
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2007

Using Relocatable Bitstreams for Fault Tolerance Using Relocatable Bitstreams for Fault Tolerance

David P. Montminy

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation

Montminy, David P., "Using Relocatable Bitstreams for Fault Tolerance" (2007). Theses and Dissertations.

3105.

https://scholar.afit.edu/etd/3105

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholar.afit.edu%2Fetd%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3105?utm_source=scholar.afit.edu%2Fetd%2F3105&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Using Relocatable

Bitstreams For

Fault Tolerance

THESIS

David P. Montminy, Captain, USAF

AFIT/GCE/ENG/07-09

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

AFIT/GCE/ENG/07-09

Using Relocatable

Bitstreams For

Fault Tolerance

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

David P. Montminy, B.S.E.E.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/07-09

Abstract

This research develops a method for relocating reconfigurable modules on the

Virtex-II (Pro) family of Field Programmable Gate Arrays (FPGAs). A bitstream

translation program is developed which correctly changes the location of a partial

bitstream that implements a module on the FPGA. To take advantage of relocatable

modules, three fault-tolerance circuit designs are developed and tested. This circuit

can operate through a fault by efficiently removing the faulty module and replacing

it with a relocated module without faults. The FPGA can recover from faults at

a known location, without the need for external intervention using an embedded

fault recovery system. The recovery system uses an internal PowerPC to relocate

the modules and reprogram the FPGA. Due to the limited architecture of the target

FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be

demonstrated. However, the various components needed to do this type of recovery

have been implemented and demonstrated individually.

iv

Acknowledgements

First and foremost, without the loving support of my wife this research would

not have been possible. I am very grateful to Dr. Rusty Baldwin for giving me the

freedom and support to explore and develop applications for partial configuration as

I conceived them while keeping me headed in the right direction. Maj Paul Williams

provided a great sounding board for new ideas and helped me develop troubleshooting

techniques whenever it looked like I had reached a dead end. I also like to thank the

international partial reconfiguration community, especially Dr. John Williams of the

University of Queensland and Xilinx Research Labs.

David P. Montminy

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1
1.1 Overview . 1
1.2 Motivation and Goals 1
1.3 Organization . 1

II. Literature Review . 3
2.1 Introduction . 3

2.1.1 Applications of Fault Tolerance 3

2.1.2 Motivation for using FPGA reconfiguration for
Fault-Tolerance 3

2.2 Fault Tolerance . 4
2.2.1 Methods for Fault Tolerance 6
2.2.2 Reconfiguration as a Method for Fault Tolerance 9

2.3 FPGAs . 9
2.3.1 SRAM FPGA Technology 13

2.3.2 SRAM FPGA Reconfiguration 14

2.4 Current Research in FPGA Reconfiguration 17

2.4.1 Methods for Partial Reconfiguration 17

2.4.2 Hardware Bitstream Relocation 22
2.4.3 Automatic Dynamic Active Partial Reconfigura-

tion for Fault Tolerance 23
2.5 Summary . 30

III. Development of a Dynamic Reconfiguration System 32

3.1 Introduction . 32
3.2 Problem Definition . 32

3.2.1 Goals and Hypothesis 32

3.2.2 Approach . 33

3.3 A Column-Based Fault Tolerant Configuration 33

vi

Page

3.3.1 Benefits . 34
3.3.2 Routing and Timing 35

3.4 Using Relocatable Modules in TMR Designs 35

3.4.1 Bitstream Storage Savings With Relocatable Mod-
ules . 36

3.4.2 Routing with Relocatable Interconnect Modules 37

3.4.3 Rerouting Using Difference Based Reconfiguration 38

3.5 The Target FPGA . 40

3.6 Developing the Bitstream Translation Program 42

3.6.1 Virtex-II Pro Bitstream Composition 43

3.6.2 Configuration Memory Addressing 43

3.6.3 Bitstream Packet Type 44

3.6.4 Software Emulation of the Packet Processor . . 45
3.6.5 Virtex-II Pro Configuration Registers 46

3.6.6 Calculating the New Major Address 47

3.6.7 Updating the CRC Value 49

3.6.8 Overall Organization of the BTP 50

3.7 FPGA Design Tools . 50

3.8 Implementing a Relocatable Partial Reconfiguration Design 53

3.8.1 Reconfigurable Modules 53

3.8.2 Bus Macros . 53
3.8.3 Making Reconfigurable Modules Relocatable . . 55

3.9 Internal Reconfiguration 56

3.9.1 Using an Embedded Microprocessor to Run the
BTP . 56

3.9.2 MicroBlaze and uClinux 57
3.9.3 PowerPC . 58

3.10 Summary . 59

IV. Implementation . 60

4.1 Introduction . 60
4.2 Verifying Relocation of Partial Modules 60

4.2.1 Testing the Interconnect Module Designs 61

4.2.2 Testing the Direct Connect Modular Design . . 65

4.2.3 Implementing the LUT-based Modular Design . 66

4.3 Adding a Microprocessor to the Design 68

4.3.1 Resources Used By Microprocessors 68

4.3.2 Changes to BTP for PowerPC 69

4.3.3 Internal Reconfiguration using the PowerPC . . 70

4.4 Preventing Static Routing 71

vii

Page

4.4.1 Problems Caused by Restricting Routing 71

4.4.2 Programming of I/O Blocks 73

4.5 Safe Locations for Relocatable Modules on the XUPV2P 75
4.6 Errors During Bitstream Generation 75

4.7 Relocatable Module Support in 8.2 Partial Reconfigura-
tion Toolchain . 77

4.8 Relocatable Modules in the Virtex-4 78
4.8.1 Drawbacks of the Virtex-4 79

4.9 Comparison with REPLICA2Pro 80

4.10 Summary . 81

V. Conclusions . 82
5.1 Introduction . 82
5.2 Problem Summary . 82

5.3 Conclusion of Research 82
5.4 Significance of Research 84

5.5 Recommendations for Future Research 84

Appendix A. Using the PowerPC for Partial Reconfiguration 86

A.1 Creating the EDK Project 86

A.2 Adding Software, Exporting, and Integration 89

Appendix B. Bitstream Translation Programs 90

Appendix C. ISE 8.1 and PlanAhead Design Flow 106

C.1 ISE 8.1 Partial Reconfiguration Design Flow 106

C.2 ISE 8.2 Partial Reconfiguration Toolchain 109

C.3 Example PR Implementation Script 109

Bibliography . 113

viii

List of Figures
Figure Page

2.1 One Stage of a TMR Circuit 7

2.2 NAND Multiplexer . 8

2.3 The Basic Structure of an FPGA 10

2.4 Key Elements of a Xilinx FPGA Logic Block 11

2.5 Architecture of the Virtex-II FPGA 15

2.6 Design Layout with Two Reconfigurable Modules 19

2.7 TMR with Boundary Scan . 25

2.8 The Overlapping Precompiled Column Scheme. 28

3.1 Basic TMR Design . 34

3.2 Modular Functions Before and After Reconfiguration 36

3.3 Relocatable Functional and Interconnect Module Configuration 38

3.4 Relocatable Modules with LUT Selected Bus Connections System 39

3.5 Layout of the Virtex-II Pro in PlanAhead 41

3.6 Frame Address Composition 43

3.7 Column-Level (MJA) Configuration Memory Map 44

3.8 Bitstream Packet Type 1 . 45

3.9 Bitstream Packet Type 2 . 45

3.10 Distance between BRAM columns 48

3.11 V2P Serial 16-bit CRC Circuity 49

3.12 Flowchart for Processing a Packet 51

3.13 Areas with Homogenous Resource Between Columns 54

3.14 The Layout of a Bus Macro in FPGA Editor 55

3.15 MicroBlaze System Block Diagram 57

3.16 PowerPC System Block Diagram 58

4.1 Interconnect Module Layout Test Configuration 61

ix

Figure Page

4.2 Partial Reconfiguration Status Display 61

4.3 Top Level VHDL Organization 62

4.4 PlanAhead Layout for the Interconnect Module Configuration . 63

4.5 FPGA Editor View of NCD for Interconnect Modules Design . 64

4.6 Area Constraints Direct Connect and LUT-based Configurations 65

4.7 Top Level VHDL Organization for the Direct Connect and LUT-

based Designs . 67

4.8 Footprint for each Microprocessor and Peripherals 70

4.9 FPGA Editor View of Interconnect Module Design with the

Power PC . 72

4.10 I/O Blocks Used by Static Logic 74

4.11 Location Suitability for Relocatable Modules 76

4.12 Layout of the Virtex-II and Virtex-4 79

C.1 Partial Reconfiguration Design Flow (1) 107

C.2 Partial Reconfiguration Design Flow (2) 108

x

List of Tables
Table Page

2.1 Comparison of Core Generation Tools 20

3.1 Writing to Configuration Memory 46

3.2 Bitstream Command Codes that Required Special Actions . . . 47

4.1 Resources Required to Implemented each Microprocessor and Pe-

ripherals . 69

xi

List of Abbreviations
Abbreviation Page

FPGAs Field Programmable Gate Arrays 1

SEU Single Event Upset . 3

SHEs Single Hard-Errors . 3

TMR Triple Modular Redundancy 7

NMR N-modular Redundancy 7

LC Logic Cell . 10

LUT Look Up Table . 10

CLB Configuration Logic Block 11

SRAM Static Random Access Memory 12

EEPROM Electronically Erasable Programmable Read-Only Memory 12

IP Intellectual Property . 12

HDL Hardware Description Language 13

BRAM Block Random Access Memory 13

JTAG Joint Test Action Group 13

TAP Test Access Port . 13

ICAP Internal Configuration Access Port 14

OPB On-chip Peripheral Bus 14

MCNC Microelectronic Center of North Carolina 16

DRSs Dynamically Reconfigurable Systems 18

MGTs Multi-Gigabit Transceiver 19

APIs Application Programming Interfaces 20

ADB Alternative Wire Database 21

XPART Xilinx Partial Reconfiguration Toolkit 21

PARBIT PARtial BItfile Transformer 22

BITPOS BITstream POSitioner . 22

xii

Abbreviation Page

BISH Build-In Self-Healing . 24

NCD Native Circuit Description 40

XUPV2P Xilinx University Program Virtex-II Pro 40

ACE Advanced Configuration Environment 40

MGT Multi Gigabit Transceivers 42

BTP Bitstream Translation Program 43

BA Block Address . 43

MJA Major Address . 43

MNA Minor Address . 43

GCLK Global Clock . 44

IOB Input/Output Block . 44

IOI Input/Output Interface 44

FDIR Frame Data Input Register 45

FDOR Frame Data Output Register 46

LOUT Legacy Output Register 49

ISE Integrated Synthesis Environment 52

EDK Embedded Development Kit 52

UCF User Constraints File . 53

LMB Local Memory Bus . 57

XMD Xilinx Microprocessor Debugger 75

BSB Base System Builder . 86

xiii

Using Relocatable

Bitstreams For

Fault Tolerance

I. Introduction

1.1 Overview

The modern military, in fact modern society, has become reliant on complex elec-

tronic systems, such as satellites, which must provide reliable service. Designing

these system to be fault tolerant means these systems can continue operating even if

a fault occurs. Methods to incorporate fault tolerance in Field Programmable Gate

Arrays (FPGAs) include implementing redundancy and reprogramming the FPGA to

recover from a fault.

