
USING REDUCE FOR REPLICA CALCULATIONS

Paul Lukowicz Klaus-Robert M�uller Werner M. Seiler

Institut f�ur Programmstrukturen GMD FIRST Institut f�ur Algorithmen und

und Datenorganisation Kognitive Systeme

Universit�at Karlsruhe Rudower Chaussee 5 Universit�at Karlsruhe

D-7500 Karlsruhe 1 D-1199 Berlin D-7500 Karlsruhe 1

Germany Germany Germany

lukowicz@ira.uka.de klaus@�rst.gmd.de kg04@dkauni2.bitnet

Abstract The REDUCE package REPPACK for performing replica calculations in the context of

neural networks is presented. REPPACK provides the user with several functions needed to calcu-

late partition functions and saddle point equations interactively. The application of REPPACK is

demonstrated for the toy example of �nitely many patterns (p=N ! 0) for the Hop�eld model. The

Gardner calculation with REPPACK is briey outlined.

1. INTRODUCTION

Symmetric Hop�eld networks [8] are employed as associative memories. They can store a set of

patterns and perform fault-tolerant retrieval even from distorted input. The properties of Hop�eld

networks have been examined through large scale simulations determining important parameters

like storage capacity and basins of attraction [4, 7, 10, 5, 18].

Amit et al. have found a way to calculate the storage capacity analytically for hebbian couplings [1]

using statistical mechanics and the replica trick [15]. They take the spins si as dynamical variables to

compute the free energy. Gardner has calculated the storage capacity for a fully connected network,

where the patterns are embedded with a certain embedding strength [6]. In her analysis which also

uses the replica trick the couplings wij are the dynamical variables.

Both of these so called replica calculations can be done for di�erent pattern distributions [6, 9], for

di�erent types of models, e.g. Q-state, analog or diluted models [17, 11, 2, 19] or for generalisation

problems [16]. They imply technical di�culties in the analysis and numerical problems in the

evaluation of the saddle-point equations.

Of course we can not overcome the numerical di�culties with a computer algebra system. Our

goal is to simplify the calculations leading to the saddle-point equations. They consist in every

speci�c application of similar operations. REPPACK provides the user with functions supporting the

computation of the partition function and the saddle-point equations in a replica (symmetric) calcu-

lation. In order to maintain a certain universality in our ansatz, the user has to do his calculations

interactively. Thus it should be possible to perform di�erent { even non-standard { calculations

semi-automatically, i.e. the user expresses the individual steps by calls of procedures provided by

REPPACK. REPPACK itself is a package developed in the computer algebra system REDUCE [14].

The next section presents the functionality of REPPACK; in the third section we demonstrate the

application of our package to the toy example of p=N ! 0 and look at the standard Gardner

calculation. Finally, some conclusions are given.

2. REPPACK

Replica calculations contain several typical operations. In REPPACK we have implemented general

types of algebraic manipulations (cf. table and see also [12, 13]). The package is written in the

symbolic mode of REDUCE. All procedures are nevertheless accessible from the algebraic mode. It

supports the handling of vectors, matrices and tensors with variable (possibly in�nite) dimensions.

Elements of those structures can be accessed and modi�ed by specifying an access pattern (e.g.

diagonal elements or elements belonging to a certain block) and complex operations like determinant

or inversion, rules can be speci�ed.

The package allows exible, easy-to-use access to parts of complicated expressions and simple al-

teration of their representation. This is especially important since a human user can immediately

tell e.g. over which terms an averaging should take place or whether some terms in the exponen-

tials factorize over a certain index. REPPACK solves such tasks according to certain matching or

consistency rules suitable for replica calculations or rules explicitely given by the user.

