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We are rapidly approaching the point where we have sequenced millions of human genomes. There is a pressing need for

new data structures to store raw sequencing data and efficient algorithms for population scale analysis. Current reference-

based data formats do not fully exploit the redundancy in population sequencing nor take advantage of shared genetic

variation. In recent years, the Burrows–Wheeler transform (BWT) and FM-index have been widely employed as a full-

text searchable index for read alignment and de novo assembly. We introduce the concept of a population BWT and use

it to store and index the sequencing reads of 2705 samples from the 1000 Genomes Project. A key feature is that, as

more genomes are added, identical read sequences are increasingly observed, and compression becomes more efficient.

We assess the support in the 1000 Genomes read data for every base position of two human reference assembly versions,

identifying that 3.2 Mbp with population support was lost in the transition fromGRCh37 with 13.7 Mbp added to GRCh38.

We show that the vast majority of variant alleles can be uniquely described by overlapping 31-mers and show how rapid and

accurate SNP and indel genotyping can be carried out across the genomes in the population BWT. We use the population

BWT to carry out nonreference queries to search for the presence of all known viral genomes and discover human T-lym-

photropic virus 1 integrations in six samples in a recognized epidemiological distribution.

[Supplemental material is available for this article.]

Recent years have seen the number of whole human genomes
sequenced continue to increase dramatically through large-scale
population and medical sequencing projects such as the 1000
Genomes Project (The 1000 Genomes Project Consortium 2015),
UK10K (The UK10K Consortium 2015), and GoNL (The Genome
of the Netherlands Consortium 2014). The scale-up of human
population sequencing has enabled us to detect sequence variants
down to extremely low minor allele frequencies (The 1000
Genomes Project Consortium 2015), explore variation in ancient
human lineages and isolated populations (Raghavan et al. 2015),
and use genomics to discover rare disease-causing mutations
(Katsanis and Katsanis 2013). Current predictions estimate that
we will have sequenced 1M human genomes in the near future
(Stephens et al. 2015), which will present formidable informatics
scaling challenges.

The sequencing data produced by current high-throughput
sequencing technologies consists of paired reads on the order of
100 bp, along with their base qualities, with the vast majority of
aligned data currently stored in the SAM/BAM format (Li et al.
2009). The SAM/BAM format, originally developed by the 1000
Genomes Project (1000GP), requires on the order of one byte per

base pair, with the vast majority of the space being taken by the
base qualities (Hsi-Yang Fritz et al. 2011). Recently, the CRAM for-
mat has been proposed (Hsi-Yang Fritz et al. 2011) and adopted by
the Global Alliance for Genomics and Health consortium (https://
genomicsandhealth.org/) to provide a more sustainable founda-
tion for exploring strategies for sequencing read data compression,
such as controlled loss of base qualities, a strategy that can result in
more accurate genotyping (Yu et al. 2015; Ochoa et al. 2016). One
key innovation of the CRAM format is to only store the differences
in individual sequencing reads relative to the reference genome.
Furthermore, whenone considers that the vastmajority of variants
per individual are shared among multiple individuals (The 1000
Genomes Project Consortium2015), there is also significant dupli-
cation of nonreference sequences.

In parallel, there is increasing interest in methods for rapid
searching of large collections of sequencing reads frommany indi-
viduals. Iqbal et al. (2012) developed the Cortex assembler for rep-
resenting sequencing reads from multiple samples using colored
de Bruijn graphs for genome assembly and reference-free variant
identification (Iqbal et al. 2012). Applications that were presented
include variant calling from a single high-coverage genome,
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detection of novel sequence from a population not present in the
reference, and genotyping of simple and complex variants highly
divergent from the reference. However, the implementation only
scaled to around 10 human genomes on standard hardware, orders
of magnitude lower than what is required. Recently, Bloom filters
in the form of sequence bloom trees (SBTs) were used to build
highly compressed partial text indexes given a large set of input se-
quences and demonstrate rapid sequence searches with lowmem-
ory requirements (Bloom 1970; Solomon and Kingsford 2016). An
SBT structure was constructed from 2652 RNA-seq experiments, re-
quiring 200 GB. In recent years, the Burrows–Wheeler transform
(BWT) and FM-index have been widely employed to build full-
text indexes for read alignment (Langmead et al. 2009; Li and
Durbin 2009), read-error correction (Li 2015), and de novo ge-
nome assembly (Simpson and Durbin 2011). The key features
of using a BWT structure to index sequencing reads are that it
is inherently reference-free, full-text, compressed, and coupled
with the FM-index, enabling rapid sequence searches of arbitrary
k-mer sizes across the entire set of sequences without rebuilding
the index for different values of k.

