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Abstract In this paper we present a unified discussion of different approaches to
the identification of smoothing spline analysis of variance (ANOVA) models: (i) the
“classical” approach (in the line of Wahba in Spline Models for Observational Data,
1990; Gu in Smoothing Spline ANOVA Models, 2002; Storlie et al. in Stat. Sin.,
2011) and (ii) the State-Dependent Regression (SDR) approach of Young in Nonlin-
ear Dynamics and Statistics (2001). The latter is a nonparametric approach which is
very similar to smoothing splines and kernel regression methods, but based on re-
cursive filtering and smoothing estimation (the Kalman filter combined with fixed
interval smoothing). We will show that SDR can be effectively combined with the
“classical” approach to obtain a more accurate and efficient estimation of smoothing
spline ANOVA models to be applied for emulation purposes. We will also show that
such an approach can compare favorably with kriging.

Keywords Smoothing spline ANOVA models · Recursive algorithms · Backfitting ·
Sensitivity analysis

1 Introduction

In the analysis of data from computer experiments, approximation models are built
to emulate the behavior of large computational models. Smoothing spline models are
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a useful tool for this kind of analysis (Levy and Steinberg 2010). In this paper we
present a unified discussion of different approaches to the identification of smoothing
spline analysis of variance (ANOVA) models. The “classical” approach to smoothing
spline ANOVA models is along the same lines as the work of Wahba (1990) and Gu
(2002). Recently, Storlie et al. (2011) presented the Adaptive COmponent Selection
and Selection Operator (ACOSSO), “a new regularization method for simultaneous
model fitting and variable selection in nonparametric regression models in the frame-
work of smoothing spline ANOVA.” This method is an improvement to COSSO (Lin
and Zhang 2006), penalizing the sum of component norms, instead of the squared
norm employed in the traditional smoothing spline method. In ACOSSO, an adaptive
weight is used in the COSSO penalty which allows for more flexibility in estimat-
ing important functional components while giving a heavier penalty to unimportant
functional components.

In a “parallel” stream of research, using the State-Dependent (Parameter) Regres-
sion (SDR) approach of Young (2001), Ratto et al. (2007) have developed a nonpara-
metric approach, very similar to smoothing splines and kernel regression methods,
based on recursive filtering and smoothing estimation (the Kalman filter combined
with fixed interval smoothing). Such a recursive least-squares implementation has
some key characteristics: (a) it is plugged with optimal maximum likelihood estima-
tion, thus allowing for an objective estimation of the smoothing hyper-parameters,
and (b) it provides greater flexibility in adapting to local discontinuities, heavy non-
linearity, and heteroscedastic error terms. The use of recursive algorithms in smooth-
ing splines is not new in statistical literature: the works of Weinert et al. (1980)
and Wecker and Ansley (1983) demonstrated the applicability of a stochastic frame-
work for recursive computation of smoothing splines. However, such works were
limited to the univariate case, while the subsequent history of tensor product smooth-
ing splines developed in the “standard” nonrecursive form. The recursive approach
of Young (2001) can be seen as an extension and generalization of such earlier pa-
pers, which is applicable to the multivariate case, and Ratto et al. (2007) discussed its
possible extension for the estimation of interaction terms of the ANOVA.

The purposes of this paper are:

1. to develop a formal comparison and demonstrate equivalences between the “clas-
sical” tensor product smoothing spline with reproducing kernel Hilbert space
(RKHS) algebra and the SDR, extending the results derived in Weinert et al.
(1980) and Wecker and Ansley (1983) to the multivariate case;

2. to discuss the advantages and disadvantages of these approaches;
3. to propose a unified approach to smoothing spline ANOVA models that combines

the best of the discussed methods: the use of the recursive algorithms in particular
can be very effective in detecting the important functional components, adding
valuable information in the ACOSSO framework; at the same time, such a com-
bined approach improves the first extension of the SDR approach to interaction
terms proposed by Ratto et al. (2007);

4. to compare results of analysis of computer experiments carried out using kriging-
based techniques, e.g., Design and Analysis of Computer Experiments (DACE)
and the proposed unified method.
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Concerning item 1 above, for the sake of parsimony we concentrate here on the
special case of cubic smoothing splines. This case is, in fact, the most widely applied
spline method as well as the basic core in the ACOSSO framework. However, simi-
larly to the discussion in Wecker and Ansley (1983), a full class of equivalences can
be derived between the SDR recursive approach and polynomial splines of any order.
In this context, we also note that Young and Pedregal (1999) already discussed the
equivalence between the recursive and en bloc formulation of the smoothing prob-
lem, when the en bloc case is cast in the “discrete” form, as in the Hodrick–Prescott
filter (Hodrick and Prescott 1981; Leser 1961). Here we extend such equivalence to
the “continuous” integral form typical of the RKHS algebra.

2 State-dependent regressions and smoothing splines

2.1 Additive models

We denote the generic mapping as z(X) and assume without loss of generality that
X ∈ [0,1]p , where p is the number of input variables. The simplest example of
smoothing spline mapping estimation of z is the additive model:

f (X) = f0 +
p∑

j=1

fj (Xj ). (1)

To estimate f we can use a multivariate (cubic) smoothing spline minimization prob-
lem, that is, given λ = (λ1, . . . , λp), find the minimizer f (Xk) of:

1

N

N∑

k=1

(
zk − f (Xk)

)2 +
p∑

j=1

λj

∫ 1

0

[
f ′′

j (Xj )
]2

dXj , (2)

where a Monte Carlo (MC) sample of dimension N is assumed.
This statistical estimation problem requires the estimation of the p hyper-

parameters λj (also denoted as smoothing parameters). Various ways of doing that
are available in the literature, by applying generalized cross-validation (GCV), gen-
eralized maximum likelihood (GML) procedures and so on (see, e.g., Wahba 1990;
Gu 2002). Here we discuss the recursive estimation approach, where the additive
model is put into the State-Dependent Parameter Regression (SDR) form of Young
(2001) as applied to the estimation of ANOVA models by Ratto et al. (2007).