1.2 Motivation and Goals

The use of FPGAs in operational systems continues to grow as their capabilities

increase. Using FPGAs in space and military applications require them to be highly

dependable and reliable. Partial reconfiguration can be used to make FPGAs fault

tolerant, increasing their dependability and availability, by allowing an FPGA to

restore its functionality after a fault has been detected. Traditionally, fault tolerance

has been achieved through redundancy, implementing critical systems multiple times.

The goal of this research is to develop a more efficient method for implementing

a fault tolerant system on an FPGA, based on bitstream relocation, which implements

additional redundancy only when needed.

1.3 Organization

Chapter II provides an introduction to fault tolerance, FPGAs, and using partial

reconfiguration to implement fault tolerance. Chapter III describes three fault tolerant

1

configurations that use relocatable modules and describes the software used to perform

bitstream relocation. Chapter IV explains the challenges of implementing a dynamic

reconfiguration system on the target FPGA. Chapter V presents the conclusions of

this study and suggestions for future research.

2

II. Literature Review

2.1 Introduction

Field programmable gate arrays are digital integrated circuits that can be pro-

grammed and reprogrammed post-fabrication by a user to implement a custom

circuit. As they have evolved, the size, complexity and computational power of FP-

GAs have increased making FPGAs not only a valuable tool for rapid prototyping

and testing, but also for implementing actual production systems.

The submicron scale of FPGAs increased the number of transistors on each de-

vice making them more powerful. As the transistor size has been reduced, the current

density in the devices has increased making them more vulnerable to gamma particle

radiation [LMSP99]. Changes in the state of a transistor as a result of radiation is

called is a Single Event Upset (SEU). Two types of SEUs, soft and hard can be caused

by a charged particle. Non-destructive soft errors appear as transient pulses in logic

or bitflips when they occur in memory. Single hard-errors (SHEs) are potentially

destructive, causing a permanent change in the operation of the device. SHEs include

Single Event Latchups, gate rupture, and frozen bits [NAS00].

2.1.1 Applications of Fault Tolerance. Spacecraft engineers design to min-

imize power, weight, volume and cost while increasing functionality. Many of the

components that provide these characteristics, including FPGAs, are susceptible to

SEUs [NAS00]. Terrestrial devices can be repaired in place, but intervention in space

applications is usually too expensive or impossible. With their increased use in crit-

ical scientific and military systems with high reliability requirements, fault-tolerance

techniques to improve the reliability and dependability of FPGAs must advance as

well.

2.1.2 Motivation for using FPGA reconfiguration for Fault-Tolerance. Fault

tolerance has traditionally been provided by building redundancy into a design. In

FPGAs, designs have been hardened by replicating components and using techniques

such as Triple Modular Redundancy. However, since the area within an FPGA is lim-

3

ited, replication is an expensive approach. An alternative is to provide fault tolerance

through dynamic reprogramming of the FPGA.

2.2 Fault Tolerance

Fault-tolerance is one way of providing a dependable computing system. A

dependable system provides a quality of service that can justifiably be relied upon. A

system’s service is the expected behavior of a system as perceived by a user or other

systems [Lap85]. A system failure is caused by an error which results in a system

response not in compliance with its expected service. An error in a component or the

design of a system is called a fault [AL81].

Faults can be classified by their duration, nature and extent [Nel90]. A fault’s

duration is transient, intermittent or permanent. Transient faults are nonrecurrent,

are typically caused by external forces, and are manifested for a finite amount of

time. Intermittent faults can cause the system to cycle between faulty and error-free

operation. Hard faults are permanent and can be the result of a defect in the design

of a component or physical damage. The extent of a fault can be measured by the

number of components affected. A local fault affects a single component, while a

global fault affects multiple components.

System dependability can be achieved through the use of one or more methods

which can be classified into four categories [Lap85]:

• Fault-avoidance: Prevents fault occurrence by construction,

• Fault-tolerance: Provides, by redundancy, service complying with the system

requirement despite faults,

• Error-removal: Minimizes, through verification, the presence of latent errors,

and

• Estimating: by evaluation, the presence, the creation and the consequences of

errors.

4

A fault tolerant circuit continues to provide dependable results even if a fault

occurs during operation. In an environment where multiple faults can be expected

such as space applications, systems may be required to tolerate multiple faults before

the system malfunctions [KZJS00].

There are four phases of fault-tolerance [AL81].

1. Error detection: The manifestation of a fault, that is the errors it causes,

must be detected so action can be taken.

2. Damage confinement and assessment: Since there will likely be a delay

between when a fault occurs and when an error is detected, the state of the

system must be evaluated to determine if the error has spread within the system.

Unless the error is confined, it could cause errors throughout the system.

3. Error recovery: To continue operation, the system must be restored to an

error-free state.

4. Fault treatment and continued service: Once the system has been restored

to an error-free state, steps must be taken to enable the system to resume

providing the service required by its specification.

The design of a system determines the complexity of performing each of these

phases. The relationship between a fault and the error that results can be complex

and careful consideration by the designer is needed to isolate faults. Although error

detection is usually the starting point for fault tolerance, the other three phases can

occur in any order. Decisions made during design can eliminate the need for one or

more of the fault-tolerant phases [AL81].

The effectiveness of a fault tolerant system is measured by its reliability and

availability. Reliability can be measured by evaluating how a circuit functions when

a fault is introduced to the circuit [KZJS00]. Availability is determined by the time

needed to restore the circuit to proper operation. Reliability and availability are key

measures of dependability.

5

More formally, reliability, is [Nel90]

Rsystem = P (no fault) + P (correct operation|fault) × P (fault). (2.1)

Reliability is a function of how faults affect the system and what mechanisms

are in place to prevent system failure when a fault occurs [Nel90].

For systems where maintenance cannot be performed and dependable service

must be provided for a long period of time, reliability must be high. Reliability can

be achieved in two ways. First, the probability that a system does not have a fault

can be increased by using higher quality components and other fault avoidance design

techniques [Nel90]. Alternatively, the system can be designed to recover from a fault

when one occurs. For systems where maintenance cannot be performed such as space

systems, mechanisms must be in place so the system can repair itself.

For systems that can be repaired or can perform their own repairs, availability

is a useful measure of dependability. Availability is the probability a system is op-

erational at time t. In steady state, availability is the probability that a system will

be operational at any random time. Availability can also be expressed as the amount

of downtime over a specified interval. Availability can be increased by increasing the

expected time between system failures or by reducing the expected amount of time

to restore a failed system to operation [Nel90].

2.2.1 Methods for Fault Tolerance. There are a number of methods that

can improve a system’s fault tolerance. Fault tolerant strategies typically include one

or more of the following [Nel90]:

• Masking: Correction of generated errors,

• Detection: Detection of an error or the manifestation of a fault,

• Containment: Preventing an error from propagating across boundaries,

• Diagnosis: Identification of the faulty module causing the error,

6

Figure 2.1: One Stage of a TMR Circuit [Nel90].

• Repair/Reconfiguration: Repairing, replacing, or bypassing the module, and

• Recovery: Restoring the system to a stable state to allow continued operation.

The cost and complexity of implementing these techniques is highly dependent

on the system they are implemented in. Combinations of these strategies can be

implemented through hardware, software, information and time redundancy [AL81].

Hardware redundancy uses additional hardware to detect or tolerate faults.

There are three types of hardware redundancy: passive, active, and hybrid [McF94].

For systems that cannot afford down-time associated with repairing faults, static or

passive techniques allow a system to mask some number of faults [Nel90]. Active

redundancy techniques detect faults and take action to correct faults. Hybrid redun-

dancy combine masking to prevent fault propagation with fault detection and recovery

to remove the faulty module from the system [McF94].

One common form of passive redundancy is triple modular redundancy (TMR).

In TMR, three modules compute the same function and the three results are sent to

a voter which chooses the majority result. To prevent the voter from being a single

point of failure, three voters can be used at each stage. Figure 2.1 illustrates one stage

of a TMR circuit. TMR can be generalized to have more than three modules. This

is called N-modular redundancy (NMR) and can tolerate up to ⌊(N − 2)/2⌋ module

failures.

7

Figure 2.2: NAND Multiplexer [VN56].

NAND multiplexing can be used to reliably perform the Boolean NAND function

in the presence of errors that would change the output of a single NAND gate [VN56].

A NAND multiplexer performs the NAND operation redundantly, increasing the prob-

ability of a correct result. As shown in Figure 2.2, a NAND multiplexer is comprised

of an executive stage and one or more restorative stages. The restorative stage con-

sists of two executive stages in series. Each executive stage has a row of NAND gates

in parallel and a permutation unit which determines which input signals will serve as

inputs to each NAND gate. If there are no errors, all of the outputs are identical.