Results

Data processing and BWT construction

Figure 1 gives an overview of the data processing strategy. We be-
gin with the whole-genome low coverage and exome sequencing
reads from the final phase of the 1000GP (2705 individuals over
26 populations) consisting of ∼87 Tbp and 922 billion reads
(The 1000 Genomes Project Consortium 2015). We used a combi-
nation of examining the base qualities for each read and querying
the sequences against a preconstructed Cortex graph (Iqbal et al.
2012) to carry out error correction and removal of poor quality
reads (seeMethods). This resulted in a set of 734 billionunchanged
reads, 85 billion corrected reads, and 103 billion reads that could
not be corrected and were discarded. We took advantage of the
reference strand labeling in the Cortex de Bruijn graph (obtained
by labeling nodes during a traversal of the reference sequence) to
reverse complement read sequences with a clear reverse strand ori-
entation with respect to the reference genome (see Methods). We
normalized the read lengths so that we could identify completely
identical read sequences and only store one copy of the sequence

in the BWT by trimming to 73 or 100 bp,
depending on whether the original read
sequence was >100 bp. For each resulting
read, we used a key-value pair database
(RocksDB, http://rocksdb.org/) to record
the read groups, number of corrected bas-
es, and number of bases >Q20 using the
read sequence as the key. We next sorted
the 53 billion sequence keys reverse lexi-
cographically and constructed the BWT
structure. The 53 billion unique sequenc-
es (keys) produced an average of 15.45
reads for each key. In Figure 2, we bench-
marked the total size of the BWT using
both the uncorrected and corrected reads
with increasing numbers of individuals
(using the reads from a 5-Mbp region
on Chr 20). The plot shows that using
the uncorrected reads, the BWT contin-
ues to linearly increase in size, indepen-
dent of the sort order. For the error-
corrected reads, BWTs produced from re-
verse lexicographic sorting order (RLO)
were an order of magnitude smaller in
size than lexicographic order (LO). The
BWT of a collection of strings is the series
of characters preceding a suffix in the lex-
icographically ordered set of all possible
suffixes extracted from these strings.
Arranging the strings in the collection
in reverse lexicographical order prior to
BWT construction assures that identical
characters preceding the same suffix are
grouped together and hence can be bet-
ter compressed by methods like run
length encoding (Cox et al. 2012). The ef-
fect of error correction of the reads can be
observed with the total BWT around two
orders of magnitude larger with uncor-
rected reads. With error correction and
RLO sorting, the total size of the BWT
begins to plateau from ∼1500 to 2000

Figure 1. Sequencing reads from 2705 individuals (low-coveragewhole-genome and exome sequenc-
ing) from 26 populations comprising a total of 922 billion reads (87.1 Tbp) used for the 1000GP popu-
lation BWT. Reads were first error-corrected using a Cortex graph (Iqbal et al. 2012). The error-corrected
readswere then trimmed to either 100 or 73 bp, unique sequences identified on the forward strand, qual-
ity values discarded, and the metadata stored in a separate database. This resulted in 4.9 Tbp consisting
of 53 billion nonredundant reads.
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genomes. The final size of the BWT for the entire data set was 464
GB (split over 16 smaller BWTs based on read prefix in order to load
into system memory over multiple servers) (Supplemental Table
S1), and the corresponding RocksDB metadata database was 4.75
TB (0.09 bytes per bp). The resulting population BWT server can
be queried for exact matches to arbitrary length k-mer sequences
and return either the count of matching read sequences, the
matching read sequences, or the matching read sequences with
sample metadata (Supplemental Fig. S1). We benchmarked the
query completion time for 100,000 k-mer queries for the different
types of server responses and k values (Supplemental Table S2),
finding that, for smaller values of k, returning matching read
counts was the fastest primarily due to the network time required
for transferring large quantities of read sequences. At larger values
of k, where less matching reads are found, the difference between
requesting read counts and fullmatching read sequences is consid-
erably reduced. In the remainder of the paper, we call the resulting
population BWT the 1000GP BWT, or where unambiguous, just
the BWT.

Population support for human reference assemblies

and variation

We first used the population BWT to assess the direct support in
the 1000GP read data for every base of two recent versions of the
human reference assembly (GRCh37 and GRCh38) and support
for the SNP and short indel variants called by the 1000GP. We
extracted all forward strand 31-mers contained in both reference
assemblies and queried the population BWT for reads matching
these 31-mers. Finally, we also generated all 31-mers contained
in the reads stored in the BWT Read Server. The vast majority of
reference 31-mers (Fig. 3A) are supported by the 1000GP BWT
(99.97%) and mostly shared between both assemblies (99.41%),
with 0.07% of GRCh37 31-mers lost from the change from
GRCh37 toGRCh38, with 0.49%gained inGRCh38.One estimate
of the completeness of the 1000GP BWT is to calculate the propor-
tion of 31-mers derived from high-depth Illumina sequencing
reads of a sample that are already in the BWT. We tested one sam-
ple contained in the BWT (NA12878) and another not part of the
BWT (NA12877), and in both cases, we found that only 0.95%–

1.1% of 31-mers are not found in the BWT (Supplemental Table
S6).We further queried the 1000GP BWT for all 31-mers generated
by the SNP and indel variants found by the 1000GP (The 1000
Genomes Project Consortium 2015). Figure 3B shows the intersec-
tions of these four 31-mer sets. Considering the reference genomes

Figure 2. Sequences were sorted by reverse lexicographic order to build
the population BWT. Different sorting orders were tested for their effect on
the BWT size using the 1000GP reads aligned to a 5-Mbp region.

