about 10–20 dB in the SRTs for both backgrounds

and all subjects. This shows that—in theory—there is room

for further improvements in SRT using the RNN or similar

approaches via improved accuracy of the ERM. It should be

noted that a maximum attenuation of 20 dB was applied for

condition IRM (and for PR) and this could have limited the

benefits of condition IRM at very low SNRs. This limit could

be changed easily or even optimized for different acoustic

environments and/or user preferences. In addition, the proc-

essed stimuli for conditions PR and IRM were re-

synthesized using the phase information from the noisy

speech and this introduces distortions. This problem could

be avoided if the RNN algorithm were integrated into the

speech processor of a CI device and applied directly to the

CI filter bank envelopes so as to avoid the re-synthesis of the

signals that was done here. Even with these potential limita-

tions in the IRM condition, all subjects reached the lowest

possible SNR of �10 dB during at least one adaptive track.

This further supports the IRM as a strong target for RNN

training since it can provide very large improvements in SI

and SQ for CI subjects.

V. GENERAL DISCUSSION

The results of experiment 2 indicate that the speech-in-

babble perception of CI users was improved using the RNN

algorithm. There were significant improvements of the

SRTs, with improvements up to 2.9 dB for NH subjects lis-

tening to CI simulations (experiment 1) and 3.4 dB for CI

subjects. The performance of the CI subjects for speech in

babble was typical for the CI population, with a mean SRT

FIG. 7. (Color online) Subjective ratings shown as boxplots and mean scores (circles) for SD, NI, and OQ for conditions UN, PR, and IRM, and SNRs of 4

and 10 dB. The backgrounds were babble (columns 1 and 2) and traffic (columns 3 and 4). Lower scores indicate more negative ratings (e.g., “very distorted”

and “bad quality”).
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for condition UN of 7.9 dB (similar to SRTs reported by

Goehring et al., 2017, and Croghan and Smith, 2018). There

was also a mean improvement of 2 dB in CI users’ SRTs for

speech in traffic noise, but this was not statistically signifi-

cant, and some CI subjects performed worse with the RNN

algorithm than without, by up to 1.2 dB. However, for the CI

subjects, SRTs for speech in traffic noise were significantly

lower than for speech-in-babble noise, by about 5 dB.

Therefore, the CI users would have less need for noise reduc-

tion when the background was traffic noise.

Subjective ratings of the CI group showed significantly

lower SDs, less intrusiveness of the background noise, and

better overall quality for condition PR over condition UN for

both babble and traffic noise. This is an interesting finding

and shows that CI listeners were sensitive to changes in

sound-quality characteristics due to the processing. The sub-

jective ratings are consistent with the SRTs and indicate that

CI subjects may prefer the RNN processing over no process-

ing in terms of subjective quality.

While these results are consistent with improvements in

speech reception reported in previous studies that evaluated

ML-based algorithms for CI users (Hu and Loizou, 2010;

Goehring et al., 2017; Lai et al., 2018), there were some

important differences in the design that make the current

findings an important confirmation of this approach and

extend its practical application to more unseen acoustic con-

ditions. Most importantly, the RNN algorithm was evaluated

on a novel speaker and background noise, neither of which

was included in the training data, and the algorithm was

evaluated for SNRs that were different from the single SNR

used for training. Despite the “unseen” nature of the talker,

background and SNR, the RNN algorithm led to a significant

3.4-dB mean improvement in SRT for speech in babble for

CI users. This is larger than the 2-dB improvement reported

for a speaker- and noise-dependent DNN algorithm by

Goehring et al. (2017). The greater benefit found here can be

explained by the better generalization performance of RNN

over DNN approaches, as shown by computational studies

based on objective SI predictions (Kolbæk et al., 2017; Chen

and Wang, 2017), and the larger training dataset and better

training algorithm than used by Goehring et al. (2017).

Direct comparisons with the results of Hu and Loizou (2010)

and Lai et al. (2018) are more complicated because they

used different test noises and measured percentage correct

scores at a fixed SNR, but they also found improvements in

speech reception for babble noise using CI subjects. In addi-

tion, Hu and Loizou (2010) and Lai et al. (2018) used the

same speaker for the training and testing datasets, which fur-

ther limits the comparability of the results.

It should be noted that the RNN algorithm here was

trained using a range of noises of the same type as the test

noise, so the RNN can be described as an environment-

specific algorithm. Many hearing aids and some CIs include

some form of scene analysis to identify the acoustic environ-

ment (May and Dau, 2013; Launer et al., 2016; Lai et al.,

2018), and in principle such an analysis could be used to

determine when processing using the RNN algorithm should

be activated.

Interestingly, the SRTs for the CI subjects were very

similar to the SRTs for the NH subjects listening to CI simu-

lations when using the “more focussed” current-spread set-

ting of �16 dB/oct. Mean SRTs for condition UN were 7.9

and 7.3 dB for CI and NH subjects, respectively, while those

for condition PR were 4.5 and 4.4 dB, respectively. This

indicates that the vocoder simulation with the more focussed

current spread setting was successful in simulating the

speech-reception performance of a group of CI subjects

when listening to speech in babble and in conditions UN and

PR. This extends the results of Grange et al. (2017), who

reported similar SRTs for CI subjects and NH subjects lis-

tening to stimuli processed with SPIRAL for speech in

speech-shaped noise. However, it remains unknown if the

SRTs would have been similar for simulated and real CI sub-

jects for speech in traffic noise. Also, CI simulations cannot

readily account for the very large individual differences in

speech reception that are found for CI subjects.