REPPACK can perform Gau� linearisation and provides procedures to transform � and � functions

into their integral representations. It contains a Gau� integrator which includes an automatic con-

sistency check. For a given set of di�erentation variables, saddle-point equations are computed

automatically. To enhance the readability of the results, we adapted the REDUCE-TEX-interface to

our needs. The saddle-point equations can be written directly into a FORTRAN �le through the

FORTRAN interface of REDUCE. Then they can as usually be solved numerically.

nvec, nmat,

nstruct

de�nition of a vector, matrix or tensor with variable dimension sizes

contr reduces the dimensionality of an object (e.g. contracts a matrix to a

vector)

nprod, nsum new operators for sums and products with variable bounds

dint new operator for de�nite, multidimensional integration with variable

bounds

sav, strace new operators for the average and the trace over system con�gurations

grpxxx, grpx selects all factors and operators from a speci�ed operator. xxx can be

any REPPACK operator name

to!*xxx, tox changes an exponential function over sums to a product of exponential

functions and vice versa. xx can be nsum, nprod, sum, prod.

op!*, op!*part selects the speci�ed operator or its argument in a complex expres-

sion. op!*, op!*part can be used both on the left and right side of

an assigmnent

gaussaux introduces auxiliary variables using the gauss trick

thetaauxaux,

deltaaux, oneaux

introduces auxiliary variables using the integral representation of �, � or

unity

saddle!*eqs computes the saddle point equations

gauss!*int performs a gaussian integration (multidimensional) over a speci�ed

variable

Table 1: REPPACK contains about 50 di�erent functions and operators, some of them are described

in this table.

3. CALCULATIONS WITH REPPACK

3.1 A Toy Example

In this section we demonstrate the use of REPPACK for a toy example, namely the p=N ! 0

limit of the Hop�eld model [1, 7]. In this limit, a Hop�eld network is trained for p patterns �i
(� = 1 : : :p; i = : : :N) with the Hebb rule

wij =
1

N

X
�

�
�
i �

�
j : (1)

We look at the system in the thermodynamic limit N ! 1, where the number of patterns will be

kept �xed such that � = p=N becomes arbitrarily small. To evaluate the partition function Z, we

start with some preliminary de�nitions1 :

H := NSUM(i,1,NN,beta*sigma(mu,i)*s(i));

h :=
NX
i=1

(si � ��;i � �) (2)

and de�ne the partition function as

Z := EXP(-1/(2*NN*beta)*NSUM(mu,1,p,H**2));

z := e
�

�
(1
2
)�
Pp

�=1

�PN

i=1
(si���;i��)

2
�
�N�1���1

�
(3)

where we omitted the diagonal terms exp(�1
2
�p) that do not contribute to the saddle-point equations.

Note that in the TEX representation of REDUCE capital letters become non-capital ones, if capital

letters are necessary, we have to write e.g. NN in the REDUCE code to obtain N in the TEX

representation. In order to average over the states si, we introduce the auxiliary variables m�

linearising the quadratic term in si via a Gau� linearisation.

Z1 := GAUSSAUX(Z,H,m(mu));

z1 :=

pY
�=1

�p
� � ��(12) �

p
N �

Z
1

�1

�
e�(

1

2
m2
��N ��)+m��

PN

i=1
(si���;i��)

�
dm�

�
(4)

The next line is more tricky

Z3 := op!*(dint,m(mu),1,Z1) := fixrules(grpstrace(s,{-1,1},

strace(s,{-1,1},op!*(dint,m(mu),1,to!*nprod(Z1,i))),{}) where sigtr);

We will explain it step by step. First, in the innermost command strace, we average over all

si 2 f�1g under the integral over m�. The command grpstrace tells REDUCE to perform this trace

operation only where it is necessary, i.e. over exp(m�

P
i si ���;i ��). Again we want to emphasize that

a human being can easily see which term should be averaged over, but this is highly non-trivial for

a computer. The expression sigtr makes the system use the exp ln 2 cosh representation of 2 cosh2

in its output, and the fixrules command forces REDUCE to use exp ln not only in its output but

also in its internal representation. op! � (dint;m(mu); 1; Z1) := : : : tells REDUCE to substitute the

result of the trace operation for the integral.