Figure 3. (A) 31-mer intersection of two human reference assemblies
(GRCh37 and GRCh38) and the 1000GP population BWT. (B) 31-mer in-
tersection of two human reference assemblies, 1000GP population BWT,
and all 31-mers generated from the 1000GP phase 3 SNP and indel vari-
ants (The 1000 Genomes Project Consortium 2015). 31-mers shared be-
tween reference sets and variant set (white numbers) make up for ∼3%
of each data set and almost all (99.998%) are supported by the 1000GP
population BWT. (C ) A breakdown of the regions on the two human as-
semblies with and without 1000GP population BWT support that are
shared or exclusive to either genome build (all numbers are kbp), in four
functional categories. (CTM) Centromeric sequence.
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and the 1000GP variant 31-mers, the vastmajority of 31-merswere
either reference (solid black outline) or variant specific (dotted out-
line) and supported by the 1000GP BWT (overlap with the red
ellipse). Figure 3C shows the amount of sequence gained or lost
over four functional categories based on the GENCODE human
genome annotation (Harrow et al. 2012). When the 31-mers
are converted into reference genome regions, 3.1 Mbp (1.6M 31-
mers, 0.07%) of sequence that has population BWT support was
lost in the transition from GRCh37 to GRCh38, but roughly 7.5
times (13.6 Mbp) more was gained (10.5M 31-mers, 0.49%). We
examined the read coverage for the regions in GRCh37 that do
not contain 31-mer support from the 1000GP BWT. The vast
majority of these regions are 50–60 bp (Supplemental Fig. S2),
with >70% (89% and 73.7% for GRCh37 exclusive regions and
those shared with GRCh38, respectively) overlapping at least
one variant. Sixty-five percent and 39% (for GRCh37 exclusive
regions and those shared with GRCh38, respectively) overlap a
locus for which GRCh37 contains the minor allele or an error.
Interestingly, the majority of the unsupported GRCh38 sequence
is located in the new synthetic centromeric regions (CTM; 242
kbp) (Fig. 3C), although 2.8 Mbp of the new centromere is sup-
ported. The amount of coding sequence without population sup-
port in GRCh37 consists of 9.2 kbp in 203 protein-coding genes
and 4.6 kbp in 123 genes for GRCh38 (Supplemental Table S4), re-
flecting the flipping of bases to the major allele. Interestingly,
there were 12 protein-coding genes that contain unsupported
31-mers only found in GRCh38.

Reference-free population genotyping

Figure 3B shows that the majority (97%) of 31-mers derived from
the 1000GP variation catalog are distinct from the reference ge-
nome. Furthermore, we determined that 99% of these 1000GP var-

iant 31-mers not found in the references are locus-specific (no
other combination of variants in either the same or a different
locus in the GRCh37 assembly generates the identical 31-mer)
(Fig. 4A). The 31-mers shared between the reference genomes
and the variants are likely to be in regions containing repeats
longer than 31 bp, whichwere still callable in the 1000GP by using
the untrimmed longer reads or read pair information. Informed by
this analysis, we developed a simple SNP and indel genotyping
strategy based onquerying the population BWT for k-mer sequenc-
es to test for read support of the reference and alternative allele for
every individual. We tile across each genotyping site with overlap-
ping k-mers upstream of and downstream from the site and query
the population BWT for exact matching reads. We assign a geno-
type to each sample by recording how many of the reads from
the sample match best to the reference or alternative allele (see
Methods).

For SNPs, we benchmarked the approach using the Illumina
Infinium BeadChip Omni2.5-8 genotypes in the 1000GP exome
regions as a truth set. We initially evaluated the effect different
values of k have on the population BWT genotyping accuracy
using all Chromosome 20 sites, finding that k = 34 produced the
lowest nonreference discordance (Supplemental Table S3). We
genotyped all of the Omni chip positions in the 1000GP exome re-
gions with single sample calling using GATK HaplotypeCaller,
SAMtools/BCFtools, and the 1000GP population BWT. Figure 4B
shows that the population BWT genotyping compares favorably
to GATK and SAMtools across the allele frequency spectrum. The
overall nonreference discordance rate is slightly higher for
the population BWT genotyping (1.82%) compared to the GATK
(0.81%) and SAMtools (0.73%). For heterozygous SNPs, the
population BWT approach is more accurate than the two refer-
ence-based callers (discordance rate of 2% vs. 2.17% for GATK,
and 3.41% for SAMtools). When we stratify the sites by the

Figure 4. (A) Intersection of the human reference assembly 31-mers and the 1000GP SNP and indel variant 31-mers. The percentages in parentheses
give the proportion of these 31-mers that are locus-specific (no other combination of variants in either the same or a different locus in the GRCh37 as-
sembly generates the identical 31-mer). Of all 31-mers generated based on 1000GP variants, 96.1% are locus-specific and exclusive to the variants set,
with 91.8% containing a single alternative allele. (B) SNP genotyping of the 1000GP samples at Illumina Omni chip exome-only sites by 31-mer querying
of the BWT compared to single sample calling with GATK HaplotypeCaller (v3.5) and SAMtools (v1.1). Dots indicate genotype concordance for variants
at different allele frequencies. (C) Genotype discordance rates for SNPs (Omni exome-only: 80,973 sites, all samples) and indels (Genome in a Bottle
[Zook et al. 2016] exome in NA12878: 654 sites). (D) Sensitivity of each method expressed as the fraction of total genotypes for which a genotype
call was made.
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number of flanking variants identified by the 1000GP, the propor-
tion of correctly genotyped sites is reduced for all methods
(Supplemental Fig. S9). The proportion of sites genotyped was
>99% for all three approaches (Fig. 4D). A runtime comparison
for genotyping NA12878 with SAMtools and GATK compared to
the BWT is given in Supplemental Table S5. Although the BWT
took five times longer, it completed genotyping for all of the sam-
ples, as every 31-mer query returns matching reads for all samples
and therefore, over all samples, is many times faster.