The objective measures, NCM and STOI, showed that

the RNN algorithm trained with the set of babble noises gen-

eralized better to traffic noise than the other way around.

This could indicate that training of a RNN using noises that

lead to high SRTs leads to better generalization than training

with noises that lead to low SRTs, and/or it could mean that

the training dataset for traffic noise did not utilize the full

potential of the RNN algorithm, due to less variability in the

training data. Interestingly, the NCM and STOI metrics pre-

dicted a SRT difference between babble and traffic noise for

condition UN of about 5 dB, which corresponds to the differ-

ence found in the experiment with CI subjects. Consistent

with the data, the NCM and STOI metrics predicted that the

improvement produced by the RNN algorithm relative to

condition UN would be smaller for traffic noise than for bab-

ble noise (10% smaller relative improvement). It should be

noted that the NCM and STOI metrics were not designed to

predict SI for CI listeners. However, the results indicate that

the pattern of differences between conditions can be pre-

dicted for CI listeners to a certain degree, perhaps because

the metrics are based on the temporal envelopes in different

frequency bands, and these are the cues that are conveyed to

CI listeners. However, the objective measures failed to pre-

dict the variability found within the CI population and over-

estimated the benefit of the RNN processing for speech in

traffic noise.

If a CI user mainly conversed with a few specific people,

the performance of the RNN algorithm could be further

improved by training using speech from those specific people,

as was shown by Goehring et al. (2017) for a DNN algorithm.

Bramsløw et al. (2018) argued that such a system would be

practical for applications in future hearing devices, where users

could choose spouses, family members, and friends and use

recordings of their voices to train the algorithm. This is feasible

in practice because just a few minutes of recorded speech for a

given speaker seems sufficient for training (Kim et al., 2009;

Bolner et al., 2016; Goehring et al., 2017; Bramsløw et al.,

2018). However, this approach would not ameliorate communi-

cation difficulties in situations with speakers for whom the

RNN was not trained, as would be the case for many social

and professional situations. These situations can have a
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tremendous impact on a person’s career prospects and overall

well-being, and avoidance of such social interactions due to

communication difficulties can lead to mental health problems

such as depression or anxiety (Huber et al., 2015; Choi et al.,

2016). For communication situations with unknown speakers,

our speaker-independent approach, optimized for a specific

acoustic environment, would be more suitable, especially when

combined with an environmental sound classifier (May and

Dau, 2013; Lai et al., 2018), as mentioned above. With respect

to the external validity of our test setup, CI subjects informally

described the background noises as sounding realistic and simi-

lar to those in everyday environments with comments such as

“lots of people talking” or “like being in a pub” for the babble

and “a car or lorry going past” or “like being in traffic” for the

traffic noise. This indicates that the experiment used testing

stimuli that were representative of everyday listening situations

encountered by CI users.

Improving the speech-in-noise performance of CI users

is one of the most important challenges for research and

development of future CI devices, as CI users typically

spend large proportions of their daily usage time in noisy sit-

uations (Busch et al., 2017). The results of this study confirm

and extend the promising findings of previous studies based

on ML techniques to ameliorate speech-in-noise difficulties

for users of CI devices, and future implementations of this

approach will hopefully be incorporated in CI devices.

VI. SUMMARYAND CONCLUSIONS

A RNN algorithm was trained to enhance speech in non-

stationary babble and traffic noise and shown to provide benefits

for speech perception using objective measures and two listen-

ing experiments, one with CI simulations and one with CI users.

The RNN was trained using speech from many talkers mixed

with real-world recordings of multi-talker babble or traffic noise

and evaluated using an unknown talker and unseen noise record-

ing of the same type as for the training noise, using a range of

SNRs. The objective measures indicated small benefits of using

a RNN over a DNN, and predicted that RNN processing would

lead to improvements in SI. These predictions were confirmed

for speech in babble by the results of the two listening experi-

ments; mean SRTs across conditions were improved signifi-

cantly by between 1.4 and 3.4 dB. Performance was

comparable for the NH subjects listening to a CI simulation and

for real CI subjects when a CI simulation with a current-spread

setting of �16 dB/oct was used. However, for traffic noise the

RNN did not give a significant benefit for the CI subjects. The

CI subjects performed better overall for speech in traffic noise

than for speech in babble. For traffic noise, the low SNRs in the

region of the SRT meant that the RNN algorithm had to operate

under conditions where there were likely to be significant errors

in the ERM. This may account for the limited benefit of RNN

processing for speech in traffic noise.

Relative to condition UN, RNN processing led to signif-

icant improvements in subjective ratings of the CI subjects

for SDs, NI, and OQ for speech in both babble and traffic

noise. This indicates that subjects would prefer RNN proc-

essing over no processing. However, processing using the

IRM was always rated as highest, and this IRM processing

led to improvements in SRT of 10–15 dB and significantly

better speech-quality ratings than with the RNN algorithm,

indicating room for further improvements in the RNN

algorithm.
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