When all outputs are not identical, a threshold for the number of matching outputs

determines the correct result.

In dynamic redundancy, faulty components are detected, diagnosed, and or re-

paired or replaced [Nel90]. Dynamic redundancy methods typically switch module

and/or reconfigure communication routes as faults occur. The location, use and num-

ber of spares differentiate active redundancy techniques. These techniques provide

diagnosis and repair, but do not mask the fault.

Hybrid redundancy combines passive and dynamic techniques to provide redun-

dancy which both mask faults and repairs the circuit. N-modular redundancy with

K-standby sparing uses N-modules which each perform the same function. As with

8

TMR and NMR, a voter or group of voters determines the correct result. If one of

the N-modules fails, it is replaced by one of K-spares.

2.2.2 Reconfiguration as a Method for Fault Tolerance. Since modern FP-

GAs can be configured to reprogram themselves, they make excellent platforms for

dynamic and hybrid redundancy systems. Furthermore, passive redundancy tech-

niques such as NMR or NAND multiplexing although expensive to implement using

traditional hardware, can mask faults while a module is replaced or bypassed using

reconfiguration techniques.

A number of techniques have been proposed for reconfiguration, including logic

block replacement via rerouting, reconfiguring entire columns or rows and shifting

entire circuits by row or column within an FPGA to avoid a fault cell in a col-

umn [DP94]. A number of techniques are described in Section 2.4, but the specific

FPGA architecture and reprogramming methods are important considerations for

each method since the viability of each technique is a function of the architecture of

the target FPGA.

2.3 FPGAs

In 1984, Xilinx introduced a new class of integrated circuits called the field

programmable gate array, or FPGA. The basic FPGA is an integrated circuit con-

sisting of logic blocks, interconnects, and I/O blocks. Logic blocks can be individu-

ally configured to perform various functions and are connected using programmable

interconnects. Figure 2.3 shows the basic structure of an FPGA. An FPGA config-

uration, including the function each logic block implements and its connections, is

determined when the FPGA is programmed. This programmable architecture means

FPGAs are highly configurable with fast design and modification times. In addition,

the large number of logic cells, embedded RAM blocks, embedded multipliers, and

adders that make up today’s FPGAs means they can implement large and complex

functions [Max04].

9

Figure 2.3: The Basic Structure of an FPGA [Kha02].

The design of the logic blocks vary between types of FPGAs and FPGA manu-

facturers. The granularity of an FPGA refers to the complexity of the logic blocks. If

a logic block can support a simple function, the FPGA is considered to be fine-grained.

A coarse-grained FPGA architecture can implement a more complex function. Since

each coarse-grained logic block has more logic in it, the number of logic blocks needed

to implement a function is less than the number of logic blocks needed in fine-grained

FPGAs. Although fine-grained FPGAs usually implement a function more efficiently

(since most resources in the logic blocks are used), a larger number of interconnects

are needed to connect the finer-grained logic blocks.

In Xilinx FPGAs, logic blocks are known as logic cells (LC). Although the

exact configuration of logic cells differ between device families, each contains a 3, 4

or 6 -input look up table (LUT), which can be configured as a 16 x 1 RAM or a 16-

bit shift register, a multiplexer and a register as well as other logic [Max04,Xil07b].

Figure 2.4 shows how the basic elements are arranged within the LC. Logic functions

are implemented using the LUT. An n-input LUT is programmed to return the result

of a logic function based on the values of its n-inputs. A multiplexer can select the

10

Figure 2.4: Key Elements of a Xilinx FPGA Logic
Block [Max04].

result from the LUT or from an input external to the LC. The register acts as a

flip-flop or a latch.

In the Virtex-II Pro, logic cells are grouped into slices [Xil05b]. Each slice

has two logic blocks and each configuration logic block (CLB) is made up of four

vertical slices. There are different types of connections between FPGA resources. The

connections lengths vary from connecting CLBs to their neighbors to the connecting

to the backbone routing network 24 horizontal and vertical long line routing resources

that span the full height and width of the device [Xil05b].

The function an FPGA performs is determined by the programmer and must

be programmed into the FPGA. There are two basic types of programmable FPGAs:

anti-fused based and memory-based.

Anti-fuse FPGAs are one-time programmable devices with special connections

that start as high resistance open circuits but become low resistance connections when

programmed. Anti-fuse based FPGAs are non-volatile. They retain their configura-

tion even when power is removed. Additionally, the anti-fuse interconnect structure

is relatively immune to the effects of radiation so its configuration not changed as a

result of a SEU. However, other transistors on the device remain susceptible to SEUs,

so designs and radiation hardening must still be used for anti-fuse devices in high

radiation environments [Max04].

11

Memory-based FPGAs can be reprogrammed in the field, giving them added

flexibility, thus making them a viable platform for testing reconfigurable fault-tolerance

methods. Two currently available memory-based FPGAs are static random access

memory (SRAM) and electronically erasable programmable read-only memory-based

(EEPROM). SRAM FPGAs use SRAM configuration cells that can be reconfigured

over and over. The function of the circuit is based entirely on the contents of the

configuration memory.

EEPROM-based FPGAs have the advantage of being non-volatile. Once they

have been programmed they retain their programming even when the device is pow-

ered down. Although they can be reprogrammed in the field, their programming time

is typically three times longer than similar SRAM devices [Max04].

State of the art FPGAs have multiple embedded microprocessors known as

microprocessor cores. A hard microprocessor core is implemented in a pre-defined

and dedicated area within the FPGA. Xilinx offers FPGAs with one, two, or four

PowerPC 405 hard microprocessor cores. These cores are embedded directly into the

FPGA fabric and can be connected to user defined circuitry. A soft microprocessor

core is a group of programmable logic blocks configured as a microprocessor. Soft

cores are slower and simpler than hard cores, but as many soft core processors as

space allows can be placed onto an FPGA. Soft microprocessor cores are available

as intellectual property (IP) from FPGA vendors. The MicroBlazeTM processor is a

classic 32-bit processor designed specifically to work with the hardware features of

Xilinx FPGA devices [WB04].

Designs for the MicroBlazeTM processor can be obtained as intellectual property

from Xilinx. For FPGAs, intellectual property, commonly referred to as IP, can be

developed by the FPGA vender or a third party. Available IP cores implement a

wide array of functions, from signal processing to I/O interfaces. There are three

types of IP cores offering different levels of abstraction and flexibility: soft, firm and

hard cores [KJdlTR05]. Soft cores are hardware independent synthesizable Hardware

12

Description Language (HDL) descriptions with a high level of flexibility since they

can be extensively modified. Firm cores are technology independent netlists that offer

some flexibility through customizable parameters. Hard cores are preplaced and have

fixed routing limiting their flexibility. Although a number of IP designs can be used

without licensing, typically a fee must be paid to use the designs.

2.3.1 SRAM FPGA Technology. The basic structure of Xilinx SRAM-based

FPGAs is a two-dimensional array of logic blocks are linked with vertical and hor-

izontal programmable interconnect channels [Tor02]. The configuration of SRAM

FPGAs is controlled by memory cells that are volatile and must be configured each

time the FPGA is powered-up. All aspects of the user design are implemented by the

configuration memory including LUT equations, signal routing, BlockRAM (BRAM)

configuration and BRAM interconnects [Xil05b]. A bitstream provides the config-

uration control commands and configuration data to the FPGA. On Virtex-II Pro

devices, the bitstream is delivered through a serial, boundary scan, or SelectMAP

interfaces. The bitstreams for each interface are, for the most part, identical [Xil05b].

Serial mode programs an FPGA using a serial programmable read-only memory

device. In serial configuration mode, the bitstream is clocked into the FPGA one bit at

a time. In master serial mode, the FPGA drives the clock. Slave serial configuration

mode allows FPGAs to be configured by another device such as a microprocessor or

master FPGA, with the other device controlling the clock of the slave FPGA [Xil05b].

The JTAG interface (named for the Joint Test Action Group (JTAG) respon-

sible for development of the IEEE 1149.1 standard), the Test Access Port (TAP)

and Boundary Scan Architecture, allows in-system programming. Boundary scans

allow devices and internal circuitry to be tested. The boundary-scan TAP is used

to serially apply tests which can detect opens and shorts at the board and device

level. Many vendors have added vendor specific instructions to their boundary-scan

implementation allowing configuration instructions [Xil05b]. Using a special instruc-

tion, the FPGA can connect the internal SRAM configuration shift registers to the

13

JTAG scan chain, allowing the FPGA to be programmed using the data-in pin of

its TAP [Max04]. The Virtex-II Pro can also be reconfigured using the JTAG port

by applying an appropriate partial bitstream through the TAP [Xil05b]. Since par-

tial bitstreams are used to implement specific circuits at specific locations within the

FPGA, partial bitstreams used for dynamic reconfiguration are also referred to as

hard cores, or more generally cores, as described in Section 2.3.

For internal access to the FPGA configuration and read back operations, Vir-

tex II-Pro devices include an internal configuration access port (ICAP). The ICAP

provides access to the FPGA configuration memory using the SelectMAP interface

with an 8-bit bidirectional data bus to the Virtex-II Pro configuration logic [Xil05b].

Xilinx developed an on-chip peripheral bus (OPB) core to interface to the ICAP. The

HWICAP core allows an embedded processor to read and write the FPGA configu-

ration bitstream through the ICAP at runtime one frame at a time [Xil04c]. A frame

is the smallest unit that can be reprogrammed on the Virtex-II Pro and is 1-bit wide

slice of a column as shown in Figure 2.5. Devices in the Virtex II-Pro family have be-

tween 22 and 94 CLB columns and 22 frames per column [Xil05b]. Software programs

running on the embedded processor can construct a custom bitstream by modifying

the frames sent to the HWICAP and thereby modify an FPGA circuit as desired at

runtime.

