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Using Reinforcement Learning to Create Control Barrier Functions
for Explicit Risk Mitigation in Adversarial Environments

Edvards Scukins and Petter Ögren

Abstract— Air Combat is a high-risk activity carried out
by trained professionals operating sophisticated equipment.
During this activity, a number of trade-offs have to be made,
such as the balance between risk and efficiency. A policy that
minimizes risk could have very low efficiency, and one that
maximizes efficiency may involve very high risk.

In this study, we use Reinforcement Learning (RL) to create
Control Barrier Functions (CBF) that captures the current risk,
in terms of worst-case future separation between the aircraft
and an enemy missile. CBFs are usually designed manually
as closed-form expressions, but for a complex system such
as a guided missile, this is not possible. Instead, we solve
an RL problem using high fidelity simulation models to find
value functions with CBF properties, that can then be used to
guarantee safety in real air combat situations. We also provide
a theoretical analysis of what family of RL problems result in
value functions that can be used as CBFs in this way.

The proposed approach allows the pilot in an air combat
scenario to set the exposure level deemed acceptable and
continuously monitor the risk related to his/her own safety.
Given input regarding acceptable risk, the system limits the
choices of the pilot to those that guarantee future satisfaction
of the provided bound.

Index Terms— Control Barrier Functions, Reinforcement
Learning, Safe Exploration

I. INTRODUCTION

In air combat, constant trade-offs have to be made be-
tween reaching the mission objectives and being exposed to
risk. The mission objectives might be to gather information
regarding an adversarial aircraft or to fire a weapon towards
an aircraft that threatens friendly forces in the air or on
the ground. In this work, we consider a scenario where
an adversarial aircraft is launching a missile towards the
defending aircraft where the proposed system guarantees
future separation while not limiting the options of the pilot
too much.

The problem above might be posed like an end-to-end
reinforcement learning (RL) problem. However, we are look-
ing for an approach that is more transparent to the human
operator, the pilot, in a way that is illustrated in Figure 1. The
blue aircraft of the scenario has two conflicting objectives,
first, keeping the risk of the own aircraft low, which is
typically achieved by a large separation of the two aircraft,
and second, reaching a particular position, which cannot
be achieved if that separation is too large. Thus, the pilot
needs to constantly balance risk exposure with the mission
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Fig. 1: (a) The proposed system helps the blue aircraft to
make a detour that guarantees survival with a certain margin,
even if a missile is fired by the red aircraft. (b) The actual
separation between aircraft (green line), the RL predicted
final separation between blue aircraft and a potential red
aircraft’s missile (blue line, V (s)), and the bound that can
be set by the pilot on the acceptable separation between
blue aircraft and a potential missile fired by the red aircraft
(orange line).

progress. Furthermore, the proper choice of acceptable risk
might vary between missions. Sometimes, if friendly forces
are nearby, survivability is paramount, and the adversarial
aircraft can be allowed to control the airspace for a short
time before being pushed away by the reinforcements. In
other situations, the airspace must be protected at all costs,
e.g., to prevent a city from being attacked. Thus, there is
no single policy solving this problem, as the acceptable risk



level varies significantly over time. Therefore, we need a
transparent solution where the pilot can continuously monitor
the risk, as well as the overall situation, and choose the
acceptable level accordingly. Note, however, that human-in-
the-loop experiments are beyond the scope of this paper, thus
we replace the pilot with a high-level controller such as the
one aiming to fly eastwards in Figure 1.

In adversarial scenarios like the one above, estimating risk
is not a straightforward task. The risk of getting hit by a
complex guided missile cannot be derived as a closed-form
expression or hand-coded, instead it has to be learned from
interaction with high fidelity simulation models. The risk
measure we use is the future minimum separation between
the aircraft and the missile, when the aircraft performs an
optimal evasive maneuver, with large separations correspond-
ing to lower risks. Thus we solve an RL problem to find
such evasive maneuvers, using the smallest missile-aircraft
distance measured over the entire missile trajectory as a
reward, without any discounting. The value function of this
RL problem then gives a measure of the agent’s vulnerability
with respect to the adversarial aircraft. Finally, we use this
value function as a Control Barrier Function (CBF) [1]–[3]
when pursuing other objectives.

The key idea of CBF is to reactively choose controls that
satisfy a constraint on the time derivative of a particular
function, the CBF, and thereby prevent the value of the CBF
from entering some undesired interval. This combination of
RL and CBFs allows us to do the transparent risk-efficiency
trade-off described above, where the desired risk bound can
be updated by the operator at any time.