We highlight here the key features of Young’s recursive algorithms of SDR by
considering the case of p = 1 and z(X) = g(X) + e, with e ∼ N(0, σ 2); i.e., we
rewrite the smoothing problem as zk = sk + ek , where k = 1, . . . ,N and sk is the
estimate of g(Xk). To make the recursive approach meaningful, the MC sample needs
to be sorted in ascending order with respect to X: i.e., k and k − 1 subscripts are
adjacent elements under such ordering (see Fig. 1), implying 0 ≤ X1 < X2 < · · · <

Xk < · · · < XN ≤ 1.
To recursively estimate the sk in SDR, it is necessary to characterize it in some

stochastic manner, borrowing from nonstationary time series processes. In general



370 M. Ratto, A. Pagano

Fig. 1 Example of the sorted
k-ordering: the recursive
algorithm spans the output data
zk from the left to the right of
the plot

this is accomplished by assuming that the evolution of sk follows one member of the
generalized random walk (GRW) class on nonstationary random sequences (see, e.g.,
Young and Ng 1989 and Ng and Young 1990).

In the present context, the integrated random walk (IRW) process provides the
same smoothing properties of a cubic spline, in the overall state-space formulation:

Observation Equation: zk = sk + ek

State Equations: sk = sk−1 + dk−1
dk = dk−1 + ηk

(3)

where dk is the “slope” of sk , ηk ∼ N(0, σ 2
η ) and ηk (“system disturbance” in systems

terminology) is assumed to be independent of the “observation noise” ek ∼ N(0, σ 2).
Within the framework of the analysis of computer experiments, it seems neces-

sary to discuss the term ek in (3). Normality and independence are strictly appropri-
ate when there is observational error in the data but can be reasonable for smoothing
observed data even in computer experiments because there can be applications where
the “computed” value is produced with some error or variability, due to, e.g., conver-
gence of numerical algorithms. Moreover, ek descends naturally from the standard
smoothing spline formulation (2): such a penalized least-squares regression rules out
a perfect fit for f (Xk), thus implying an “observation noise” linked to the nonzero
residual term (zk − f (Xk)). This residual reflects the fact that the present emula-
tion approach is based on identifying a truncated ANOVA expansion that approxi-
mates z(X). This is done by including a “small” subset of q ANOVA terms (main ef-
fects and interactions) that are statistically identifiable from the available MC sample.
Thus, ek can be seen as the sum of all the terms that are not included by a shrinkage
procedure. This set of dropped ANOVA terms usually includes a very large number
of elements (namely 2p − q , where q � 2p), which are orthogonal (independent)
by definition. It does not seem out of place to model the sum of a large number of
independent variables in statistical terms (Central Limit Theorem). We will see that
the inclusion of this “error” term, rather than being a drawback of this method, turns
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out to be an advantage (see the examples in Sect. 3), since it implies that emulation
(and therefore “prediction” at untried X values) is performed only using statistically
significant ANOVA terms, enhancing the robustness of out-of-sample performances.

Given the ascending ordering of the MC sample, sk can be estimated by using the
recursive Kalman filter (KF) and the associated recursive fixed interval smoothing
(FIS) algorithm (see, e.g., Kalman 1960; Young 1999 for details).

First, it is necessary to optimize the hyper-parameters associated with the state-
space model (3), namely the white noise variances σ 2 and σ 2

η . In fact, by a simple
reformulation of the KF and FIS algorithms, the IRW model can be entirely charac-
terized by one noise variance ratio (NVR) hyper-parameter, where NVR = σ 2

η /σ 2.
This NVR value is, of course, unknown a priori and needs to be optimized: for ex-
ample, in the above references, this is accomplished by maximum likelihood (ML)
optimization using prediction error decomposition (Schweppe 1965). The NVR plays
the inverse role of a smoothing parameter: the smaller the NVR, the smoother the es-
timate of sk (and at the limit NVR = 0, sk will be a straight line). Given the NVR,
the FIS algorithm then yields an estimate ŝk|N of sk at each data sample, and it can
be seen that the ŝk|N from the IRW process is the equivalent of f (Xk) in the cubic
smoothing spline model. At the same time, the recursive procedures provide, in a
natural way, standard errors of the estimated ŝk|N that allow for the testing of their
relative significance.

We need to clarify here the meaning of the ML optimization in this recursive
context. We first observe that, to avoid a perfect fit solution, a penalty term is used
in the “classical” smoothing spline estimates. The “penalty” appears in the objective
function (GCV, GML, etc.) which is used to optimize the λ’s. In this way one may
limit the “degrees of freedom” of the spline model.

For example, in GCV, we have to find a λ that minimizes

GCVλ = 1/N ·
∑

k(zk − fλ(Xk))
2

(1 − df (λ)/N)2
, (4)

where df ∈ [0,N ] denotes the “degrees of freedom” as a function of λ. Similarly, in
the SDR notation, we look for an NVR minimizing

GCVNVR = 1/N ·
∑

k(zk − ŝk|N)2

(1 − df (NVR)/N)2
, (5)

where the “degrees of freedom” df depend on the NVR (by the above-mentioned
equivalence).

Remark 1 Without the penalty term, the optimum would always be attained at λ = 0
(or NVR → ∞), i.e., perfect fit.