2.3.2 SRAM FPGA Reconfiguration. Reconfiguration is the act of repro-

gramming an SRAM FPGA without resetting, or powering down the device. Recon-

figuration can be performed on the whole device (full reconfiguration) or a portion

of it (partial reconfiguration). The device can be put into the shutdown state for

reprogramming or the device can continue to operate, a process known as active re-

configuration. Full reconfiguration reinitializes memory contents, while the content

of data memory is preserved during partial reconfiguration. In Virtex II-Pro devices

partial reconfiguration is only possible through the JTAG and SelectMAP interfaces

which includes the ICAP [Xil05b].

14

Figure 2.5: Architecture of the Virtex-II FPGA [SBB+06].
In the Virtex-II series the CLBs, BRAM and multiplier are or-
ganized in columns. The I/O blocks are arranged around the
perimeter of the FPGA. A configuration frame spans the entire
column programming a fraction of one CLB or BRAM column
and a portion of I/O blocks above and below the columns.

Dynamic partial reconfiguration partially reconfigures an active array while the

active circuits not being changed continue to function. Self-reconfiguration is a form

of dynamic reconfiguration in which specific circuits within an FPGA control the

reconfiguration of other portions of the FPGA. With such a dependency, the proper

operation of the reconfiguration circuitry must be ensured before, during and after

reconfiguration.

SRAM FPGA devices rely on an external configuration control interface to

boot and program the FPGA with an initial configuration when power is first ap-

plied or the device is reset. Once initially configured via some external method, self-

reconfiguration uses an interface within the FPGA driven by internal FPGA circuitry,

which may include a microprocessor. The ICAP provides this functionality on Virtex-

II, Virtex-II Pro, and Virtex-4 devices. That is, the ICAP enables self-reconfiguration

without external hardware [BJRK+03].

15

Eliminating external circuitry through self-reconfiguration minimizes the la-

tency of accessing an external configuration port. It also minimizes the distance

between the control logic and the reconfiguration control logic within the same logic

array. System complexity is also reduced, since fewer discrete devices are required

[BJRK+03].

Although FPGAs are designed with a regular structure and every logic block

can be connected to another logic block, finding a path from one block to another

is not a trivial task. Because FPGAs, have a limited number of interconnections,

not all connections are possible for a given configuration. Algorithms to reconfigure

the FPGA must know the architecture of the FPGA, and which resources are being

used, for the algorithm to construct an appropriate reconfiguration bitstream. Al-

though quick reconfiguration, which improves availability, is a goal of fault-tolerant

systems, efficient utilization of the FPGA’s resources must also be considered. Recon-

figuration algorithms should minimize the FPGA resources used by the circuit after

reconfiguration and the time to perform the reconfiguration.

To compare the performance of fault-tolerance schemes, benchmark designs can

be used. The Microelectronic Center of North Carolina (MCNC) and ISPD98 bench-

mark suites are commonly used by developers of automated design systems to com-

pare and validate their designs [Alp98]. Reconfiguration changes the layout of the

user circuit within the FPGA. By comparing the performance of benchmarks circuits

before and after fault-tolerance techniques have been applied, the effectiveness of dif-

ferent techniques can be evaluated. Hardware resources and the amount of downtime

required to perform the reconfiguration must also be considered.

Since most computational circuits are made up of sequential logic, a reconfig-

uration technique must be able resume operation in the last stable state before the

fault. This means the dynamically reprogrammed FPGA must save state informa-

tion, complete the repair through reconfiguration and reload state information before

resuming service.

16

2.4 Current Research in FPGA Reconfiguration

There are two different styles of partial reconfiguration in current implemen-

tations and research [Xil04c]. The first is a module-based reconfiguration in which

distinct portions of the FPGA are reconfigured while the remainder of the FPGA

is active. Depending on the communication between modules, special consideration

needs to be given to ensure proper I/O functionality between modules after recon-

figuration. The second type of reconfiguration is difference-based partial reconfigu-

ration in which custom bitstreams are used to change small sections of the device.

Difference-based partial reconfiguration is useful for changing the contents of a LUT

or switching to a different I/O standard during execution [Xil04c]. Each of these

styles can be used for a number of applications and Virtex FPGA reprogramming has

evolved to include both external reprogramming circuits and internal reprogramming

circuits which take advantage of the ICAP. External reconfiguration circuits can use

state of the art computer-aided design tools to produce partial bitstreams, while on

demand production of partial bitstreams is one of the most difficult challenges in a

dynamic reconfiguration system. Using externally produced partial bitstreams has

been demonstrated as well as the use of pre-generated partial bitstreams but both

required that the new FPGA configuration be known in advance [Xil04c].

FPGA reconfiguration systems can be categorized according to which device

controls reconfiguration, the level of reconfiguration granularity, and when the con-

figuration bitstream is generated [WB04].

2.4.1 Methods for Partial Reconfiguration. Partial reconfiguration can be

controlled externally using the JTAG port of the FPGA. An external circuit, possibly

a computer or another FPGA initiates the reconfiguration and loads the partial bit-

stream into the FPGA to reprogram it. This technique is used in embedded FPGAs

that serve as computer coprocessors and reconfigured using the PCI bus.

Some FPGAs can initiate and internally control their own reconfiguration. A

self reconfiguring platform implemented on both the Virtex-II and the Virtex-II Pro

17

takes advantage of the platforms’ embedded microprocessors to perform partial re-

configuration without external circuitry. It uses the ICAP, control logic, a small

configuration cache and the MicroBlazeTM embedded processor to support relocat-

able partial bitstreams. Relocatable partial bitstreams can be modified at run time

to be implemented at multiple locations within an FPGA [BJRK+03].

Hybrid configurations reprogram themselves, but the reconfiguration may be

initiated internally or externally and the configuration bitstream may be retrieved

from an external source, such as a bitstream server [WB04].

2.4.1.1 Module Based Dynamic Partial Reconfiguration. Modular

based partial reconfiguration methods for FPGAs have been used to develop Dy-

namically Reconfigurable Systems (DRSs) which actively reconfigure hardware based

on previously generated bitstreams. By using these bitstreams to reprogram portions

of the FPGA, unneeded parts of a system can be removed and replaced by another

part. Figure 2.6 shows the layout of two reconfigurable modules in a Virtex-II Pro.

Swappable modules are referred to as dynamic hardware plug-ins. A number of dif-

ferent configurations have been proposed for modular based reconfiguration platforms

including both externally controlled and internally controlled systems [CCMM04].

For internal self-reconfiguration, the configuration controller must be imple-

mented within the FPGA. Custom controllers have been implemented in the fabric

of the FPGA for decoding secure bitstreams, for example a prototype using Blowfish

encryption used 64% of the slices of a VC2V1000 device, but without Blowfish sup-

port only used 5% of the slices [FHA03]. Clearly the requirements for the controller

(i.e., speed, security, connectivity) as well as the target FPGA, affects the size con-

troller. Although custom controllers can be specialized for the target application, a

more flexible approach uses an embedded processor on the FPGA. In an FPGA with

hard microprocessors, the reconfiguration controller can use the microprocessors to

maximize the reconfigurable portion of the FPGA available to the user’s circuit.

18

Figure 2.6: Design Layout with Two Reconfigurable Mod-
ules [Xil04c].

One dynamic reconfiguration system uses a MicroBlazeTM embedded processor

on the Virtex-II Pro [WB04]. Using uClinux, a version of Linux designed for mi-

croprocessors, bitstreams are retrieved from a remote server and used to reprogram

the FPGA. A Linux driver provides an interface between applications running on the

MicroBlazeTM and the HWICAP core through the CoreConnect OPB on the Virtex-II

Pro which allows scripts to be run within uClinux to perform partial reconfiguration

using partial bitstreams from the server [WB04].

2.4.1.2 Difference Based Reconfiguration. By making small changes to

the configuration bitstream, the behavior of the user circuit can be changed. Among

other changes that can be made, the contents of a LUT can be altered changing the

Boolean function performed by the logic cell. The transmit and receive characteristics

of the RocketIOTM Multi-Gigabit Transceivers (MGTs) on the Virtex-II Pro can also

be changed in this manner [Xil04a]. By changing the parameters based on the run-

time configuration, MGTs can compensate for unknown propagation delays at design

time.

19

Table 2.1: Comparison of Core Generation Tools (adapted from
[KJdlTR05]).

Design
Flow

JBits API based tools Equations based tools

Name Modular
Design

JPG XPART Core Unifier PARBIT BITPOS

Device All Xilinx
FPGAs

Virtex
Series

Virtex
II-Pro

Virtex Series Virtex
Series

Virtex II

CLB
Reallocation

NO NO NO NO YES YES

BRAMs/MULs
Reallocation

YES NO NO not specified NO YES

Controller
Location

N/A External Internal External External External

References [Xil04a] [RS02] [BJKM+03] [MMPM+03] [HL01] [KJTR05]
Approx Date 2004 2002 2002 2002 2002-

2004
2004

2.4.1.3 Bitstream Manipulation on Self Reconfiguration Platforms.

Modern FPGA architectures support dynamic modification of a design, but there

is a noticeable lack of design methodologies using non-proprietary tools to produce

bitstreams required to reprogram an FPGA [DFR+05]. A number of software ap-

plications for the PC and for embedded processors have been developed and imple-

mented on specific devices. The bitstream manipulation tools can be separated into

two groups according to how they access the bitstream and produce the partial re-

configuration bitstream [KJdlTR05]. The first group uses application programming

interfaces (APIs) to access previously generated bitstreams and manipulates them to

produce the desired partial bitstream. The tools in the other group directly manipu-

late existing bitstreams to produce the desired bitstream. These tools are summarized

in Table 2.1.