The main contribution of this paper is that we show that a
value function of an RL problem with reward only at the end
of an episode, zero discounting, and a known system model,
exhibits CBF properties. Thus we can create a CBF using RL
as described above, in a way that makes the efficiency/risk
trade-off transparent, in terms of allowing the operator to
set and update the acceptable miss distance throughout the
mission. Note that using RL to create the CBF in this way
differs significantly from earlier combinations of RL and
CBF, where a hand-coded CBF is used to guarantee safety
while running the RL algorithm.

The outline of the work is as follows: In Section II we
review the related work and background on CBFs and RL
is provided in Section III. Then, Section IV describes the
problem and the proposed solution is presented in Section V.
Finally, simulation results are shown in Section VI, and
conclusions are drawn in Section VII.

II. RELATED WORK

Deep reinforcement learning has shown remarkable suc-
cess in recent years [4] and it is a powerful method, which
can be applied to a large variety of control tasks, utilizing
deep neural networks for action-value function approxima-
tion [5], [6]. As the use of AI frameworks will increase in the
near future, there is a need for users to be able to understand
and influence the reasoning process of the system, a need
for system transparency [7]. One can increase transparency

by using Hierarchical Reinforcement Learning (HRL), an
approach where actions are structured in multiple levels of
abstraction. In such an approach, a low-level task can be
learned by one type of network, that is afterward used to
provide information to another higher level network [8], [9],
[10]. In addition to transparency, safety is an important aspect
of RL models that are to be deployed alongside humans.
There has been a substantial amount of work done to address
this problem. Authors of [11] used a RL approach to learn
optimal policies that include constrained risk. Other proposed
methods include first generating safe strategies, and then
continue exploring the main tasks, while utilizing the safety
constraints generated beforehand [12]. Similarly, a model-
based method for learning obstacle avoidance can be used to
estimate uncertainty for generating safe exploration strategies
[13]. Another safety-related problem is associated with air
traffic control and avoiding aircraft collisions. In [14], the
authors apply RL for conflict resolution of two aircraft in
the presence of uncertainties. Taking into account aircraft
dynamics and surroundings, the problem formulation has a
very large observation space, as mentioned in [15]. Thus it
makes sense to break down the main problem into smaller
sub-problems. Authors of [16] have utilized a hierarchical
deep agent algorithm to help aircraft to (i) maintain safe
separation, (ii) resolve conflicts, and (iii) arrive at their
desired position.

In this article, we have taken inspiration from research
done in [1], [17], where the authors present the CBF frame-
work, for controlling safety-critical systems. But instead of
handcrafting a model-based CBF, we use RL to create CBF
in the sense of finding a value function that can be used as a
CBF and we also show for what family of RL problems this
can be done. Authors in [18] start with a CBF and use it to
guarantee safety when applying RL. We use RL and a high
fidelity simulation model to create the CBF, which is then
used to guarantee safety when controlling the real system.

III. BACKGROUND

This paper draws on results from both control theory and
RL, but to keep the notation clear we use the RL notation of
s,a to denote the state and action, instead of x,u which are
more common in the control literature. Below we describe
the CBF and RL results we will make use of in this paper.

A. Control Barrier Functions

The key idea behind Control Barrier Functions [1]–[3] is
to specify a barrier function h(s) such that the so-called safe
set C is characterized by:

C = {s : h(s)≥ 0},

Given the continuous system dynamics ṡ = fC(s,a), if we
choose controls a that satisfy

dh
dx

fC(s,a)≥−α(h(s)), (1)

where α ∈K the class K functions, we are guaranteed to
stay in the safe set s ∈ C .



For the discrete time dynamics case

st+1 = fD(st) (2)

we get a similar result described by the following definition
and lemma from [17].

Definition 1: The continuous function h : Rn → R is a
discrete-time barrier function DTBF for the set D ⊂ Rn,
r ∈ R+ if there exists α ∈K ,α(r) < r for all r > 0 such
that

h(st+1)−h(st)≥−α(h(st)),∀s ∈D (3)
Lemma 1: Given a discrete time system (2), and a set C =

{x : h(x) ≥ 0} ⊂ D . Then the set is invariant if and only if
there exists a DTBF.
The extension to discrete time control systems

st+1 = f (st ,at) (4)

through a policy at = at(st) giving st+1 = f (st ,at(st)) =
fD(st) is straightforward.