We developed a similar approach for indel genotyping by
testing reference and alternative alleles by dense k-mer tiling
across the indel site (see Methods), querying the population
BWT with the resulting k-mers and assigning a genotype to each
individual based on the matching reads returned (see Methods).
For indels, we use the Genome in a Bottle (GIAB) consortium
gold standard indel genotypes for NA12878 for evaluation (Zook
et al. 2016). Initially, we tested the effect different values of
k have on genotyping accuracy using Chromosome 20 sites, deter-
mining that k = 25 produced the most accurate genotypes
(Supplemental Table S3). We genotyped the indels with GATK
HaplotypeCaller, SAMtools/BCFtools, and the 1000GP population
BWT (see Methods). The indel genotyping accuracy varied widely
between the callers. GATK produced the lowest nonreference
discordance (1.26%), followed by the 1000GP population BWT
(8.61%) and SAMtools (13.49%) (Fig. 4C). This is not so surprising
since the GIAB indel calls are largely derived from GATK geno-
types, and there is often poor overlap between indel discovery
tools (Narzisi et al. 2014).

Nonreference queries

As the population BWT is a full-text index of the read sequences,
irrespective of whether they align to the reference genome or
not, it enables rapid testing of hypothesis-driven queries. We
sought to assess the proportion of sequences of viral origin con-
tained in the 1000GP reads. An earlier study using 150 individuals
from the 1000GP found evidence for 0.13% of reads coming from
nonhuman DNA (Tae et al. 2014). To expand this to the full set of
samples, we downloaded 257,943 viral sequences from the
CoreNucleotide division ofGenBank andused theKraken classifier
(Wood and Salzberg 2014) to define a set of 102.6M virus-specific
31-mers (see Methods; Fig. 5A). We queried the 1000GP popula-
tion BWT with these 31-mers initially for read counts (to remove
very highly abundant low complexity sequences), then returned
matching read sequences, and finally queried the metadata data-
base for sample information. The population BWT queries were
run in under 2 d, with the sample metadata retrieval taking 7 d
(seeMethods). Themost prevalent source of nonhuman sequences
is the herpesviruses, including Epstein-Barr virus, used in the crea-
tion of the lymphoblastoid cell lines (LCLs) that were the DNA
source for many of the 1000GP samples. The distribution of the
number of EBV matching reads largely follows the documented
DNA source in the 1000GP (Fig. 5B), with a fewnotable exceptions
which are likelymisclassified as being fromblood. The DNA that is
recorded as being of unknown origin appears to be almost entirely
from LCLs, having a similar distribution of EBV reads as the docu-
mented LCL-derived samples. Of the viruses identified (excluding

Figure 5. (A) Reference genomes (Human, bacteria, plasmids, and viruses) were downloaded using Kraken’s (Wood and Salzberg 2014) built-in routines
and a Kraken database generated. GenBank was queried for all virus sequences and the resulting sequence set classified using Kraken to identify taxon-
specific 31-mers which were used to query the population BWT for matching reads. Retrieved read sequences were reclassified by alignment to the viral
genomes stored in the Kraken database. Finally, sample metadata were retrieved for the final read set. (B) Notched boxplot showing the distribution of
human herpesviruses (including EBV) read counts stratified by documented DNA source. Nonoverlapping notches indicate a significant difference of
the medians at the 5% level. (C ) The populations for which at least one sample contains >10 HTLV-1 reads (black bars) and other virus taxa with >99 reads
(red bars) in at least one sample are shown (for all populations, see Supplemental Figs. S3–S8). (D) World map showing HTLV-1 prevalence in different
countries, with 1000GP populations that show signal for this virus highlighted.
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EBV), 69 occur in at least one sample at >10 reads and 14 at >100
reads (Supplemental Figs. S2–S7).

Figure 5C gives the species source for the most frequently
found sequences per individual for four particular population
groups (see Supplemental Figs. S3–S8 for all populations).
Enterobacteria phage phiX174, the Illumina library spike-in se-
quence, is also prevalent across all of the populations at greater
than or equal to 100 reads in 605 samples. AdenovirusC is reported
to be present in almost all populations worldwide (Garnett et al.
2002); however, our analysis shows that it is almost completely ab-
sent in several populations (e.g., Gambian inWestern Divisions in
the Gambia, and Esan in Nigeria) (Fig. 5). The absence of adenovi-
rus in some groups and high levels in other groups suggests differ-
ences in the sample preparation (Adenovirus C is often used as a
recombinant vector for cell culture reagents) (Luo et al. 2007) or
differences in adenovirus in these populations.