z3 :=

pY
�=1

 p
� � ��(12) �

p
N �

Z
1

�1

e�(

1

2
m2
��N ��) �

NY
i=1

�
eln(2cosh(m����;i��))

�!
dm�

!
(5)

We �nally arrive at the point, where we can di�erentiate with respect to m�

saddle!*eqs(op!*part(expt,e,1,to!*nsum(Z3,i))/-(N*beta),{m(mu)});

and get the saddle-point equations

1Note, that multiple indices are separated by commata in REDUCE e.g. ��;i � �
�
i .

2This is of course contraproductive for a computer algebra system, since it usually tends to simplify formulae instead

of making them more complicated, whereas for humans the exp ln representation is just a matter of convenience.

(
�

NX
i=1

(tanh (m� � ��;i � �) � ��;i) �N�1

!
+m� = 0

)
(6)

This example should have made clear that even such a simple calculation can pose unsolvable

problems to a computer, if the matching rules and the routines for accessing terms and altering

representations are not worked out properly.

3.2 The Gardner Calculation

To show that the application of our package is not restricted to toy problems, we will briey outline

a Gardner type calculation in REPPACK. Technical details would go beyond the scope of this paper

and can be found elsewhere [12, 13]. The full programm code we used is shown in the appendix. We

only show some typical steps. As in the other example the REPPACK operators have to be de�ned

�rst: the embedding strength
�
i measures how good the patterns are learned

gamma(a,mu,i) := nsum(j,1,NN,sigma(mu,i)*sigma(mu,j)*omega(a,i,j))/NN**(1/2);

a;�;i :=
NX
j=1

(��;i � ��;j � !a;i;j) �N�1=2; (7)

and the replicated fractional phase space volume
i = hV ni in the deterministic limit T ! 0

Om(i):= sav(sigma,{-1,1},eta*nprod(a,1,n,dint(-inf,inf,rho(a)*

nprod(mu,1,p,theta(gamma(a,mu,i)-k)),nprod(j,1,NN,omega(a,i,j)))));

i :=

*0@ nY
a=1

Z
1

�1

0
@�a �

pY
�=1

�

0
@ NX
j=1

(��;i � ��;j � !a;i;j) �N�1=2 � k

1
A
1
A d

NY
j=1

!a;i;j � �
1
A+ (8)

�a is the integration measure for the spherical model, � is the normalisation constant. In the

TEX notation of REPPACK d
QN

j=1 !a;i;j stands for
QN

j=1 d!a;i;j. Multiple indices are separated by

commata, e.g. ��;i � �
�
i and k is the embedding stability of the patterns usually denoted by �.

Now the � or step function is replaced by its integral representation using the thetaaux function and

the averaging is moved inside the integral (several lines of code in the appendix).

i :=

Z
1

�1

Z
1

k

Z
1

�1

0
@ NY
j=1

pY
�=1

D�
e�(��;i���;j�

Pn

a=1
(xa;��!a;i;j)�i�N

�1=2)
�E

�
pY

�=1

�
e
Pn

a=1
(xa;���a;�)�i

�1A

� d
pY

�=1

nY
a=1

xa;� � d
pY

�=1

nY
a=1

�a;�

2�
�

nY
a=1

�a d

NY
j=1

nY
a=1

!a;i;j � � (9)

After averaging and rearranging terms we consider G2(Ea; Fab) similar to Gardner [6].

g2 := ln

 Z
1

�1

�
e
Pn

a=1
(�(i�E))+

Pn

a=1

Pn

b=1((
1

2
)�!a�!b��a;b�i�F+!a�!b��a;b�i�E�(12)�!a�!b�i�F)

�
d

nY
a=1

!a

!
(10)

For a replica symmetric ansatz we perform a Gau� integration

on mcd; on div; h5 := gauss!*int(g2(EE,FF),ll);

h5 := ln

�
n

2 � e
P

n

a=1
(�(i�E)) �

p
F + 2 �E � 2

n

2p
� ((� (i � F)� 2 � i �E)n � n � F) + (� (i �F)� 2 � i �E)n �F + 2 � (� (i � F)� 2 � i �E)n �E

!

and obtain the saddle-point equations for F and E in the limit n! 0 and q ! 1,

sa:=saddle!*eqs(fix(h5 where !*dosum)+N*(N-1)*FF*q(a,b),{FF,EE})$

which completes our second example.