B. Reinforcement Learning

In this work, we consider a standard reinforcement learn-
ing problem, where the agent needs to interact with an
environment to learn something about it. The goal of re-
inforcement learning is to maximize the expected sum of
future rewards. At each time step, the agent is in state s ∈ S,
has the ability to apply action a ∈ A, and receives a reward
rt = r(st ,at). A transition to the next state is based on the
dynamics f : S×A→ S. For a given policy π : S→ A we can
now define the value function vπ(s) as the expected total
reward that can be obtained from that state

vπ(s) = E [
∞

∑
i = 0

ri γ
i |St = s],

where the discount factor γ ∈ [0,1] and the corresponding
optimal value function is

v∗(s) = max
π

vπ(s).

For the agent training, we make use of the Proximal Policy
Optimization (PPO) algorithm [19], with Clipped surrogate
objective function:

Lt(θ) = min( rt(θ)Ât , clip(rt(θ)), 1− ε, 1+ ε)Ât ,

where rt(θ) is the ratio between the new policy (πθ ) and
the old policy (πθold) defined as

rt =
πθ (at |st)

πθold(at |st)
.

In this approach ε is used to limit the size of update and the
Ât represents an estimator of the advantage function at time
step t.

IV. PROBLEM FORMULATION

To enable the pilot to do a transparent tradeoff between
mission objective and safety we formalize the problem as
follows:

The state is composed of distance and orientation to the
adversarial aircraft and missile, s= (ρ,µ,ν ,δ )⊂ S =R4, see
Figure 2.

ρ - Distance to adversarial aircraft
µ - Angle to adversarial aircraft
ν - Distance to incoming missile
δ - Angle to incoming missile

The actions available to the blue aircraft are 11 dif-
ferent turn rates equally spaced as follows at ∈ A =
{−amax, . . . ,0, . . . ,amax}, assuming the aircraft flies at a con-
stant speed.

Problem 4.1: Given an action space A and a state space S
and a bound b≥ 0 on acceptable missile distances, find a set
of safe actions As(s)⊂A, such that the bound b is guaranteed
for any policy πs : S→ A that choose actions from the safe
set, that is πs(s) ∈ As(s) for all s.

As noted above, a user study is beyond the scope of this
paper. Thus, we will not make experiments with humans
in the loop, but instead replace the pilot with a high-level
controller striving to either (i) fly safely towards a given goal,
see Figure 1, or (ii) use RL to safely learn a new skill. Note
that in the latter case, we first use RL to create a CBF using
a simulation model, and then use RL again, with actions
limited by the CBF, to learn an additional skill, see Figure 9.

Fig. 2: Illustration of the state.

V. PROPOSED SOLUTION

In this section, we describe the proposed CBF-RL ap-
proach and specify the family of RL problems that can be
used to create CBFs, thus solving Problem 4.1. First, we
define the set of RL problems with CBF characteristics.

Definition 2 (CBF-RL problem): Let a CBF-RL problem
be an RL problem such that the system dynamics is given by
a known function st+1 = f (st ,at) and the reward rt = r(st ,at)
is such that rt = 0 for all t except the final time t = T . Finally,
the discount factor is γ = 1.

Now we state the following lemma, that provides a solu-
tion to Problem 4.1.

Lemma 2 (CBF-RL solution): Given a CBF-RL problem
with a corresponding optimal value function v∗(s), and a



desired lower bound on the total reward b, such that v∗(s0)>
b, then we can use h(s) = v∗(s)−b as a DTBF to guarantee
v∗(s) ≥ b for the execution, by always choosing an action
at ∈ As(s) 6= /0, where

As(s) = {a∈A : v∗( f (st ,at))−v∗(st)≥−k(v∗(st)−b)}, (5)

and k ∈ (0,1).
Proof: The proof builds upon Lemma 1, and we want

to show that the set where v∗(st)> b is invariant. Let α(r) =
kr < r, since k < 1. First we note that As(s) 6= /0 in (5). By
Bellmans equation

v∗(st) = max
a

Σst+1,r p(s′,r|s,a)[r+ γv∗(st+1)] (6)

= max
a

[r+ γv∗(st+1)] (7)

= max
a

v∗(st+1) (8)

= max
a

v∗( f (st ,a)) (9)

thus there is an a such that v∗(st) = v∗(st+1). This a ∈ As(s)
since v∗(st)> b gives −k(v∗(st)−b)< 0 = v∗(st+1)−v∗(st).
Now with the inequality in (5) satisfied we substitute v∗(s) =
h(s) + b and get h(st+1)− h(st) ≥ −k(h(st)) = −α(h(st))
which is (3). Thus, there is a policy choosing a ∈ As(s), and
any such policy also satisfies (3), making v∗(st)> b invariant.