One interesting finding is the presence of Human T-lympho-
tropic virus 1 (HTLV-1) reads found in six individuals (Fig. 5C;
Table 2, below). HLTV-1 can integrate into the genome and is
known to have infected human populations for thousands of
years, with the virus being transferred from mother to child,
through sexual contact, or through contaminated blood products
(Derse et al. 2007; Verdonck et al. 2007). The known epidemiolog-
ical distribution spans areas of southern Japan (Satake et al. 2012),
sub-Saharan Africa, the Caribbean, and South America, where >1%
of the general population is infected (Verdonck et al. 2007). For the
most part, carriers remain asymptomatic, but HTLV-1 infection
has been associated with exceptionally severe diseases, such as
adult T-cell leukemia/lymphoma (Takatsuki 2005) and an inflam-
matory disease of the central nervous system calledHTLV-1-associ-
ated myelopathy/tropical spastic paraparesis (Gessain et al. 1985;
Lezin et al. 2005). The 31-mer queryingmethod identified six sam-
ples from five populations with potential HTLV-1 integrations. For
those individuals, we also aligned the entire original read set to a
reference genome containing GRCh38 and a HTLV-1 consensus
sequence, confirming the presence of HTLV-1 in these genomes
and slightly increasing the HTLV-1 read support for each sample
(Table 2, below). The populations in which we detected HTLV-1
presence largely follow the known epidemiological distribution
with HTLV-1 positive samples from Africa and South American
populations and were sequenced at six different centers. We did
not observe HTLV-1 in any Japanese samples (reported HTLV-1
prevalence of 0.66% and 1.02% [Satake et al. 2012]), although
Japan has had HTLV-1 population screening in place since 1986
(Inaba et al. 1989).

Discussion

In this paper, we show how BWT indexes can be used for efficient
compression and indexing of large collections of sequencing reads
from thousands of individuals. Unlike traditional reference-based
alignment approaches, the population BWT has a sublinear growth
as more individuals are included in the structure. However, this is
dependent on the sequencing data having a low error rate so that
the majority of new sequences observed in each individual repre-
sent true genetic variation. One of the main difficulties of using
the 1000GP data with this approach is that most individuals
were sequenced to low coverage (7–8×). For error correction, we
used a Cortex de Bruijn graph that was built from these reads
and was error-cleaned by removing tips (short contigs unconnect-
ed at one end) and unitigs that were at low frequency in all popu-
lations. The fraction of error-corrected reads was quite low (9.2%),

since our error-correction strategy was deliberately conservative as
we wanted to avoid removing true genetic variation. It is still nota-
ble that the resulting population BWT contains over 35 timesmore
31-mers than are present in the reference genomes and the SNP
and indel variants (Fig. 3A). It has been suggested that existing
variation catalogs fail to account for 35%–68% of some types of
structural variation and 25% of short indels (Gordon et al. 2016).
Therefore, unaccounted genetic variants, variants located in inac-
cessible regions of the genome, and nonhuman sequences could
contribute to these novel 31-mers. Our virus sequence analysis
only accounted for 102 M 31-mers in the population BWT; there-
fore, it is more likely that these novel 31-mers are due to remaining
errors in the sequencing reads. One could perform more stringent
error correction to reduce the sequencing errors at a cost of remov-
ing true low frequency variants. More recent approaches to per-
sample read-error correction aremost effective with comparatively
high sequencing depth (30–50×) per sample (Simpson and Durbin
2011; Li 2015). Therefore, we envisage that, as the cost of human
sequencing continues to decrease and higher depth sequencing
becomes the norm, the population BWT could be an efficient stor-
age medium for indexing large collections of human samples.

The most significant storage saving in this approach comes
from discarding the base qualities after base error correction is car-
ried out. It remains an open question as to what proportion of base
qualities need to be retained for accurate variant discovery and
genotyping, with increasing evidence showing that discarding or
quantile binning of base qualities does not have a detrimental
effect (Yu et al. 2015; Ochoa et al. 2016). However, many applica-
tions of next-generation sequencing (e.g., clinical sequencing) rely
on highly accurate identification of novel rare variants. One alter-
native approach to completely discarding base qualities could be a
controlled loss of base qualities. For example, there could be an
iterative process of population BWT construction, where genomes
are continually added. Initially, with few genomes, the majority
of the sequencing reads will contain novel k-mers, and as more
genomes are added,wewill observe the same k-mers inmultiple in-
dividuals across the population. One could envisage an approach
where base qualities are only maintained for reads that support
novel k-mers, with these k-mers being constantly queried against
the BWT for increasing population read support, with the goal of
eventually discarding these base qualities as increasing support is
observed in the population. One could employ the BEETL-Fastq
BWT-based data structure to create a side structure of compressed
and searchable indexes of read sequences including base qualities
(Janin et al. 2014).

One of the limitations of this approach is that this implemen-
tation of a population BWT does not maintain read pair informa-
tion. In our SNP and indel genotyping, read pair information could
be incorporated into the genotyping strategy to derive more accu-
rate genotypes. Read pairs would also be particularly useful for
structural variant discovery and genotyping, as most existing struc-
tural variation detection algorithms use a combination of split
reads and read pairs for supporting evidence (Keane et al. 2014;
Layer et al. 2014). In our virus analysis, efficient retrieval of read
pairs would enable more rapid localization of the HTLV-1 viral
integrations by avoiding the need to realign the full original read
set. For SNP and indel discovery, retrieval of read pairs would
enable local haplotype assembly and phasing of discovered vari-
ants, which could aid correct alignment of highly variable loci
into a variation graph (Church et al. 2015), especially with library
technologies that conserve long-range phase information (Putnam
et al. 2016; Zheng et al. 2016). Recording read pair information
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could significantly increase the amount of metadata required from
just basic sample level information to knowledge of every unique
read pair combination or sets of reads from the samemolecule. The
ability to store and efficiently retrieve all of the read pairs of a sam-
ple could enable the use of the population BWT as a highly com-
pressed, searchable, and scalable archival format for sequencing
data.