A perfect fit “optimal” solution would never happen within the SDR recursive
context. In this case penalty is directly associated with the estimate procedure, by
the fact that the prediction error decomposition (ML) estimate is based on the filtered
estimate ŝk|k−1 = sk−1 +dk−1 and not on the smoothed estimate ŝk|N . Namely, in ML
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Fig. 2 Picture of the one step
ahead predictions of the IRW
process in the case of
NVR → ∞. The stars/dotted
line denote the zk data series,
while the squares denote the one
step ahead prediction ŝk|k−1

estimation, we find the NVR that maximizes the log-likelihood function L, where:

−2 · log(L) = const +
N∑

k=3

log(1 + Pk|k−1) + (N − 2) · log
(
σ̂ 2

)
,

σ̂ 2 = 1

N − 2

N∑

k=3

(zk − ŝk|k−1)
2

(1 + Pk|k−1)
, (6)

where σ̂ 2 is the “weighted average” of the squared innovations (i.e., the prediction
error of the IRW model), and Pk|k−1 is the one step ahead forecast error of the state
ŝk|k−1 provided by the KF (both Pk|k−1 and ŝk|k−1 are functions of NVR). Since
ŝk|k−1 is based only on the information contained in the sample values [1, . . . , k − 1]
(while smoothed estimates use the entire information set [1, . . . ,N ]), it can be easily
seen that the limit NVR → ∞ (λ → 0) is no longer a “perfect fit” situation, since a
zero variance for ek implies ŝk|k−1 = sk−1 + dk−1 = zk−1 + dk−1; i.e., the one step
ahead prediction of zk is given by the linear extrapolation of the adjacent value zk−1,
thus implying a nonzero prediction error in this limit case.

This is further exemplified in Fig. 2: the squares in the plots denote the one step
ahead prediction ŝk|k−1 and the arrows show the linear extrapolation mechanism of
the IRW process when NVR → ∞. Such a prediction departs considerably not only
from a “perfect fit” situation but also from a “decent fit,” implying that the ML esti-
mate will automatically penalize this kind of situation and provide the “right” value
for the NVR (see also Wecker and Ansley 1983 for a discussion of this ML estimator
in the smoothing spline context).

To complete the equivalence between the SDR and cubic spline formulations, we
need to link the NVR estimated by the ML procedure to the smoothing parameters λ.
It can be easily verified that by setting λ = 1/(NVR · N4), and with evenly spaced
Xk values, the f (Xk) estimate in the cubic smoothing spline model equals the ŝk|N
estimate from the IRW process. The present results are also in line with the cited
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work of Wecker and Ansley (1983), who assume, however, a different stochastic form
for sk , namely an ARIMA(0,2,2) process.

As mentioned in the Introduction, this is not the only possible equivalence be-
tween recursive algorithms and polynomial splines. For example, one can verify
that assuming a random walk stochastic process for sk with some ML optimized
NVR(RW) is equivalent to estimating a linear spline with smoothing parameter
λ = 1/(NVR(RW) · N2) (see also Wecker and Ansley 1983).

The most interesting aspect of the SDR approach is that it is not limited to the
univariate case, but can be effectively extended to the most relevant multivariate one.
In the general additive case (1), for example, the recursive procedure needs to be
applied, in turn, for each term fj (Xj,k) = ŝj,k|N , requiring a different sorting strategy
for each ŝj,k|N . Hence, the “backfitting” procedure, as described in Young (2000) and
Young (2001), is exploited (see Appendix A.1). This procedure provides both ML
estimates of all NVRj ’s and the smoothed estimates of the additive terms ŝj,k|N . It
can be easily verified that the equivalence between the λ’s and NVRs presented for
p = 1 also holds for the additive model with p > 1. So, the estimated NVRj ’s can be
converted into λj values using λj = 1/(NVRj · N4), allowing us to put the additive
model into the standard cubic spline form.

2.2 ANOVA models with interaction functions

The additive model concept (1) can be generalized to include two-way (and higher)
interaction functions via the functional ANOVA decomposition (Wahba 1990; Gu
2002). For example, we can let

f (X) = f0 +
p∑

j=1

fj (Xj ) +
p∑

j<i

fj,i(Xj ,Xi). (7)

In the ANOVA smoothing spline context, corresponding optimization problems
with interaction functions and their solutions can be obtained conveniently with the
reproducing kernel Hilbert space (RKHS) approach (see Wahba 1990). In the SDR
context, we propose here to formalize an interaction function as the product of two
states s1 · s2, each of them characterized by an IRW stochastic process. Hence, the
estimation of a single interaction term z∗(Xk) = f (X1,k,X2,k) + ek is expressed as

Observation Equation: z∗
k = sI

1,k · sI
2,k + ek

State Equations: (j = 1,2) sI
j,k = sI

j,k−1 + dI
j,k−1

dI
j,k = dI

j,k−1 + ηI
j,k

(8)

where z∗ is the model output after the main effects are taken out, I = 1,2 is the multi-
index denoting the interaction term under estimation, and ηI

j,k ∼ N(0, σ 2
ηI
j

). The two

terms sI
j,k are estimated iteratively by running the recursive procedure in turn; i.e.,

– take an initial estimate of sI
1,k and sI

2,k by regressing z with the product of simple

linear or quadratic polynomials p1(X1) · p2(X2) and set s
I,0
j,k = pj (Xj,k);
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– iterate i = 1,2:
– fix s

I,i−1
2,k and estimate NV RI

1 and s
I,i
1,k using the recursive procedure;

– fix s
I,i
1,k and estimate NV RI

2 and s
I,i
2,k using the recursive procedure;

– the product s
I,2
1,k ·sI,2

2,k obtained after the second iteration provides the recursive SDR
estimate of the interaction function.

The latter stopping criterion is a convenient choice to limit the computation time,
and is due to the observation that the estimate of the interaction term never changed
too much in any subsequent iteration.