Thus, by solving a CBF-RL problem, and applying a
policy choosing actions from As(s) described in the lemma
above, we have a solution to Problem 4.1 above. Now we
will solve a few such problems to illustrate the approach.

VI. NUMERICAL RESULTS

In this section, we first solve the CBF-RL problem for our
adversarial scenario. Then we apply the results to a simple
problem and finally use them to address a more complex
problem, applying RL once again to learn a new policy, while
safety is guaranteed by the CBF what was created using
CBF-RL. All numerical results were created using algorithms
from the PyTorch and SciPy packages [20], [21].

A. The CBF-RL problem for avoiding threats

We formulate an RL problem, where the main objective of
the agent is to explore the threat posed by an adversarial air-
craft and establish a policy for evading threatening situations.
In the scenario, the adversarial aircraft (red) starts at (100,0)
and fires its onboard missile as soon as the agent is within
firing range, see Figure 3. The initial location of the agent
(blue) is randomized within an area of a semi-annulus with
an inner and outer radius of 40 km and 75 km, respectively.

In this particular set-up, the missile’s operational range is
roughly 75 kilometers, which implies that the missile will
catch up with the agent unless the agent executes some sort
of evasive maneuver.

The problem is set up as follows:
• The reward is 0 for all times except the final time.
• The final reward is equal to the minimal separation

throughout the scenario, thus if the aircraft was hit the
final reward is 0, otherwise, it is larger than 0.

Fig. 3: The initial position of the agent (blue aircraft) is
randomized within an area of a semi-annulus with an inner
and outer radius of 40 km and 75 km, respectively. The
adversarial aircraft (red) is placed at (100,0). The lighter
color shapes indicate the initial positions of the aircraft and
the darker colored ones illustrate possible final positions.

As can be seen, this RL problem satisfies Definition 2. The
optimal value function for this problem is denoted vsa f e(s)
and the results are illustrated in Figure 4 and Figure 5.

Fig. 4: vsa f e(s) as a function of the position of the own
aircraft, with the enemy aircraft at (100,0).

As can be seen in Figure 4, the expected reward, which is
an approximation of the final separation between the agent
and the final position of the missile, is the smallest close
to the adversarial aircraft and increases when the agent is
positioned further away from the opponent.

A key property of the CBF-RL is that it satisfies the
Bellman equation, leading to v∗(st) = maxa v∗( f (st ,a)), see
(9). However, we can only expect the RL algorithm to
provide an estimation of the true v∗(st). To investigate how
large the estimation errors are, we run the simulation in
Figure 5 with actions that maximize vsa f e( f (st ,at)). In theory



Fig. 5: The opponent fires a missile from (100,0) towards the
blue aircraft, starting at (38,-10). Maximizing vsa f e( f (st ,at))
gives a trajectory (solid blue) that turns away from the
incoming missile (dashed red). A set of values that represent
the estimate of the final separation between the missile and
the aircraft, vsa f e(s), are plotted along the blue trajectory. The
distance to the target (DTT) is shown along the red (dashed)
trajectory. Note that DTT decrease with time as the missile
gets closer to the target while vsa f e(s) stays constant with
some oscillation due to estimation errors.

this should lead to v∗(st) = v∗(st+1) but in practice we get
values in the range (29,32). We will see below how these
errors sometimes makes the agent brake the safety bound,
but only with a small margin.

B. Applying the approach to low complexity mission objec-
tives

In this section, we will apply the proposed approach to
low complexity mission objectives, such as flying east while
limiting risk exposure. To keep the setup general, we assume
that the low complexity mission objectives are captured
in a value function vmo(s). Thus, a natural approach for
maximizing vmo(s) while respecting the bound vsa f e(s) ≥ b
is the following.

a = argmaxavmo( f (st ,a)) (10)
s.t. a ∈ As(s)

Examples of the resulting behavior with vmo(s) striving to
fly eastwards can be seen in Figures 1 and 6. Two scenarios
are visualized in Figure 6a with a safety threshold of b =
30km and b = 20km, i.e., the final separation between the
agent and the missile should not be lower than 30 and 20
km respectively.