One of the benefits of choosing the BWT and FM-index as the
underlying data structure is that the construction process does not
constrain the length of possible k-mer queries. In de Bruijn-based
approaches such as Cortex (Iqbal et al. 2012) and SBT (Solomon
and Kingsford 2016), the k-mer must be fixed at the time of index
construction. In the SNP and indel genotyping, the genotyping
accuracy varied depending on the k-mer. The length of the k-mer
used to assess an individual site can be affected by the number of
mutations in the local region, where smaller, more densely sam-
pled k-mers could potentially produce more accurate genotypes
in regions of high mutation rates. Using dynamic k-mer queries
for genotyping and the incorporation of read pair information
are potential avenues for further improving genotyping accuracy.

Using whole-genome sequencing reads to classify reads into
taxonomic groups has become the basis for metagenomic analysis
(Gilbert and Dupont 2011). We used a metagenomics k-mer classi-
fication approach to detect evidence for nonhuman sequences in
the 1000GP reads. Several studies have cautioned against overin-
terpretation of unexpected sequences found in sequencing reads
due to the possibility of laboratory kit or reagent contamination
(Lusk 2014; Salter et al. 2014). For these reasons, our finding of ev-
idence for low levels of HTLV-1 in several 1000GP samples should
be treated with caution. On the one hand, the epidemiological dis-
tribution of the samples found to contain HTLV-1 fits the known
pattern, we can localize many of the putative integrations using
read pairs (Table 2, below), and the samples were sequenced at
multiple different centers. However, we cannot rule out the possi-
bility of kit or reagent contamination without further laboratory
validation of the results.

Methods

Sequencing data

The sequencing reads were downloaded in FASTQ format from the
1000GP ftp site and correspond to the phase 3 sequencing data
freeze (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/20130502.
phase3.analysis.sequence.index) consisting of 2574 in total and
2535 of thesewith both low coveragewhole-genome and exome se-
quencing (The 1000 Genomes Project Consortium 2015).

Error correction

Read-error correction was carried out using the Cortex software
(Iqbal et al. 2012) (https://github.com/iqbal-lab/cortex). Briefly,
Cortex is a de novo De Bruijn graph assembler that allows simulta-
neous assembly of multiple samples and variants to be called
without reliance on mapping of reads to a reference genome. We
used the Cortex graph that contains a merge of all of the popu-
lations in the 1000GP (ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/working/20130718_phase3_samples_cortex_graphs/
phase.all_pops.ctx) (see Supplemental Methods of The 1000
Genomes Project Consortium 2015). The Cortex graph was loaded
intomemory, and then the reference genome (GRC37)was parsed,
annotating each k-merwith the direction inwhich it was seen (for-
ward, reverse, or both). If a read was <73 bp in length or contained
any character other than ACGT, it was discarded. If all of the base

qualities for a read were greater than or equal to Q20, the read
was kept without correction. Correction was seeded by finding a
31-mer of Q > 20 bases and extending greedily by shifting one
base at a time. On shifting and meeting a Q < 20 base, if there
was precisely one single-base correction of a Q < 20 base which
changed a k-mer absent from the Cortex graph to a k-mer present
in the Cortex graph, this change was made. If all of the k-mers in a
read were annotated consistently with the read coming from the
reverse strand of the reference genome (i.e., either unannotated,
or annotated as being seen in the reverse strand of the reference),
the corrected read was reverse-complemented and printed in the
forward direction; otherwise, it was printed in the same orienta-
tion as the input data. This was done purely to improve compres-
sion in the BWT. Finally, read sequences were trimmed to two
reads lengths: 73 and 100 bp. If a corrected read was >100 bp,
then it was trimmed to 100 bp; if a read was between 73 and 100
bp in length, it was trimmed to 73 bp; and if a read was <73 bp,
it was discarded. For base error correction, we used a modified
version of error_correction.c from Cortex (https://github.com/
wtsi-svi/cortex@fc26874).

Read deduplication and metadata

The error correction process output the read sequence (in forward
orientation), the read name, the number of corrected bases during,
and the number of low quality (<Q20) bases. Corrected read se-
quenceswere sorted in reverse lexicographic order, with duplicates
removed. For each unique read sequence in the final read set,
we stored the read groups (2 bytes), the number of corrected bases
(1 byte), and the number of low-quality bases (1 byte). This infor-
mation was stored in a RocksDB (v2.6), with the unique read se-
quences as keys.

BWT and FM-index construction

The reads were split into 16 partitions based on the last 2 bp in the
read sequence (see Supplemental Table S1), with the reads for each
partition sorted in reverse lexicographic order. Then, we used SGA
v0.10.13 (Simpson and Durbin 2011) to construct the BWT string
for each read collection. SGA outputs BWT strings in run-length
encoding (RLE), with each byte representing a continuous run of
the same character. The first three bits of a byte encode the five dif-
ferent characters (i.e., ACGT$). The last five bits of the same byte
encode the number of the runs for that character up to the length
of 31. The cumulative size of the run-length encodedBWTs ondisk
was 464GB.

The Burrows–Wheeler transform renders an important prop-
erty, Last-to-First (column) mapping, i.e., the ith occurrence of
character X in the last column corresponds to the ith occurrence
of X in the first column. The FM-index (Ferragina and Manzini
2000), based on BWT and LF mapping, allows for fast query of a
pattern and locates every occurrence of the searched pattern. We
built an index structure based on the run-length encoded BWT
string. With such index, we were able to search for a k-mer, extend
to the full read from matched location, and get the full read
sequence in linear time. The implementation of this index can
be found at https://github.com/wtsi-svi/ReadServer.