Unfortunately, in the case of interaction functions we cannot derive an explicit
and full equivalence between SDR and cubic splines of the type mentioned for first-
order ANOVA terms. Therefore, in order to be able to exploit the estimation results
in the context of a smoothing spline ANOVA model, we propose to take a different
approach, similar to the ACOSSO case.

2.3 Very short summary of ACOSSO

We make the usual assumption that f ∈ F , where F is an RKHS. The space F can
be written as an orthogonal decomposition F = {1} ⊕ {⊕q

j=1 Fj }, where each Fj is
itself an RKHS and j = 1, . . . , q spans ANOVA terms of various orders. Typically, q

includes the main effects plus relevant interaction terms.
We reformulate (2) for the general case with interactions using the function f that

minimizes

1

N

N∑

k=1

(
zk − f (Xk)

)2 + λ0

q∑

j=1

1

θj

∥∥P jf
∥∥2

F , (9)

where P jf is the orthogonal projection of f onto Fj and the q-dimensional vec-
tor θj of smoothing parameters needs to be optimized somehow. This is typically
a formidable problem, and in the simplest case θj is set to one, with the single λ0

estimated by GCV or GML.
Problem (9) also poses the issue of selection of Fj terms: this is tackled rather

effectively within the COSSO/ACOSSO framework.
The COSSO (Lin and Zhang 2006) penalizes the sum of norms, using a Least

Absolute Shrinkage and Selection Operator (LASSO)-type penalty (Tibshirani 1996)
for the ANOVA model, which allows us to identify the informative predictor terms
Fj with an estimate of f that minimizes

1

N

N∑

k=1

(
zk − f (Xk)

)2 + λ

Q∑

j=1

∥∥P jf
∥∥

F (10)

using a single smoothing parameter λ, and where Q includes all ANOVA terms to be
potentially included in f , e.g., with a truncation up to second- or third-order interac-
tions.
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It can be shown that the COSSO estimate is also the minimizer of

1

N

N∑

k=1

(
zk − f (Xk)

)2 +
Q∑

j=1

1

θj

∥∥P jf
∥∥2

F (11)

subject to
∑Q

j=1 1/θj < M (where there is a 1-1 mapping between M and λ). So we
can think of the COSSO penalty as the traditional smoothing spline penalty plus a
penalty on the Q smoothing parameters used for each component. The LASSO-type
penalty has the effect of setting some of the functional components (Fj ’s) equal to
zero (e.g., the variable Xj or the interaction (Xj ,Xi) is not in the model); thus, it
“automatically” selects the appropriate subset q of terms out of the Q “candidates.”
The key property of COSSO is that with one single smoothing parameter (λ or M)
it provides proper estimates of all θj parameters: therefore, it considerably improves
problem (9) with θj = 1 (still with one single smoothing parameter λ0) and is much
more computationally efficient than the full problem (9) with optimized θj ’s.

In the adaptive COSSO (ACOSSO) of Storlie et al. (2011), f ∈ F minimizes

1

N

N∑

k=1

(
zk − f (Xk)

)2 + λ

q∑

j=1

wj

∥∥P jf
∥∥

F , (12)

where 0 < wj ≤ ∞ are weights that depend on an initial estimate of f̃ , either us-
ing (9) with θj = 1 or the COSSO estimate (10). The adaptive weights are ob-
tained as wj = ‖P j f̃ ‖−γ

L2
, typically with γ = 2 and the L2 norm ‖P j f̃ ‖L2 =

(
∫

(P j f̃ (X))2dX)1/2. The use of adaptive weights improves the predictive capability
of ANOVA models with respect to the COSSO case.

2.4 Combining SDR and ACOSSO for interaction functions

There is an obvious way of exploiting the SDR identification and estimation steps in
the ACOSSO framework: namely, the SDR estimates of additive and interaction func-
tion terms can be taken as the initial f̃ used to compute the weights in the ACOSSO.
However, this would be a minimal approach, whereas the SDR identification and
estimation provides more detailed information about fj terms that is worth exploit-
ing. We define K〈j〉 to be the reproducing kernel (r.k.) of an additive term Fj of the
ANOVA decomposition of the space F . In the cubic spline case, this is constructed as
the sum of two terms K〈j〉 = K01〈j〉 ⊕ K1〈j〉, where K01〈j〉 is the r.k. of the parametric
(linear) part and K1〈j〉 is the r.k. of the purely nonparametric part. The second-order
interaction terms are constructed as the tensor product of the first-order terms, for a
total of four elements, i.e.,

K〈i,j〉 = (K01〈i〉 ⊕ K1〈i〉) ⊗ (K01〈j〉 ⊕ K1〈j〉)

= (K01〈i〉 ⊗ K01〈j〉) ⊕ (K01〈i〉 ⊗ K1〈j〉) ⊕ (K1〈i〉 ⊗ K01〈j〉) ⊕ (K1〈i〉 ⊗ K1〈j〉).
(13)
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In general, considering problem (9), one should attribute a specific coefficient θ〈·〉
to each single element of the r.k. of Fj (see, e.g., Gu 2002, Chap. 3), i.e. two θ ’s
for each main effect, four θ ’s for each two-way interaction, and so on. In fact, each
Fj would be optimally fitted by opportunely choosing weights in the sum of K〈·,·〉
elements. This, however, makes the estimation problem rather complex, so, usually,
the tensor product (13) is directly used, without tuning the weights of each element
of the sum. This strategy is also applied in ACOSSO.