JBits, developed by Xilinx, provides an API to access the bitstream of select

Xilinx FPGAs. JBits is a set of Java classes that provide an interface to operate on bit-

streams generated by Xilinx design tools, or on bitstreams retrieved from programmed

FPGAs. The original motivation of JBits was to support dynamic reconfiguration un-

20

der software control. The API allows all configurable resources in the device to be

programmed, thus providing direct support for dynamic reconfiguration [GLS99].

All action in JBits must be specified in the source code including routing. To

make routing as fast as possible, JBits does not use the heuristics to solve the known

NP-complete routing problems which produce routes that may not resemble the orig-

inal circuit. Instead, JBits uses a library with access to all of the configurable archi-

tecture features of a device including CLBs, BRAM and all routing resources. These

precompiled Java classes, specific to each type of device, produce the partial recon-

figuration bitstreams [GLS99]. The last official version of JBits, JBits 3.0, extended

support to the Virtex-II. However, JBits does not support the Virtex-II Pro.

A development that promises to expand the JBits support to other device fam-

ilies is the Alternative Wire Database (ADB), a supplemental connectivity database

that interfaces with JBits to provide wiring information, routing and unrouting ser-

vices. ADB extends JBits support to new FPGA families, including the Virtex-II

Pro, and provides a router based on JHDLBits, an open source project that connects

JHDL and JBits. JBits 3.0 does not include JRoute, a router than had been available

in previous versions. ADB can generate configuration bitstreams when interfaced

with JBits or a custom interface [SA04] and may be released with the next version of

JBits.

For self-reconfiguring circuits, bitstream manipulation similar to JBits must be

available on the embedded microprocessor. In Blodgett’s self reconfiguring FPGA

design, the software system relied on two APIs, the ICAP API and the Xilinx Partial

Reconfiguration Toolkit (XPART). Since JBits is implemented in Java, it requires

significant resources to run the Java Virtual Machine. Blodget’s design using XPART

is lightweight because XPART provides a minimal set of JBits API features imple-

mented in C [BJRK+03]. XPART has methods to read and modify select FPGA

resources using ICAP and also provides basic support for the relocation of partial bit-

21

streams. Unfortunately, XPART has never been released to the developer/research

community [US05].

A number of additional tools have been developed to access and manipulate

supported FPGA bitstreams using the JBits API. These tools include JBitsDiff,

JBitsCopy, JPG, CoreUnifier and JHDLBits [KJdlTR05]. JBitsDiff generates cores

from a full bitstream which can the inserted into another bitstream. JBitCopy ex-

tracts a core from a full bitstream file and merges it into another full bitstream. JPG

uses files generated by Xilinx tools during design flow to extract cores. The JPG tool

selects multiple partial bitstreams (cores) using a custom GUI and loads the FPGA

through the JBits API [RS02]. Although these tools allow reconfiguration of CLBs,

they do not reallocate cores. Reallocation allows a core to be placed at any location

on the FPGA. Relocatable cores is a highly desirable capability in dynamic repro-

gramming of FPGAs since one partial bitstream can be used to generate multiple

configurations instead of pre-compiling and storing partial bitstreams.

The second group of core generation tools directly manipulate existing bit-

streams to produce partial bitstreams [KJdlTR05]. Using equations specific to the

target FPGA, the location of an FPGA resource within the bitstream can be deter-

mined. Using an original bitstream, a target bitstream and parameters, including

the coordinates for the source and destination of the core PARtial BItfile Trans-

former (PARBIT) can relocate a core by transforming and restructuring the partial

bitstream [HL01]. BITstream POSitioner (BITPOS) provides a similar capability for

the Virtex II family and includes the ability to reallocate BlockRAM memory space

and embedded multiplier data [KJdlTR05]. A tool called Core Unifier, with JBits

and equation base versions, has methods for inserting and connecting dynamic cores

based on a common route wiring configuration [MMP+03]. With the exception of

XPART, all of these bitstream manipulation applications are external to the FPGA.

2.4.2 Hardware Bitstream Relocation. REPLICA2Pro is an implementation

that relocates bitstreams internally. REPLICA2Pro relocates partial bitstreams in

22

Virtex-II (Pro) devices by changing the addressing of the configuration frames in

hardware. The hardware decodes the partial bitstream finding the frame addresses

and adjusting them to implement the module in a new location. To avoid extra

configuration time, the REPLICA2Pro filter is inserted between the configuration

manager, which selects the bitstream and the offset distance, and the ICAP interface.

REPLICA2Pro relies heavily upon custom software to prepare the FPGA creating

the infrastructure to support reconfigurable modules. These programs generate the

communication infrastructure and clock trees to ensure the module will be properly

connected in its new location [KP06].

2.4.3 Automatic Dynamic Active Partial Reconfiguration for Fault Tolerance.

A number of methodologies have been developed to enhance the yield of FPGAs

during the fabrication process using fault tolerance methods. A good summary of

these techniques can be found in [Ive06]. While based on similar techniques, active

dynamic reconfiguration operates at runtime.

To use SRAM-based FPGA for dynamic fault tolerance, the system must meet

the following objectives [XSHL99]:

• Overhead must be as low as possible. The FPGA area used by the reconfigura-

tion circuit and during reconfiguration must be minimized since it determines

the maximum size of the user circuit and how many times it can be reconfigured.

• The replacement algorithm must be simple and have the shortest execution time

possible.

• The circuit after fault recovery must still meet functional and performance re-

quirements.

A number of reconfiguration schemes which reduce overhead associated with

reconfiguration have been proposed and demonstrated. One reduces the complexity

of reconfiguring by partitioning the physical design into tiles [LMSP99]. Multiple

configurations are generated for each tile—all of which perform the same function

23

and have the same connectivity with neighboring tiles. Reliability is achieved by

having multiple configurations of each tile that do not use certain resources within

the tile. The tile configurations are generated at design time and stored in memory

for access at run-time.

Assuming the location of the fault is known, a configuration that avoids the

faulty resource is retrieved from memory and used to reconfigure the device. Spare

interconnects between tiles can be reserved and activated if an interconnect fault is

identified. Compared to redundancy-based fault-tolerant techniques, the overhead

for this approach is low since redundant modules are not implemented in the FPGA

array. Although the regular structure of FPGAs makes them good platforms for this

approach, the implementation is architecture specific.

For the Xilinx architecture, each tile is made up of groups of CLBs. The number

of unused CLBs and interconnects in the tile determines the amount of redundancy

and overhead. Multiple configurations for each tile are generated at design-time–

each leaving a portion of the tile unused (i.e., CLBs and interconnections). Although

overhead is directly related to the size of the tiles and number of spare resources, the

area and reconfiguration time for this method is low. Tests of 9 circuits on a Xilinx

FPGA indicate timing and area increased between 17% and 45% and between 2.6%

and 10.2% respectively [LMSP99]. Although this approach reduced system downtime

since alternate configurations are readily available in memory, the memory required to

store the alternate configuration is many times greater than the original configuration

size.

A robust configurable system design with build-in self-healing (BISH) highlights

many of the considerations that must be made for a SRAM-based fault-tolerant sys-

tem [GAF05]. Since many of the observations made in the design have implications

for SRAM-based fault-tolerant systems, they are summarized below.

As noted in Section 2.1, today’s FPGAs are susceptible to two types of errors:

soft errors, or SEUs, which are transient errors caused by radiation; and hard errors–

24

Figure 2.7: TMR with boundary scan [GAF05].

the result of permanent physical damage to the FPGA. Since SRAM memory is used

for both configuration memory and data memory in a SRAM FPGA, soft errors can

change both the function of the FPGA and the data stored within it.

Unlike previous fault tolerance approaches, the approach below includes detec-

tion, diagnosis and repair. To prevent faults from propagating through the system

TMR masks faults and reconfiguration replaces modules that have suffered a hard

error, similar to the N-modular redundancy with K-sparing approach discussed in

Section 2.2.1. In a traditional TMR circuit, it is difficult to determine which module

is faulty since the TMR circuit masks the fault. To determine the faulty module is

faulty, a boundary scan configuration can be added to the TMR circuit as shown in

Figure 2.7.

The boundary scan allows a microprocessor to analyze the output of each module

(A1-A3) and the output of each of the voters (V1-V3). If one of the redundant

modules has a different output, a fault is presumed to be causing the error. If all

module outputs are equal but the voter outputs are not equal, the fault is presumed

to be in the voters. Thus, the appropriate actions to take and how to repair of the

circuit can be determined.

Assuming no errors in retrieving and analyzing the output of the modules and

the voters with the boundary scan (a methodology for validating this is explained

in [GAF05]), the next step is to determine if the error is a soft or hard error. If it

is a soft error, it should automatically correct itself next time the registers within

25

the module is updated. Since voters are normally implemented in combinational

logic, this type of error will not affect them. If the error is not resolved after the

registers have updated, there are two possible causes for the error. A soft error in the

configuration memory has caused the behavior of the module or voter to change or a

hard error within the module or voter.

If there is a soft error in configuration memory, it can be detected by extracting

a partial bitstream from configuration memory and comparing it with the original

bitstream or by checking the bitstreams CRC. If an error is detected, a partial bit-

stream can be reloaded to configuration memory, repairing the configuration memory.

Once reconfiguration is complete, boundary scan can determine if reconfiguration was

successful.

If an error in the configuration memory is not detected, the most likely cause

of the error is a physical defect in the array. Physical defects in the array can not

be repaired and reconfiguration must remap the module to a fault free area of the

FPGA. Although the TMR configuration has masked the module error from the rest

of the FPGA, remapping the module restores the reliability index of the circuit.

To maximize resources, once a portion of the FPGA has been released by remap-

ping the module it contained, the embedded microprocessor can diagnose the released

resources to determine exactly which resource is faulty. By keeping track of precisely

which resources are defective, the microprocessor can maximize the use of the FPGA

by allowing modules that do not use an affected resource to be mapped to that area.

With TMR masking faults, there is some flexibility in the timing of detection,

diagnosis and repair actions. Although there is overhead associated with each of these

operations, the proposed BISH system performs these operations as background tasks

on the microprocessor, minimizing the circuitry dedicated to BISH.