4. CONCLUSIONS

Our goal was to provide with REPPACK a modular package which is able to grow according to the

needs of users. After some further testing on non-trivial problems, it will become generally available.

An important advantage of using a computer algebra system is much higher probability for correct

results. Many of the operations used in the replica trick are highly error-prone in hand calculations.

The reported results may seem somewhat clumsy to readers not acquainted with computer alge-

bra, but we hope that REPPACK will enable non-specialists to try methods of statistical mechanics

for their problems and specialists familiar with the system to speed up their calculation consider-

ably. Our future interest will be dedicated to a further simpli�cation of the calculation and the

consideration of replica symmetry breaking schemes within REPPACK.

APPENDIX

NMAT sigma(p,N), lam(NN,p), x(NN,p), q(NN,NN),FF(a,b)$

NSTRUCT omega({NN,N,NN}),gamma({N,p,NN})$

NVEC s(N), rho(NN), Om(NN),EE(NN)$

gamma(a,mu,i) := nsum(j,1,NN,sigma(mu,i)*sigma(mu,j)*omega(a,i,j))/NN**(1/2);

Om(i):= sav(sigma,{-1,1},eta*nprod(a,1,n,dint(-inf,inf,rho(a)*nprod(mu,1,p,

theta(gamma(a,mu,i)-k)),nprod(j,1,NN,omega(a,i,j)))));

Om(i):=(op!*part(nprod,mu,1,Om(i)):=

thetaaux(op!*part(nprod,mu,1,Om(i)),lam(a,mu),x(a,mu)));

Om(i) := grpx(sv,{a,sigma},tox(s,grpx(pp,{mu,a},tox(p,Om(i),j)),a));

Om(i) :=(op!*(sav,sigma(j,mu),1,Om(i)):=e**(-1/2*nsum(a,1,N,nsum(b,1,N,

x(a,mu)*omega(a,i,j)*x(b,mu)*omega(b,i,j)/NN))));

Om(i) := tox(p,fix(grpx(s,j,tox(ss,Om(i),{mu,j})) where insq),mu);

Om(i) := grpx(ii,{lam(a,mu),x(a,mu)},Om(i));

HGG := op!*(nprod,mu,1,Om(i));

Om(i) := tosum((op!*(nprod,mu,1,Om(i)) := exp(NN*alpha*gg(q(a,b)))));

rho(a) := deltaaux(delta(nsum(j,1,NN,omega(a,i,j)**2-NN)),EE(a));

H0:=nprod(a,1,N,nprod(b,1,a-1,

oneaux((1/NN*nsum(j,1,NN,omega(a,i,j)*omega(b,i,j))),q(a,b),FF(a,b)*NN)));

Om(i) := grpx(ppi,{b,a,omega(a,i,j)},

(op!*(nprod,a,1,Om(i)) := op!*(nprod,a,1,Om(i))*H0));

HG20 := op!*(dint,nprod(j,1,NN,nprod(a,1,N,omega(a,i,j))),1,Om(i))$

hg2 := (op!*part(nsum,j,1,hg20) := omega(a,i,j)**2-1);