Instead, we propose to use SDR estimates of interaction to set the weights.
In particular, we can see that the SDR estimate of the interaction (8) is given by the

product of two univariate cubic splines. So, one can easily decompose each estimated
ŝI
j into the sum of a linear (ŝI

01〈j〉) and nonparametric term (ŝI
1〈j〉). This provides a

decomposition of the SDR interaction of the form

ŝI
i · ŝI

j = ŝI
01〈i〉ŝI

01〈j〉 + ŝI
01〈i〉ŝI

1〈j〉 + ŝI
1〈i〉ŝI

01〈j〉 + ŝI
1〈i〉ŝI

1〈j〉, (14)

which can be thought of as a proxy of the four elements of the r.k. of the second-order
tensor product cubic spline.

This suggests that a natural use of the SDR identification and estimation in the
ACOSSO framework is to apply specific weights to each element of the r.k. K〈·,·〉 in
(13). In particular, the weights are the L2 norms of each of the four elements esti-
mated in (14). We will show in the examples that this choice leads to significant im-
provement in the accuracy of ANOVA models with respect to the original ACOSSO
approach.

2.5 Kriging method: the DACE Matlab toolbox

DACE (Lophaven et al. 2002) is a Matlab toolbox used to construct kriging approx-
imation models on the basis of data from computer experiments. Once we have this
approximate model, we can use it as a surrogate model (emulator, meta-model).

We briefly highlight the main features of DACE.
Keeping wherever possible the same notation that we used previously, the kriging

model can be expressed as a regression

ẑ(X) = β1f1(X) + · · · + βqfq(X) + ζ(X), (15)

where fi, i = 1, . . . , q are deterministic regression terms, βi are the related regression
coefficients, and ζ is a zero-mean random process whose variance depends on the
process variance ω2 and on the correlation R(v,w) between ζ(v) and ζ(w). The
toolbox provides a set of correlation functions defined as

R(θ, v,w) =
∏

j=1:p
Rj (θj ,wj − vj ).

In particular, for the generalized exponential correlation function, used in the next
section, one has

Rj (θj ,wj − vj ) = exp
(−θj |wj − vj |θp+1

)
.
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Then, we can define R as the correlation matrix at the design points (i.e., Ri,j =
R(θ,Xi , Xj )) and the matrix r(X) = [R(X1,X), . . . , R(XN,X)], X being an untried
point. Similarly, we define f = [f1(X) · · ·fq(X)]′ and F = [f (X1) · · ·f (XN)]′; i.e.,
F stacks in matrix form all values of f at the design points. Then, the regression
problem Fβ ≈ Z has a GLS solution given by

β∗ = (
F ′R−1F

)−1
F ′R−1Z,

which gives the predictor at untried X

ẑ(X) = f (X)′β∗ + r(X)′γ ∗,

where γ ∗ is computed as γ ∗ = R−1(Z − Fβ∗).
Of course, the proper estimation of the kriging emulator requires one to optimize

the hyper-parameters θ in the correlation function: this is typically performed by
maximum likelihood.

It is easy to check that the kriging predictor interpolates Xj , if the latter is a design
point. As far as regression models are concerned, the choice for f can be chosen from
the following options:

Constant q = 1, f1 = 1
Linear q = p + 1, f1 = 1, f2 = X1, . . . , fp+1 = Xp

Quadratic q = 1
2 (p + 1)(p + 2), f1 = 1, f2 = X1, . . . , fp+1 = Xp, fp+2 = X2

1,

fp+3 = X1X2 . . .

It seems useful to underline that one major difference between DACE and ANOVA
smoothing is the absence of any “observation error” in (15). This is a natural choice
when analyzing computer experiments, and it aims to exploit the “zero-uncertainty”
feature of this kind of data. This, in principle, makes the estimation of kriging emula-
tors very efficient, as confirmed by the many successful applications described in the
literature, and justifies the great success of this kind of emulator among practitioners.
It also seems interesting to mention the “nugget” effect, which is also used in the
kriging literature (see Wagner 2010 for an application of this in the present issue).
This is nothing other than a “small” error term in (15), and it often reduces some nu-
merical problems encountered in the estimation of the kriging emulator to the form
of (15). The addition of a nugget term leads to kriging emulators that smooth, rather
than interpolate, making them more similar to ANOVA models.

3 Examples

Storlie et al. (2008) performed an extensive analysis and comparison of meta-
modeling approaches for the estimation of total sensitivity indices. Their main con-
clusions were:

– simple models like quadratic regressions and additive smoothing splines can work
very well, especially for small sample sizes;

– for larger sample sizes, more flexible approaches (MARS, ACOSSO, MLE GP in
particular) can provide better estimations;
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– GP does not outperform smoothing methods in estimating sensitivity indices.

The present paper does not substantially modify these results on sensitivity indices
estimation, so we concentrate here on the forecast performance (out-of-sample R2 )
of the different methods in predicting the function values at untried X’s.

We compared the combined SDR-ACOSSO approach with ACOSSO and DACE
on several examples (full details including Matlab routines are freely available on
request):

• we checked the behavior of the SDR procedure proposed in Sect. 2.2 in identifying
single two-way interaction functions;

• we performed full emulation exercises, considering multivariate analytic functions.

Concerning DACE, we always use the generalized exponential correlation func-
tion to estimate the emulator. Moreover, we include the nugget term in the single
surface identification of Sect. 3.1, while the standard interpolating form of DACE is
considered in the full emulation exercises of Sect. 3.2.

3.1 Single surface identification

First we checked the behavior of SDR in identifying single two-way interaction func-
tions; i.e., we considered a number of surfaces z(X1,X2) = g(X1,X2) + e, with
e ∼ N(0, σ 2), using different levels of signal-to-noise ratios SNR = V (z)/V (e): very
large (SNR > 10), medium (SNR ∼ 3), very small (SNR ∼ 0.1).