Since the microprocessor is vulnerable to soft and hard errors, it is also im-

plemented using TMR. Each microprocessor is broken up into small modules, and

26

a malfunctioning microprocessor relies on the other two microprocessors to replicate

the malfunctioning module, remove it from service and replace it.

As with other proposed approaches, this approach has not been implemented

and relies upon JBit-based tools for reconfiguration which are under development.

Although this approach provides effective solutions for recovery from a number

of different soft and hard errors, its developers acknowledge a number of vulnerabilities

such as errors in the configurations control circuit, the ICAP and the boundary scan

architecture [GAF05]. Protections other than reconfiguration must ensure that the

reconfiguration system is available when needed.

An alternative to pre-compiled tiles or dynamically generated configuration bit-

streams is reconfiguring the FPGA using bitstreams based on precompiled columns

[HM01]. This technique has a fast reconfiguration time since routing is not determined

dynamically. The regular structure of Xilinx FPGAs, mean they have the same cir-

cuitry, routing resources, and configuration architecture in every CLB column which

results in highly correlated bitstreams. Thus, multiple bitstreams can be compressed.

Two schemes for column-based reconfiguration and bitstream compression are pro-

posed in [HM01].

The overlapping scheme relies on a base configuration being mapped into column-

based functional modules. The function of the circuit is defined by the modules and

their interconnections. As shown in Figure 2.8, unused columns in the base configu-

ration leave room for alternative configurations which remap the modules.

Since the structure of each CLB column is the same, groups of column-based

modules can be shifted and the only additional reconfiguration needed is to repair

the interconnections between groups. To reconfigure from the base configuration to

alternative configuration in Figure 2.8b, functions C and D are shifted to columns

4 and 5 and the interconnections between function B and function C were restored.

Since functions C and D remain in adjacent columns, interconnections between the

two column-based modules are intact.

27

Figure 2.8: The Overlapping Precompiled Column Scheme.
(a) Base configuration with column 5 intentionally unused (b)
Alternative configuration with column 3 intentionally unused [?].

The number of unused CLB columns determines the fault tolerance of the

FPGA. To tolerate m faults, m spare columns are required. If the base circuit config-

uration required k columns to implement the user function, the overlapping scheme

required m+k CLB columns to map an m-tolerant configuration. To achieve a m-

column tolerant design, C(k+m, m) = (k+m)!/(m!k!) configurations (including the

base configuration) must be available or be calculated at runtime [HM01]. However,

since alternate configurations are generated by shifting the column-based modules,

the bitstreams are similar and can be compressed and memory overhead reduced.

Details on the compression technique can be found in [HM01].

If the user circuit can be implemented in less than 1/2 of the FPGA’s columns,

an alternative approach maps the entire user circuit into unused portions of the FPGA

during reconfiguration. In this scheme, the entire circuit is shifted into an unused

portion. For a circuit to be m-column tolerant it must be mapped in 1/(m+1) or less

of the entire FPGA columns. This approach uses less memory than the overlapping

scheme because there are only m+1 configurations (including the base) and since

the entire circuit is shifted as a block, the relative position among the column-based

modules is preserved in all configurations.

For both column-based module schemes, circuit performance, in terms of worst

case critical path, increases from 11% to 18%. For 4 test circuits, the minimum storage

28

overhead ranged from 15% to 35% for the over-lapping scheme and 2% to 6% for the

non-overlapping scheme [HM01].

Using a column-based approach the degree of fault tolerance is constrained by

the number of columns in the FPGA and in the user’s circuit, as well as how the user’s

circuit can be divided into column-based modules. Because a frame is the smallest

reconfigurable segment, if reconfiguration is performed at the frame level, the degree

of fault tolerance can be greatly improve over the column-based approach.

One advantage of a column-based approach is the location of faults. Unlike fine-

grained approaches which try to determine which CLB or frame has a fault, faults

only need to be determined to be in a particular column. An alternative to fault

location is to try possible configurations until a configuration that works properly

is found [HM01]. Although this approach lengthens reconfiguration time, reducing

availability, it eliminates the need for fault detection hardware.

Although single FPGAs can recover from faults in the user circuit using recon-

figuration, they are vulnerable to errors in the logic implementing the reconfiguration

circuit. The reconfiguration circuit can be made fault tolerant through traditional

hardware redundancy or a dual-FPGA configuration can be used. Expanding on the

column-based approach, a dual-FPGA reconfiguration architecture allows the system

to recover from all types of soft errors.

In the dual-FPGA configuration, each FPGA runs user applications and uses

soft microcontrollers so each FPGA can be reconfigured [MHS+04]. The microcon-

troller on each FPGA reprograms the other FPGA. User applications mapped on the

FPGA must include error detection and autonomous recovery techniques to maintain

proper operation. Once a non-recoverable error is detected and reported to the mi-

crocontroller, the microcontroller reports the error to the microcontroller on the other

FPGA and the second FPGA reconfigures the first FPGA.

Since temporary errors are more common than permanent faults, a soft error

is assumed and the second FPGA validates then corrects the configuration bits of

29

the first FPGA if necessary. If an error persists once execution of the first FPGA is

resumed, a permanent fault is presumed and the second FPGA reconfigures the first

FPGA using a modified column-based pre-compiled reconfiguration scheme to avoid

the fault [MHS+04]. Since error detection is incorporated into the user circuit, the

number of new configurations to be tried is reduced based on the location of the error

detected.

The dual-FPGA approach also allows for an alternative to TMR which adds

three microcontrollers to each FPGA (using considerable area). Instead, TMR concur-

rent error detection (CED) signals designed into the microcontrollers can determine if

the other FPGA’s microcontroller has an error and requires reconfiguration [MHS+04].

This approach can be expanded to include the entire reconfiguration circuit making

the dual-FPGA architecture capable of recovering for temporary or permanent errors

to both the user circuit and the reconfiguration circuit.

There are a number of resources within an FPGA vital to its proper operation

that can not be corrected through reconfiguration. These include external connections

(I/O pins) and the actual reconfiguration circuitry on the FPGA including the JTAG,

serial, or SelectMap interfaces. Reconfiguration can be used to avoid some of these

resources. In a single FPGA architecture, a fault in the ICAP would prevent the

FPGA from reconfiguring. However, in a dual FPGA architecture there are multiple

interfaces and configurations which use an alternative reconfiguration mode (JTAG

or serial) can be designed and implemented if an error in the FPGA reconfiguration

interface is detected or suspected [MHS+04]. Additionally, if the design permits,

configurations with alternate I/O can be compiled.

2.5 Summary

Reconfiguration of FPGAs and active fault tolerance techniques improve reli-

ability. The capability, quick development time and relatively low cost of today’s

FPGAs make them an attractive platform for computing applications, but without

30

effective, low-overhead methods for making them more dependable, their applications

in high radiation environments are limited.

Multiple approaches for fault tolerance through reconfiguration have been pro-

posed and some have been demonstrated. Since each approach is target specific, and

the overhead and improvement in reliability varies by benchmark and size of the tar-

get FPGA used, direct comparison is difficult. Due to the amount of time needed

to generate bitstreams dynamically, many of the techniques use pre-compiled partial

bitstream or portions of the bitstream to be reassembled at runtime.

Although there are a number of techniques to generate partial bitstreams exter-

nal to the FPGA being reprogrammed, no applications are readily available to dynam-

ically generate partial bitstreams within the FPGA. If the resources to be avoided are

known, dynamically generating partial bitstreams to reprogram the FPGA with frame

granularity, can increase the number of recoverable faults since the number of spares

would be maximized. Even so, the techniques developed to date focus on efficient

fault recovery and avoid dynamic generation of bitstreams due to the considerable

time involve and large memory overhead of available tools.

31

III. Development of a Dynamic Reconfiguration System

3.1 Introduction

Using partial reconfiguration as a method for fault tolerance adds adaptability

and flexibility to the system but also increases complexity. A fault tolerant

system must not only be able recover from a fault, it must be able to detect the fault.

Although detecting and repairing faults with frame granularity maximizes the number

of recoverable faults, detecting the fault and generating a partial bitstream to repair

the fault would be very difficult. Column-based modular reconfiguration performs

fault detection and recovery at the module level. Faulty modules are replaced by

modules in use at another locations or altered to avoid the faulty resource.

Most previous reconfiguration based fault tolerant systems store separate bit-

streams for each area on the FPGA that the module can be placed, even if the modules

are functionally equivalent. These static bitstreams are pre-generated and stored in

memory or perhaps externally until needed. Since the bitstreams are for specific loca-

tions on the FPGA, separate bitstreams for each location on the FPGA a bitstream

that targets that location on the FPGA must be available. This requires a large

amount of memory which typically is not available in microprocessing platforms.

3.2 Problem Definition

3.2.1 Goals and Hypothesis. The primary goal of this research is to develop

an efficient fault recovery system that allows a user circuit to operate through faults.

The system will use relocatable modules to recover from faults without storing indi-

vidual bitstreams. Given the location of a fault in one of the relocatable modules,

the system will automatically replace the faulty module by properly translating the

bitstreams for the module and programming the FPGA through the ICAP. A user

circuit is considered to operate through a fault if it continues to operate properly de-

spite a fault occurring. A secondary goal is to evaluate column-based reconfiguration

techniques which take advantage of relocatable modules.

32

This research will determine whether the architecture of the Xilinx Virtex-II

Pro, and the Xilinx partial reconfiguration toolchain, can implement such a system

and whether reconfiguration methods can be developed to take advantage of the

architecture of the Virtex-II Pro.

3.2.2 Approach. To eliminate the need to store multiple partial bitstreams

for each module, that is, a separate bitstream for each possible location the module

could be placed within the FPGA, a method is developed to relocate the core by

manipulating the partial bitstream with an embedded microprocessor. Using this

approach, only one partial bitstream for each module needs to be stored in memory,

minimizing memory usage. To minimize the FPGA area dedicated to relocation, all

calculations needed to manipulate the bitstream are performed using a embedded

microprocessor. In an operational system the microprocessor could be used for other

tasks when not needed for reprogramming.