Om(i):=(op!*(dint,nprod(j,1,NN,nprod(A,1,N,omega(a,i,j))),

1,Om(i)):=e**(g2(EE,FF)));

h3 := grpx(i,{omega(a,i,j)},tox(ss,grpx(pp,{b,a},tox(p,hg2,j)),{b,a}));

h4 := fix(contr({EE,FF,FF,omega,omega},h3,{1,2,1,3,2}) where {!*npf,!*mrs});

off mcd; g2(EE,FF) := fix(ln(stm(a,b,omega(a),h4)) where !*lnr);

on mcd; on div; h5 := gauss!*int(g2(EE,FF),ll);

sa:=saddle!*eqs(fix(h5 where !*dosum)+N*(N-1)*FF*q(a,b),{FF,EE})$

s1 := first(sa);s2 := second(sa);

off mcd; g1(x,lam):= fix(ln(stm(a,b,x(a),contr({q,q,x,lam},hgg,{2,2,2,2})))

where {!*npf,!*lnr});

on mcd; h8 :=gauss!*int(g1(x,lam),ppq)$

h9 := fix(h8 where n*q = 0);

h10 := mts(a,b,lam(a),si(fix(h8 where n*q = 0),{2*n->0,4*n->0})); off mcd;

h11 :=tox(p,gaussaux(h10,nsum(a,1,n,lam(a)),(-q**(1/2)/(1-q)),z),a);

on mcd; on div; h11; h12 := fix(contr(lam,grpx(i,{lam(a)},h11),1) where !*npf);

References

[1] Amit, D.J., Gutfreund H., Sompolinsky, H., Phys. Rev. Lett. 55, 1530 (1985), Phys. Rev.
A32,1007, (1985), Ann. Phys., NY 173, 30 (1987)

[2] Bouten, M., Engel, A., Komoda, A., Serneels, R., J. Phys. A:Math. Gen. 23, 4643 (1990)

[3] Buhmann, J., Divko, R., Schulten, K., Phys. Rev. A39, 2689 (1989)

[4] Forrest, B.M., J. Phys. A:Math. Gen. 21, 245 (1988)

[5] Forrest, B.M., Wallace, D.J., in: Models of Neural Networks, ed. Domany, E., van Hemmen,
J.L. and Schulten K., Springer Heidelberg, 121 (1991)

[6] Gardner, E., J. Phys. A:Math. Gen. 21, 257 (1988)

[7] Hertz, J., Krogh, A., Palmer, R.G., Introduction to the Theory of Neural Computation,
Addison-Wesley Redwood City (1991)

[8] Hop�eld, J.J., Proc. Natl. Acad. Sci. USA, 79, 2554 (1982)

[9] Horner, H., Z. Phys. B 75, 133 (1989)

[10] Kohring, G.A., J. Stat. Phys. 59, 1077 (1990)

[11] K�uhn, R., B�os, S., van Hemmen, J.L., Phys. Rev. A 43, 2084 (1991)

[12] Lukowicz, P., Anwendung von Computeralgebra auf Probleme Statistischer Physik neuronaler
Netz, diploma thesis (in german), Universit�at Karlsruhe, Fakult�at f. Physik (1993)

[13] Lukowicz, P., M�uller, K.-R., Seiler, W.M., Application of Computeralgebra for Replica Calcu-
lations in Statistical Physics of Neural Networks, in preparation

[14] MacCallum, M.A.H., Wright, F.J., Algebraic Computing with REDUCE, Clarendon Press Ox-
ford (1991)

[15] M�ezard, M., Parisi, G., Virasoro, M.A., Spin Glass Theory and Beyond, World Scienti�c,
Singapore, (1987)

[16] Opper, M., Kinzel, W., Kleinz, J., Nehl, R., J.Phys. A:Math.Gen. 23, L581 (1990)

[17] Rieger, H., J. Phys. A:Math. Gen. 23 L1273 (1990)

[18] Stiefvater, T., M�uller, K.-R., J.Phys. A:Math.Gen. 25, 5919 (1992)

[19] van Hemmen, J.L., K�uhn, R., in Models of Neural Networks, ed. Domany, E., van Hemmen,
J.L. und Schulten K. (ed.), Springer Heidelberg, 1 (1991)