This kind of exercise is useful since it mimics the typical situation of the “back-
fitting” procedure adopted in the SDR method: in such a procedure each term of
the ANOVA decomposition is identified and analyzed in turn, with the rest of the
ANOVA terms acting as a sort of “noise.” So g(X1,X2) can be seen here as rep-
resenting one single interaction term, to be identified among a number of ANOVA
terms, represented by e. So, very large SNR represents the case of a predominant
interaction term in the ANOVA model, and vice versa for very small SNR. We com-
pared SDR results with standard GCV estimation and with DACE (extended to in-
clude observation noise/nugget) using a training MC sample X of 256 elements and
tested the out-of sample performance of each method in predicting the “noise-free”
signal g(X1,X2) using a new validation sample X∗ of dimension 256. We repeated
this exercise on 100 random replicas for each function and each SNR.

We considered nine types of surfaces of increasing order of complexity (i.e., 27
different surface identifications, each replicated 100 times). The shapes of the sur-
faces are shown in Fig. 3, while their analytic expressions are shown in Table 1.

In Fig. 4 we can see that for only one out of the nine surfaces (f9), DACE out-
performed SDR or GCV estimation. This is probably to be expected since this is
a pure smoothing problem, obviously more tailored for smoothing methods. In the
other cases, SDR and GCV gave similar results, when the four terms in (14) have
similar weights, while SDR was more efficient in identifying surfaces, where linear
and nonparametric parts need to be better differentiated (f6, f7, f9). These results
demonstrate that the SDR identification step described in Sect. 2.2 is effective for
identifying interaction functions.
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Fig. 3 Shape of the nine test surfaces considered for the test on identifying single interaction terms

Table 1 Analytic expressions for the test surfaces analyzed

Label Expression Support

f1
∏

i=1,2(e(4X1) − (e2 − e−2)/4) U[−0.5, 0.5]

f2 (X2
2 − 1) · X1 N(0, 1)

f3 (X2
2 − 1/12) · X1 U[−0.5, 0.5]

f4 X1 · X2 N(0, 1)

f5 X1 · X2 U[−0.5, 0.5]

f6 (X2
1 − 1) · (X2

2 − 1) N(0, 1)

f7 (X2
1 − 1/12) · (X2

2 − 1/12) U[−0.5, 0.5]

f8 sin(6πX1 · X2) U[−0.5, 0.5]

f9 sin(100π(X2
1 − 1/12) · (X2

2 − 1/12)) U[−0.5, 0.5]

3.2 Full emulation exercises

Here we test the effectiveness of SDR in identifying full smoothing spline ANOVA
models. We considered several test functions that have been used in the past to test
sensitivity analysis and nonparametric regression methods. First, we used Sobol’s G
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Fig. 4 Out-of-sample R2 for the nine test surfaces of the three methods applied: SDR, ACOSSO, DACE

function (Archer et al. 1997), which can be used to generate test cases over a wide
spectrum of difficulty and dimensionality p. It is defined as

G = G(X1,X2, . . . ,Xp, a1, a2, . . . , ap)

=
p∏

i=1

|4Xi − 2| + ai

1 + ai

. (16)

The characteristics of the G-functions are driven both by the dimension (p) and
by the spectrum of the coefficients ai . Low values of ai , such as ai = 0, imply an
important first-order effect. If more than one factor has low ai ’s, then high interac-
tion effects will also be present. The worst case for this function is where all ai ’s
are zero; i.e., all factors are equally important and all factors interact. If only a cou-
ple of ai ’s are zero and all the others are large (e.g., ai ≥ 9), then we have a rela-
tively easy test case, with just two important factors and a single two-way interaction
term.

We considered the following four cases for the G-function, characterized by an
increasing difficulty, due to the dimensionality of the problem (increasing p) or the
degree of interactions (spectrum of ai coefficients):

– p = 4, a = [0,1,5,99], labeled as “simple” in Table 2;
– p = 4, a = [0,0.01,0.2,0.5], labeled as “nasty” in Table 2;
– p = 8, a = [0,1,4.5,9,99,99,99,99], labeled as “simple” in Table 2;
– p = 10, a = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], labeled as “nasty” in Ta-

ble 2.
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We also use here a modified G-function, defined as

G∗ = G∗ (
X1,X2, . . . ,Xp, a1, a2, . . . , ap, δ1, δ2, . . . , δp,α1, α2, . . . , αp

)

=
p∏

i=1

(1 + αi) · |2(Xi + δi − [Xi + δi]) − 1|αi + ai

1 + ai

, (17)

where δi ∈ [0,1], αi > 0 are shift and curvature parameters, respectively, and [Xi +
δi] is the integer part of Xi + δi . If αi = 1 and δi = 0, G∗ degenerates to the G-
function.

For this modified G∗-function, we analyzed the same cases listed previously for
the standard G-function, but using αi = 0.25 and δi = 0. These are essentially modi-
fied versions of the G-function examples, where we add more curvature in the model.

We also analyzed two test functions used in Storlie et al. (2011). In the first test
function from Storlie et al. (2011), we have X uniform in [0,1]10 and the underlying
function is nonadditive:

f4(X) = g1(X1) + g2(X2) + g3(X3) + g4(X4) + g3(X1X2)

+ g2
(
(X1 + X3)/2

) + g1(X3X4) (18)

and, therefore X5, . . . ,X10 are uninformative (dummy) variables.
In the second test function from Storlie et al. (2011), we have X uniform in [0,1]12

and the underlying regression function is additive:

f12(X) = g1(X1) + g2(X2) + g3(X3) + g4(X4)

+ 1.5 · g1(X5) + 1.5 · g2(X6) + 1.5 · g3(X7) + g4(X8)

+ 2 · g1(X9) + 2 · g2(X10) + 2 · g3(X11) + 2 · g4(X12). (19)

The following four functions on [0, 1] are used as building blocks in (18) and (19):

g1(t) = t; g2(t) = (2t − 1)2; g3(t) = sin(2πt)

2 − sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt)

+ 0.5 sin3(2πt).