The advantage of using CBF-RL is the ability to predict
expected reward at a given state. In other words, we can
predict what the final separation between the agent and
the hostile object will be. This can be seen in Figure 6b
where the actual distance is illustrated by a green line and
the estimated final separation by the blue line, v(s). As
the missile approaches the agent, the estimate of future
separation v(s) is roughly constant, very close to the chosen
bound, while the actual distance between the agent and the

(a) (b)

(c) (d)

Fig. 6: The blue agent’s objective vmo is to fly eastward,
with safety bounds of b = 30km(top) and b = 20km(bottom)
respectively. The red agent approaches and fires a missile
(dashed line) towards the blue. In (c), the blue trajectory from
(a) is dotted, and we see that the larger safety margin in (a)
results in a larger detour. In (b), (d), vsa f e is blue, the actual
separation is green and the bound is orange. The time the
missile is active is indicated with a white background. Note
how in both (b),(d), the predicted separation vsa f e approaches
the bound and stays close to the bound (sometimes being
below due to estimation errors), but still accurately predicting
the future minimal separation as the missile (green) keeps
coming closer until it runs out of fuel very close to the bound.

incoming missile decreases until the missile runs out of fuel
very close to the predicted value. Note that while the red
aircraft has not fired its missile, the missile is at the same
location as the adversarial aircraft. The same applies when
the missile has run out of fuel. We then assume that the red
aircraft has more onboard missiles.

As mentioned above, during air combat it is desirable to
have the ability to adjust risk exposure depending on the
circumstances. Therefore, in the same scenario, we decrease
the acceptable distance, Figure 6c, and compare it to Figure
6a. In the results, the agent keeps a smaller distance to the
adversarial aircraft, thus illustrating the ability to change the
acceptable risk setting depending on the situation.

C. Learning high complexity mission objectives while stay-
ing safe

In Section VI-B, we described an approach of using CBF-
RL to constrain a predefined objective function vmo(s). In this
section, we further expand the capabilities of CBF-RL in a
scenario where an additional high-level policy needs to be
learned through RL while staying safe.

We consider a scenario where the agent needs to keep



(a)

(b)

Fig. 7: (a) illustrates the obtained reward during the training.
(b) illustrates the average distance that is kept between
the aircraft. The policy trained without activating the CBF-
RL is denoted as “No Constraints”, while the other policy
was trained while being constrained by CBF-RL. Thus, by
varying the parameter b, governing the extent of the safety
constraints, we are able to adjust the trade-off between
effectiveness and safety.

track of the adversarial aircraft’s position. This is done by
keeping the aircraft within the field of view and range of the
onboard radar unit, see Figure 2.

To address this problem, we apply the approach suggested
in [22] and illustrated in Figure 8, using our CBF-RL to find
the safe action set. Rewards for the RL problem are provided

Fig. 8: Observation of the state s is sent to the RL agent and
to the safety network vsa f e( f (s,a)). The RL agent is then
only allowed to chose from actions satisfying (5).

by the following rules:
• if the agent has the adversarial aircraft within its own

radar range and field of view, a reward of +1 is received
during the current time-step

• else a reward of 0 is received
Thus, to maximize accumulated reward, the agent needs

to keep observation of the adversarial aircraft as long as
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Fig. 9: In (a) the blue agent has learned to keep the red agent
within sensor coverage. In (b) the blue agent has the same
objective, but with the requirement of staying safe.

possible. The learning history of the non-constrained learning
is illustrated in Figure 7a and is denoted as “No Constraints”.
We see that during the learning phase, the agent is able
to reach near maximum accumulated reward already after
3000 episodes, where one episode consists of 600 time
steps, giving a maximal reward of 600. In Figure 7b, we
can see that the agent’s relative distance to the adversarial
aircraft averages at about 35 km, and as the agent increases
accumulated reward, the distance between aircraft’s tends to
decrease.

By activating CBF-RL as illustrated in Figure 8, we notice
a trade-off between accumulated reward and the average
distance. In this situation, some of the actions are no longer
available in a given situation, thus the agent is not able to
maintain tracking of the adversarial agent and has to use
safer alternatives. Thus, by adding the safety requirement,
the accumulated rewards decrease in the given environment.
Two example executions can be seen in Figure 9. Note that
the unconstrained version in 9(a) moves much closer than
the constrained one in 9(b).

VII. CONCLUSIONS

In this paper, we provide theoretical results on using RL
to create CBFs, and illustrate these with a set of adversarial
aircraft scenarios. The theoretical results show what some
RL value functions can be used as CBFs, and we apply
the Bellman equation to show that the resulting safe sets
are indeed invariant when using the designated action set.
Finally, we also show that these guarantees lead to good, but
not perfect, performance in the presence of estimation errors
in the value function.

On the application side, we have shown that combining
CBFs with RL allows the operator to set the risk level
deemed to be acceptable while acting in adversarial envi-
ronments. Such a feature is important, since objectives are
often conflicting, and a certain amount of risk is needed to
complete the mission. In such cases, we want to endow the
pilot with a tool that enables him to constantly balance risk
exposure with other mission objectives in a transparent way.
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