System setup

We set up a server to allow fast query of a given k-mer and return
information about the number of matched reads, the matched
read sequences, and for each matched read, the list of samples
that the read was derived from. To achieve high-throughput and
fast response, we created amessage queue-based application server
that sends k-mer sequence requests to the 16 BWTs across four
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physical servers (Supplemental Fig. S1). Eachmachine has four ap-
plications, and each application has a BWT partition and its asso-
ciated index structure loaded in memory (total memory required:
561GB). The hardware of these four machines is varied. One ma-
chine has 32 (logical) cores with 256GB RAM. The other three ma-
chines have 20 (logical) cores and 188GB RAM. All machines run
on the Ubuntu 12.04LTS system.

Reference genome analysis

We generated 31-mer sets for GRCh37 and GRCh38 by extracting
31-mers starting on every position (forward strand) in both assem-
blies for all autosomes and gonosomes. Any 31-mers containing
IUPAC ambiguity codes were discarded. The 31-mers were queried
against the population BWT to check for support in the 1000GP
read set (forward and reverse orientation). The population BWT
31-mers (used in Fig. 3A,B) were generated from the final corrected
set of read sequences.

To measure the completeness of the 1000GP BWT, we down-
loaded high-coverage sequencing reads for NA12877 (ERR194146)
and NA12878 (ERR194147) from the Illumina Platinum genomes.
Reads were error-corrected with BFC (-s 3g -t 32 FASTQ_IN>
FASTQ_OUT) (Li 2015). In the resulting reads, NA12878 had a
higher rate of remaining unique 31-mers (0.34) than NA12877
(0.31). We extracted a random 31-mer from a randomly selected
read to a total coverage of one 31-mer for every tenth read. The
same read could give rise to more than one 31-mer, and indepen-
dently drawn 31-mers could be exact duplicates (same read, same
position in the read). Thirty-one-mers containingN’s were discard-
ed, the remaining 31-mers randomly split into 10 independent
sets, and the sets per sample queried against the 1000GP BWT.
Finally, 31-mers were then binned based on the number of read
matches (Supplemental Table S6).

1000 Genomes variant 31-mers

For each individual in 1000GP, we created amaternal and paternal
genome by substituting the phased variants and generated 31-
mers that overlap with every nonreference position. We excluded
unphased, nondiploid (except gonosomal hemizygous), or con-
flicting variants (e.g., SNPs in regionswhich are also called as being
deleted on the same chromosome copy), variants for which the ex-
act coordinates could not be determined, reference alleles where
an individual chromosome copy was contradictory (e.g., a region
genotyped as reference for a deletion that also contains another
nonreference variant), and filtered reference alleles that collided
with each other by discarding all downstream reference loci within
the overlapping region. In total, 0.16%of the variantswere exclud-
ed. For each of the resulting haploblocks, every contained 31-mer
was generated and queried against the population BWT.

SNP genotyping

We used the 1000GP Illumina Omni chip data produced at the
Broad institute (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/techni-
cal/working/20131122_broad_omni/Omni25_genotypes_2141_
samples.b37.v2.vcf.gz) for the list of gold standard SNP genotypes.
Therewere 1668 samples in theOmni chip genotypes thatwere in-
cluded in the phase 3 1000GP freeze. Genotyping was carried out
with the population BWT by generating a reference and alternate
allele using 99 bp of flanking sequence for each site. We tiled each
allele sequence with 34-mers with a step of 10 bp. We queried the
population BWT with the 34-mers and carried out a local Smith-
Waterman alignment (match +1, mismatch penalty −4, gap
open penalty −6, gap extension penalty −1) of the returned reads
onto the reference and alternate allele, excluding divergent hits (if

only mismatches, then allow maximum of three mismatches,
otherwise allow a maximum of one indel and eight points penal-
ty). Using the number of reads supporting the reference or alterna-
tive alleles, we assigned genotypes according to Table 1. Finally, we
output a new VCF file with the population BWT-determined
genotypes.