(20)

We considered training samples of growing dimension 64, 128, and 256 to es-
timate the emulators and used a new validation sample of the same dimension to
check the out-of-sample performance. We repeated the analysis 100 times for each
function and each method. We show detailed box-plots of the out-of-sample R2 in
Figs. 5 through 7, while Table 2 synthesizes the out-of-sample performance of the
three methods, with stars highlighting the best performing method.

Considering small sample sizes (N = 64, Fig. 5), there is one test function
(namely G∗, p = 10, “nasty”) which is very difficult to predict. For that function,
the only method which is able to give an out-of-sample fit is SDR-ACOSSO, while
ACOSSO and especially DACE are not capable of providing any reasonable fit. For
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Fig. 5 Box-plots of the out-of-sample R2 for the test models in Table 2, applying SDR, ACOSSO, DACE.
Sample size is N = 64

all other test functions, both SDR-ACOSSO and DACE behave well, if the median of
the R2 distribution is only considered. However, for six of these test functions, the R2

distribution of DACE presents “outliers” with very bad fit. This implies that, although
the median of the R2’s is generally somewhat better for DACE, SDR-ACOSSO es-
timations are more robust and stable since bad outliers never occur. ACOSSO some-
times competes with SDR, in some other cases it performs a bit worse, but in one
case (G∗, p = 8, “simple”) it is clearly worse. Overall, we can say that, due to the
occurrence of bad “outliers” for DACE, the SDR-ACOSSO seems overall the best
method for small sample sizes.

Considering N = 128 in Fig. 6, we can see that DACE R2 is affected by bad out-
liers for two test functions, making SDR preferable in terms of robustness, although
in terms of median DACE is often better. ACOSSO almost always lags behind the
other two methods. Two results are worth noting: (i) when DACE has the best per-
formance, we can see that the SDR identification step is able to fill a large part of
the gap between ACOSSO and DACE; (ii) for the additive f12 test function, SDR
outperforms the other two methods (we recall that for additive models, SDR is not
combined with ACOSSO, but directly provides the smoothing spline ANOVA model
from the ML estimated NVRs).



Recursive algorithms for smoothing spline ANOVA models 383

Fig. 6 Box-plots of the out-of-sample R2 for the test models in Table 2, applying SDR, ACOSSO, DACE.
Sample size is N = 128

Results for N = 256 in Fig. 7 are overall similar to those for N = 128, even if
we can note an improvement of SDR-ACOSSO with respect to DACE. The latter, in
fact, clearly outperforms the other methods only for the f4 test function, while it still
presents bad outliers for the G-function (p = 8, “simple”). Also, DACE is not able to
provide any reasonable fit for the very difficult G-function (p = 10, “nasty”). SDR
confirms its great efficiency in estimating the additive functions (see the f12 plot),
with amazingly accurate predictions.

Overall, the results indicate that SDR identification provides a very significant
added value in smoothing spline ANOVA models, allowing us to fill, in most cases,
the gap between ACOSSO and DACE.

4 Discussion and conclusion

In general, it is not possible to identify a method (among ACOSSO, DACE, SDR-
ACOSSO) which outperforms the others in all examples. SDR is extremely efficient
and accurate in identifying additive models: the use of recursive algorithms avoids
the inversion of large matrices and makes the computational cost of SDR linear both
in p and N . This allows us to optimize as many as p smoothing parameters, at a
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Fig. 7 Box-plots of the out-of-sample R2 for the test models in Table 2, applying SDR, ACOSSO, DACE.
Sample size is N = 256

similar cost of, e.g., ACOSSO in which one single smoothing parameter M is opti-
mized. The computational cost of ACOSSO and DACE increases nonlinearly with p

and N .
In the case of ANOVA models with interaction components, ACOSSO confirms

entirely its good performances in terms of efficiency and low computational cost.
When the model includes interactions, SDR combined with ACOSSO improves
ACOSSO in many cases, although at the price of a higher computational cost. This
is due to the SDR estimation of each single ANOVA term in the backfitting loop,
prior to the final ACOSSO optimization of M . So, while for additive models the ad-
vantage of SDR is both low computational cost and accuracy, when interactions are
included, the greater accuracy of SDR-ACOSSO has a cost, which does not exceed
a few minutes in any cases (see Table 3). SDR-ACOSSO also compares very favor-
ably with respect to DACE in many cases, even if there are cases where DACE out-
performs SDR-ACOSSO in out-of-sample prediction. The main drawback of DACE
seems to be the occurrence of very bad outliers in the distributions of R2, imply-
ing some lack of robustness. The computational cost of DACE can be very sensi-
tive to the underlying model. For each fixed dimension p and sample size N its
variability can be of one order of magnitude (see Table 3). In terms of computa-
tional burden, we suggest that SDR (for additive models) and ACOSSO (for models
with interactions) should be taken as the first choice for a rapid and reliable em-
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Table 2 SDR-ACOSSO, ACOSSO, and DACE: average R2 (out of sample) computed on 100 replicas
for different types of test functions. Stars indicate the method with best out-of-sample performance

Model Sample size SDR-ACOSSO ACOSSO DACE

G, p = 4 simple 64 0.9187 0.8960 0.5468

(0.9543a)

G, p = 4 simple 128 0.9881∗ 0.9392 0.9884∗
G, p = 4 simple 256 0.9973∗ 0.9926 0.9973∗

G, p = 4 nasty 64 0.5104 0.5159∗ −0.5721

(0.3942a)

G, p = 4 nasty 128 0.6960∗ 0.5833 0.6008

G, p = 4 nasty 256 0.9105∗ 0.8507 0.8609

G, p = 8 simple 64 0.8603∗ 0.6906 −0.7945

(0.8367a) (0.9297a)