To achieve user circuit operation through faults, the user circuit is implemented

using TMR. Assuming the location of a fault is known, the microprocessor generates a

partial bit stream by manipulating an existing partial bitstream stored in memory for

the module determined to be faulty and relocating and reconnecting the replacement

module. Three TMR configurations that take advantage of relocatable modules are

developed.

3.3 A Column-Based Fault Tolerant Configuration

A column-based modular approach can be used to implement a fault-tolerant cir-

cuit that operates through faults. Partial bitstreams implement replacement modules

in spare locations to repair the circuit when a fault is discovered. The reconfigurable

modules that perform the primary function of the circuit are referred to as functional

modules. Figure 3.1 is a basic TMR circuit with three active functional modules and

room for two spare modules. Since the functional modules connect directly to the re-

33

Figure 3.1: Basic TMR Design. This TMR circuit contains
three modules (1, 2, and 3) perform the same function, denoted
f(x). Their results are send to a voting circuit which determines
the consensus output. Modules 4 and 5 are spares which pass
through the results. The input to each of the modules is deliv-
ered through a data input bus.

sult busses, this configuration is referred to as the “direct connect” design throughout

the remainder of this document

3.3.1 Benefits. Using TMR provides two key benefits. First, TMR provides

passive fault tolerance masking the fault and preventing errors from propagating

into other parts of the system. Assuming only one module is faulty at a time and

the two other modules continue to run correctly, the TMR circuit will select the

output of the two correctly functioning circuits. Although translating the bitstream

and reprogramming the FPGA takes time, the masking ability of the TMR circuit

allows the circuit to continue to produce the correct result. The second benefit is the

detection of errors. If two of the three modules are producing the same result, the

module that does not match the other two must have an error and should be replaced.

Although it is assumed that the location of the fault is know, a method similar to the

boundary scan techniques in the BISH design [GAF05] could be used to determine

the location of the fault. Once the module is replaced redundancy is restored and

system is ready for another fault.

34

3.3.2 Routing and Timing. Reconfiguring a circuit introduces two related

problems, routing and timing. Once a module has been relocated it must be recon-

nected to the TMR circuit. All routing in the FPGA design is typically performed by

implementation tools prior to programming the FPGA. Although dynamic rerouting

has been demonstrated using JBits and ADB [SA04], all signals entering and exiting

a reconfigurable areas must pass through bus macros (cf., Section 3.8.2). Thus an

alternative solution for modular reconfiguration is needed.

One solution is to have multiple partial bitstreams which perform the same

function but are connected to different busses. Each data bus used in the TMR

design is labeled in Figure 3.1. Modules 1, 2 and 3 all perform the same function,

represented by f(x), but are connected to different busses. The busses carry the

result from each module to the TMR circuit where their results are compared. This

configuration eliminates the need for rerouting the design after reconfiguration.

When using a TMR circuit, the results from each source must arrive within

the same clock cycle. The three result busses carry the results from the functional

modules to the TMR circuit. The data input bus in this configuration provides the

same combined path length for the input and results signals no matter which location

the function module is placed in. This ensures that timing is not affected by the

location of the module. The input signal passes through each of the reconfigurable

modules then loops back to the static module. The function implemented by the

module receives input from the input bus as it passes through the modules the second

time.

3.4 Using Relocatable Modules in TMR Designs

To implement a functional modules on an FPGA only one reference bitstream

is needed. This bitstream can be altered to allow the module to be placed at any

location on the FPGA. Using a technique similar to how bitstreams are manipulated

in the REPLICA2Pro [KP06], column-based modules can be relocated using software

to move them to any location on the FPGA.

35

(a) (b)

Figure 3.2: Modular Functions Before and After Reconfiguration. Bus macros are
shown between modules. (a) Three modules 1, 2, and 3 have identical functionality
but are connected to three different busses feeding the TMR circuit. Modules 4 and
5 are spares but pass data. (b) The bitstream used to program location 1 has been
translated used to program location 4 changing which module produces the result on
bus 1 that reaches the TMR circuit.

Relocatable modules greatly reduce the memory needed to store bitstreams.

The module is relocated by altering its bitstream to change the target location. This

technique reduces the number of bitstreams needed to implement a module in n

locations from n to 1. A method for relocating bitstreams is developed in Section 3.6.

3.4.1 Bitstream Storage Savings With Relocatable Modules. Comparing Fig-

ures 3.2a and 3.2b it can be seen that by moving module 1 into the location of module

4 not only is the functionality of module 1 replicated but it is also properly connected

to the bus. This also prevents the faulty results of the module at location 1 from

reaching the TMR circuit. Although storing and relocating multiple version of each

functional module is a convenient way to reconnect modules in a dynamic partial re-

configuration system, the ability to place a module at multiple locations and connect

to multiple busses increases the number of bitstreams needed. Without bitstream

relocation, the number of bitstreams needed is

of bitstreams = # of functions × # of locations × # of busses. (3.1)

36

Although this technique allows a functional module to be placed in any location

on the FPGA using only one bitstream, separate bitstreams to connect the module

to different busses are still needed. With detailed knowledge of how the bitstream

establishes connections between CLB blocks it is possible to establish new connec-

tions within the FPGA by manipulating the bitstream bit-by-bit. However, since

the information required about how routes are connected in the FPGA is not readily

available, techniques described in Sections 3.4.2 and 3.4.3 have been developed for dy-

namic routing which eliminate the needed for intricate knowledge of the FPGA and

the need for separate versions of the functional module for each bus connection. The

first is based on column-based partial reconfiguration and the second uses difference

based partial reconfiguration.

3.4.2 Routing with Relocatable Interconnect Modules. To support dynamic

routing, interconnect modules can be added to the partial reconfiguration area as

in Figure 3.3. By adding separate modules to perform bus routing, each functional

module has a standard configuration. The output of each functional module is passed

through the bus macro in the upper right corner of each functional module and the

data on each of the busses passes through. The interconnect modules take the output

of the functional modules and connect it to the appropriate bus while allowing the

data on the other busses to pass through unchanged. Note that this configuration

can easily be expanded by adding additional busses.

Similar to the partial bitstream used to instantiate the functional modules, the

bitstreams for reference interconnect modules can be altered to change where the

module will be placed. Using interconnect modules, reconfiguring the circuit consists

of relocating the functional module followed by relocating the interconnect module

that connects it to the proper result bus.

The benefit of using module relocation depends on the number of functional

modules, the number of possible locations for the functional modules and the number

of busses they connect to. The number of column-based bitstreams needed using

37

Figure 3.3: Relocatable Functional and Interconnect Module
Configuration. Using interconnect modules, labelled I, allows
the all functional modules to have a standard configuration by
eliminating the need for different versions that connect to the
different result busses.

interconnect modules for dynamic routing is

of bitstreams = # of functions + # of busses. (3.2)

Only one partial bitstream is needed for each functional module and each interconnect

module since they can be relocated to the desired location.

In (3.1) all of the bitstreams are approximately the same size. Note that the

bitstreams for interconnect modules in (3.2) may be much smaller than bitstreams for

the functional modules. Limitations that reduce the benefit of interconnect modules

are examined in Section 4.2.1.

3.4.3 Rerouting Using Difference Based Reconfiguration. The other form

of partial reconfiguration is difference-based partial reconfiguration. When there are

small changes between two designs, a partial bitstream can be produced that only

reflects the changes between the two designs. Difference based partial reconfiguration

creates a partial bitstream by comparing two bitstreams and determining which frames

are different between them. The partial bitstream only reprograms the frames that

have changed.

38

(a) (b)

Figure 3.4: Relocatable Modules with LUT Selected Bus Connections. In func-
tional modules, bus connections are controlled by LUTs which provide inputs to a
multiplexer to select between the module’s function and the incoming results bus. The
output of the LUTs shown as zeros or one above. (a) Modules 1, 2, and 3 provide
the inputs to the TMR circuit. Module 4 illustrates having a preprogrammed module
that does is not connect to the bus system. Module 5 is a spare module that passes
bus signals unaltered. (b) Modules 2, 4 and 5 now provide the inputs to the TMR
circuit. The LUTs in module 4 have been changed to connect to bus 2 and module 5
has been reprogrammed using the relocated partial bitstream.

Like the interconnect module approach, this technique changes which bus each

functional module connects to. Consider two versions of a functional module. The

first connects to results bus 1 and another that connects to results bus 2. Since the

only functional difference between the two is which bus they connect there may be

little difference between the two partial bitstreams. If this is so, a difference-based

partial bitstream would be small. However, since each of the modules are placed

and routed independently and optimized based on the location of their output, the

difference between the two could be dramatic requiring a larger partial bitstream to

account for all of the changes.

To prevent large differences between the bitstreams for functional modules that

connect to different busses, a multiplexer shown in Figure 3.4a and 3.4b selects which

bus each functional module places its output on. The bus selected by the multiplexer

is determined by the value of LUTs. To change which bus the module is connected

to, the values in the LUTs are changed using partial reconfiguration.

39

To ensure that the only difference between functional modules that connect to

different busses is the change in the LUTs, the modules that connect to different

bitstreams are created by editing the Native Circuit Description (NCD) file for the

functional module in location 1. The NCD file contains a physical representation of

the design mapped to specific resources in the target FPGA. The modified NCD file of

the functional module in location 1 that connects to results bus 1 results in a functional

module that passes through all signals. From these two NCD files, a difference-based

partial bitstream is generated which changed the values in the LUTs.

Unlike the previous two approaches, LUT-based routing requires special care to

prevent the relocated module from connecting to the wrong results bus. To prevent

result bus contamination, the initial configuration of the relocatable functional mod-

ular must pass signals on the result busses unaltered. Once the functional module

has been placed, the partial bitstream to change the values in the LUTs, selecting the

proper results bus, can be relocated and applied.