Indel genotyping

We downloaded a recent version of the Genome in a Bottle (GIAB)
NA12878 variant set (v2.18, ftp://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/release/NA12878_HG001/NISTv2.18/NISTIntegratedCalls_
14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSR-
v2.18_all_nouncert_excludesimplerep_excludesegdups_excludede-
coy_excludeRepSeqSTRs_noCNVs.vcf.gz) and filtered it to include
only monoallelic indels. We then used SAMtools/BCFtools
v1.1 (samtools mpileup -gut DP,DV,DP4,SP,DPR,INFO/DPR -EQ 0
-p -b [NA12878_BAM_FOFN] -f [GRCh37_REF] -l [NA12878_
VARIANTS_BED] | bcftools call -mf GQ,GP -O z) and GATK v3.5
(java7 -jar -Xmx28G GenomeAnalysisTK.jar -R [GRCh37_REF] -I
[NA12878_BAM_LIST] -L [NA12878_VARIANT_INTERVALS_BED]
-T HaplotypeCaller -stand_call_conf 4 –genotyping_mode
GENOTYPE_GIVEN_ALLELES –output_mode EMIT_ALL_SITES
–alleles [NA12878_VARIANTS_VCF]) (intervals are the indel start
and end position padded by 150 bp) to call and/or genotype those
variants based on NA12878 low-coverage and exome sequencing
data. The SAMtools/BCFtools calls were subsequently left normal-
ized as we did not specify the alleles during the genotyping stage.
The GATK results did not require this step. For population BWT
genotyping, we generated a reference and alternate sequence for
each indel by adding 100 bp of flanking sequence to either the ref-
erence or alternate allele. We then generated 25-mers (1-bp step)
from these sequences and queried the population BWT for match-
ing reads. Any 25-mer with >100,000 matches or with a homo-
polymer length >14 bp were excluded. We further generated
flanking sequences between 100 and 200 bp upstream of and
downstream from each variant. If a 25-mer from these regions
was found in any of the reads returned from the BWT, we consid-
ered that as evidence that the corresponding read is either pointing
away from the variant or too far away to overlap it, and hence dis-
carded the read. All remaining reads were collapsed into a nonre-
dundant read set and aligned against both the reference and
alternative alleles using exonerate v2.2.0 (–model ungapped
–dnawordlen 25 –percent 90 –bestn 1). Alignment hits were subse-
quently filtered for reads that reach at least 2 nt from the flank into
the variant locus. Each valid read was then assigned to either the
reference or alternative allele based on the highest alignment
score, with reads with equal scores being discarded. Finally, the
full sample metadata were retrieved and the indels genotyped
per sample using the read count thresholds in Table 1.

Table 1. The population BWT SNP genotype assignment scheme

Constraint Genotype

N = 0, M = 0 ./.
N > 0, M = 0 0/0
N = 0, N > 0 1/1
(N/M ) < 0.125 1/1
(N/M ) > 8 0/0
0.125 < (N/M ) < 8 0/1

(N) Number of reference supporting reads, (M ) number of alternative
allele supporting reads, (.) unknown genotype, (0) reference allele, (1)
first alternative allele.
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Viral genome analysis

We downloaded 257,943 viral sequences from the CoreNucleotide
division (http://www.ncbi.nlm.nih.gov/nuccore/ on 20/02/2015)
of GenBank (search string: “((((((txid10239[Organism]) AND
2000[SLEN]:300000[SLEN]))))) NOTpatent”).We generated the vi-
rus taxon-specific 31-mers using Kraken v0.10.5-beta (Wood and
Salzberg 2014) by generating a database containing fully assem-
bled virus (“kraken-build –download-library viruses”), bacteria
(“kraken-build –download-library bacteria”), and plasmid (“kra-
ken-build –download-library plasmids”), and the GRCh38 human
reference assembly (“kraken-build –download-library human”)
(built on 16/03/2015). We used this Kraken database to classify
the virus sequences downloaded from GenBank. Of the 257,943
input sequences, 244,656 (94.8%) could be classified, 243,123
(94.3%) as viruses covering 4093 of 5808 virus taxa (70.5%).
From the Kraken output files, we extracted 102,655,127 taxon-spe-
cific 31-mers.We queried the population BWTwith these 31-mers,
returning counts for the number of matching reads (query time
2d3h48′26′′ CPU time, 2d16h5′7′′ wall clock time using 80
threads). Of the 102.6 M 31-mers, 435,799 from 886 taxa had
matches in the population BWT. Of these,1369 31-mers match
very large numbers of reads (>100,000), indicating that these con-
tain little information and match repetitive or low-complexity
sequences, and so they were discarded. We subsequently did full
read sequence retrieval queries for the remaining 434,430 31-
mers (0d5h2′19′′ CPU time, 0d5h9′22′′ wall clock time, using 10
threads). All reads returned from the population BWT were col-
lapsed into a nonredundant set of sequences per taxon ID resulting
in a final size of 113,193,726 reads.

Although we can be sure that each read contains at least one
taxon-specific 31-mer, this could be due to one or more sequenc-
ing errors in the 31-mer. Therefore, we reclassified the reads by
short read alignment to the genome sequences using Smalt
v0.7.5.1 (http://www.sanger.ac.uk/science/tools/smalt-0), which
enabled us to examine the relative alignment score of matches to
assess the classification. Based on the alignment results, we chose
a threshold of 75% of the maximum alignment score per read and
included only reads that exceeded this threshold when aligning to
a virus genome while staying below for any other kind of target
sequence (human, bacteria, or plasmid). Each read fulfilling these
criteriawas then assigned to the virus towhich it aligned. In case of
equal best matches to different virus genomes, one was chosen at
random. Using this filter, 107,234,569 reads (94.7%) could be
assigned to a virus covering 289 virus taxa. To assign samples, we
queried the population BWT metadata database for sample infor-
mation per read (total run time was 7d17h25′32′′ CPU time,
8d0h42′13′′ wall clock time).

For the samples found to contain HTLV-1, we down-
loaded the original FASTQ files from the 1000GP ftp site (ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/) and aligned
all of the reads using BWA MEM v0.7.12 to a reference genome
containing GRCh38 +HTLV-1. Table 2 gives the relative read
counts for reads found to contain HTLV-1 from the BWT queries
and alignment of the reads (no minimum mapping quality or
length threshold for hits).

Software availability

The collection of software used to build the population BWT server
is available on Github (https://github.com/wtsi-svi/ReadServer)
and in Supplemental File S1.
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