G, p = 8 simple 128 0.9679∗ 0.9008 0.9298

(0.9736a)

G, p = 8 simple 256 0.9924∗ 0.9164 0.9832

G, p = 10 nasty 256 0.1922∗ 0.1963∗ −0.0247

G∗, p = 4 simple 64 0.9613 0.9476 0.9701∗
G∗, p = 4 simple 128 0.9831∗ 0.9759 0.9864∗
G∗, p = 4 simple 256 0.9928∗ 0.9892 0.9940∗

G∗, p = 4 nasty 64 0.8556∗ 0.8460 0.7354

(0.8804a)

G∗, p = 4 nasty 128 0.9142∗ 0.9103 0.9162∗
G∗, p = 4 nasty 256 0.9574∗ 0.9299 0.9534∗

G∗, p = 8 simple 64 0.9213 0.4393 0.9586∗
G∗, p = 8 simple 128 0.9689 0.9435 0.9813∗
G∗, p = 8 simple 256 0.9876 0.9736 0.9910∗

G∗, p = 10 nasty 64 0.2601∗ 0.0637 −21.4

(−0.0516a)

G∗, p = 10 nasty 128 0.6823 0.5845 0.7601∗
G∗, p = 10 nasty 256 0.8166∗ 0.8061 0.8205∗

f4, p = 10 64 0.7621∗ 0.4815 −6.763

(0.5859a) (0.8303a)

f4, p = 10 128 0.9241 0.8819 0.971∗
f4, p = 10 256 0.9806 0.9764 0.9927∗

f12, p = 12 64 0.8506 0.8276 0.8799∗
(0.8809a) (0.8406a) (0.9205a)

f12, p = 12 128 0.9966∗ 0.9859 0.9947∗
f12, p = 12 256 0.9999∗ 0.9996∗ 0.9996∗

aWe include the median of the R2 sample here, due to the presence of “outliers” with very bad fit (see
Figs. 5–7)
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Table 3 Order of magnitude of computational costs (in seconds) of the three methods, at varying number
of input factors p and sample size N . All three methods have been implemented in Matlab

Method N = 64 N = 128 N = 256 N = 512 N = 1024

p = 4 nonadditive (second-order ANOVA)

SDR 8 16 32 100 350

ACOSSO 1 2 6 30 160

DACE 1 3 10 40 150

p = 8 nonadditive (second-order ANOVA)

SDR 25 50 100 240 700

ACOSSO 2 3 9 50 240

DACE 5 20 40 160 650

p = 10 nonadditive (second-order ANOVA)

SDR 38 70 140 – –

ACOSSO 2 4 12 – –

DACE 4 15 80 – –

p = 12 additive (first-order ANOVA)

SDR 4 8 16 – –

ACOSSO 1 1 5 – –

DACE 3 44 200 – –

ulation exercise. Whenever ACOSSO is unable to explain a large part of the map-
ping, SDR-ACOSSO or DACE may be considered. We also noted that DACE is not
necessarily the best choice when the model is supposed to be very complex with
significant interactions. DACE, like any interpolation method, tries to exploit the
“zero uncertainty” at observed samples of the mapping z. When the model is com-
plex, this characteristic may lead one to wrongly identify spurious interaction terms
involving unimportant X’s, and therefore it may explain the occurrence of poorer
performances in out-of-sample predictions with respect to smoothing methods. SDR-
ACOSSO, on the other hand, can provide detailed information about the form of each
additive and interaction term of a truncated ANOVA decomposition, often allowing
very good out-of-sample predictions. Moreover, the component selection inherent in
SDR-ACOSSO implies that the ANOVA model is only based on statistically sig-
nificant terms, possibly enhancing the robustness of its out-of-sample performance.
Finally, while we have seen that ACOSSO is overall less accurate than the other
methods in out-of-sample predictions, we would like to stress that: (i) ACOSSO
is the computationally cheapest method among the three considered for nonaddi-
tive models; and (ii) it provides a major methodological improvement to “classical”
smoothing spline estimation (e.g., MARS), which is also a key characteristic of SDR-
ACOSSO.
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Appendix

A.1 The backfitting algorithm

We provide here a short summary of the backfitting algorithm, as described in Young
(2000) and Young (2001). The basic reason why we need a backfitting procedure is
to deal with the problems arising from the sorting strategy employed in the recursive
algorithms. Once we have a preliminary estimate of the state variables, we define a
“modified dependent variable” series obtained by subtracting from zk all the other
terms on the right-hand side of (1).

The backfitting algorithm takes the following form:

1. start from an initial estimate of states ŝ0
i,k|N, i = 1, . . . , p, k = 1, . . . ,N ;

2. for backfitting iterations b = 1, . . . ,B

(a) for i = 1, . . . , p define the modified dependent variable ẑi
k = zk −∑

j �=i ŝ
b−1
j,k|N ;

(b) estimate NVRi by the ML optimization;
(c) get an updated estimate ŝb

i,k|N ;

(d) move to next b until no significant changes are detected in ŝb
i,k|N .

3. the final NVRi ’s estimates are converted into the smoothing parameters λi ’s and
the estimated model is finally cast in the standard smoothing spline ANOVA form.

Remark 2 It is not necessary to update the NVRi estimates for all backfitting iter-
ations b = 1, . . . ,B , but usually two backfitting iterations are sufficient for their ef-
fective estimates. This significantly speeds up the computational cost of subsequent
backfitting iterations, that simply update, until convergence, ŝb

i,k|N . Usually B < 10.

Remark 3 Given the optimized NVRs, the backfitting algorithm provides estimates
ŝB
i,k|N that are equivalent to the smoothing spline estimate fi(Xi,k) obtained with

λi = 1/(NVRiN
4).
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