3.5 The Target FPGA

The Xilinx University Program Virtex-II Pro (XUPV2P) development system is

used to test the relocation technique and fault-tolerant modular configurations. Board

revision C uses a XC2VP30 Virtex-II Pro. For extended memory, 256MB of PC2100

Infineon DDR SDRAM (part number: HYS64D32000GU-7-B) is used and a 64MB

DG Vision Compact Flash stores the Advanced Configuration Environment (ACE)

file to program the FPGA and store reference partial bitstreams during testing.

In addition to the complexities of fault tolerance, the target XUPV2P board

introduces constraints that must be taken into consideration in when making a module

relocatable. The architecture of the Virtex-II (Pro) restricts the size and shape of

the reconfigurable modules. Although reconfigurable area can be defined as a small

rectangular area on the FPGA such as the one labeled “A” in Figure 3.5, since

the programmable frames span the length of a column all affected frames must be

reprogrammed. For example, to reconfigure module “A”, a partial bitstream that

40

Figure 3.5: Layout of Virtex-II Pro (xc2vp30ff896-7) in PlanAhead. The majority
of the FPGA is made up of CLB blocks. Four notional modules are labelled 1-4. The
inclusion of PowerPC cores and MGT make the CLB and BRAM resources available
to column-based modules vary by location. Additionally, BUFGMUX and DCM
resources are limited. Pin connections are made through the I/O banks bordering
the FPGA. Note that not all instances of each type of resource are labelled. The
resources are placed symmetrically horizontally and vertically.

contains all of the configuration data for module 2 with the changes to module “A”

is needed since each frame spans the entire column assuming the change in module

“A” affects every frame in the column. Otherwise, only affected frames are included

in the bitstream. The logic outside of module “A” can continue to operated during

configuration because the Virtex-II Pro offers “glitchless” reconfiguration. That is,

if a configuration bit holds the same value after reconfiguration as it did before, the

resource it programs will not “glitch” [BJRK+03]. Exceptions to this behavior in the

Virtex-II (Pro) are the LUT RAM and SLR16 primitives [SBB+06].

41

Since the bitstream to reconfigure a module contains all affected frames, special

consideration must be made for the size and location of reconfigurable modules to

ensure they can be relocated. Consider, for example, 4 equal size modules have been

labeled 1-4 in Figure 3.5. Although the modules are the same size, the resources

available at each location varies. For example, consider moving module 2 which

includes submodule “A” to location 4. Due to the PowerPC, the CLB and BRAM

resources needed by submodule “A” may not be available in location 4. Further

inspection shows that, in this configuration, no two modules have the same resources

available due to the PowerPCs. In addition to resource availability irregularities, there

are a number of unique resources in the Virtex-II Pro. In addition to the resources

labeled in Figure 3.5, Input/Output Blocks surround the perimeter of the FPGA.

The configuration bitstream does not contain bits to program any portion of

the PowerPC but static inputs control adjacent BRAM columns. The XC2VP30 also

has Multi Gigabit Transceivers (MGT) cores which replace a portion of the BRAM.

These MGT cores are programmed using approximately 300 configuration bits in the

adjacent BRAM interconnect column [Xil05b]. Although the MGT cores may not be

used in a design, it should be recognized that relocatable modules can not rely on the

BRAM components to be consistent between all locations.

Despite these shortcomings, the XUPV2P board makes an acceptable test plat-

form because of excellent documentation and demonstrated use in previous partial re-

configuration experiments. Additionally, the XUPV2P can be reprogrammed through

multiple interfaces including the ICAP, JTAG and SystemACE.

3.6 Developing the Bitstream Translation Program

Following a column based modular design approach [Xil04c,HM01], the location

of the reconfigurable modules is a function of the frame addresses in the bitstream.

This is also true for difference based bitstreams, but only frames that are different

between the two bitstreams are reprogrammed. To relocate a module or a difference

based bitstream, only the frame addresses and CRC values needed to be changed.

42

Figure 3.6: Frame Address Composition. The type of column is determined by
the BA, the columns is determined the MJA and the frame within the column is
determined by the MNA [Xil05b].

Before a method is developed for translating the bitstream, the composition of the

bitstreams and the configuration memory addressing scheme in the Virtex-II Pro is

addresses must be understood.

3.6.1 Virtex-II Pro Bitstream Composition. The details about the com-

position and construction of the Virtex-II Pro and Virtex-II Pro X bitstreams are

in [Xil05b]. The following analysis and decomposition of the bitstreams relies heavily

on this document. To translate a bitstream, the format and structure of the entire

bitstream must be understood so that the addresses can be located and altered ap-

propriately. The bitstream translation program (BTP) assumes the original partial

bitstream is valid and contains all commands necessary in a partial bitstreams to

reprogram the FPGA.

Following an initial 32-bit synchronization sequence, the remainder of the bit-

stream is made up of multiple data packets. The format of the bitstream packets is

discussed in Section 3.6.3, but first the addressing scheme is presented.

3.6.2 Configuration Memory Addressing. Each configuration frame is ad-

dressed using a unique 32-bit frame address. The 32-bit address is composed of the

block address (BA), major address (MJA) and a minor address (MNA). The MJA

specifies the column and the MNA specifies a specific frame within a column. Figure

3.6 shows how the BA, MJA, MNA and byte address make up the frame address.

The relationship between the BA, MJA and MNA is illustrated in Figure 3.7 where

n is number of devices CLB columns and m is number of device BRAM/BRAM

Interconnect Columns. The values for n and m are device dependent.

43

Figure 3.7: Column-Level (MJA) Configuration Memory
Map [Xil05b].

Divided by BA, the configuration memory for the Virtex II-Pro is independently

addressable in three blocks [Xil05b]:

• Block Address 0 (BA 00) contains all Global Clock (GCLK), Input/Output

Block (IOB), Input/Output Interface (IOI), and CLB configuration columns

• Block Address 1 (BA 01) contains all BRAM columns

• Block Address 2 (BA 02) contains all BRAM interconnect columns

All configuration memory is programmed through a bitstream. To change the

addressing of the bitstream, the processing of the bitstream must be understood.

3.6.3 Bitstream Packet Type. Bitstream packets are used to write data to

the registers of the FPGA configuration logic. Configuration packets can set configu-

ration options, program configuration memory, or change the value of internal FPGA

configuration signals. Each bitstream packet contains a header and a body. Two

types of packets are used.

Type 1, is used for smaller packets, up to 211 − 1 words, and Type 2 is used

for larger packets, up to 217 − 1 words. As can be seen from the packets headers in

Figures 3.8 and 3.9, both Type 1 and Type 2 packet headers can be used for reading

and writing, but only Type 1 packets can specify a register address. Type 2 packets

44

Figure 3.8: Bitstream Packet Type 1 [Xil05b].

Figure 3.9: Bitstream Packet Type 2 [Xil05b].

must be used directly after a Type 1 packet and read or write to the register specified

by the Type 1 packet.

3.6.4 Software Emulation of the Packet Processor. The packet processor is

the portion of the FPGA configuration control logic that drives incoming data into the

configuration register targeted by the packet header. The packet processor continues

to drive incoming data to the targeted register until the word count set by the packet

header reaches zero, signifying the end of the packet. The BTP must keep track of

how many words have been processed to determine when one packet ends and the

next one begins. Once the packet processor finishes processing a packet it waits for

the arrival of the next packet. This process is repeated for each packet until the end

of the bitstream is reached.

For Type 1 instructions, the word count is the 11 LSB of the packet header.

For Type 2 instruction, the word count is the 27 LSB of the packet header. A Type

2 write instruction is always preceded by a Type 1 header indicating that zero words

will be written to the Frame Data Input Register FDIR). Both Type 1 and Type 2

instructions can be used to read or write, but for the application of relocatable modules

the partial bitstreams, all packet headers have write commands. The translation

program as implemented in Appendix B supports changing the address bitstreams

that both read from and write to memory.

45

Table 3.1: Writing to Configuration Memory with CRC [Xil05b].

Configuration Data Explanation

30008001 Type 1 Packet Header: Write 1 word to CMD
00000001 Packet Data: WCFG Command
30002001 Type 1 Packet Header: Write 1 word to FAR
02000000 Packet Data: Frame Address = 0x02000000
3000401A Type 1 Packet Header: Write 26 word to FDIR
00000000 Packet Data: word 1

...
00000000 Packet Data: word 26
0000A53B AutoCRC word

3.6.5 Virtex-II Pro Configuration Registers. The bitstream translation pro-

gram must also account for the command words and settings written to each register

that affects the status of the FPGA. Of the 15 configuration registers, only the CRC

register, Frame Address Register (FAR), FDIR, Command Register, and Device ID

register are written to in partial bitstreams.

Writing a group of configuration frames starts with a Type 1 packet header

which indicates that 1 word will be written to the Command Register. The following

word is the Write Configuration Data Command. This command word is followed

by a Type 1 write header indicating 1 word is to be written to the FAR. The next

word is the frame address formatted as shown in Figure 3.6. The following word is a

Type 1 write instruction to write a specified number of words to the FDIR register.

The FDIR is the register that the actual frame configuration data is written to. This

sequence, shown in Table 3.1 is an excellent example of the commands needed to write

to configuration memory.

The FAR is automatically incremented with every write to the FDIR or read

from the Frame Data Output Register FDOR). Every time the address the FAR

changes, the command in the Command Register is executed. For packets larger than

211−1 words, the Type 1 packet can be immediately followed by Type 2 header which

can specify higher word counts

46

Table 3.2: Bitstream Command Codes that Required Special Actions

Reset CRC Set the calculated CRC value to 0
DESYNCH Indicates the end of the bitstream. Program can exit.
IDCODE Set BTP variables. No change to bitstream.

To ensure the bitstream being used for configuration was created for the target

device, the FPGA configuration control logic requires that the correct device ID be

written to the Device ID register. The BTP uses the device ID to determine the

number of CLB, BRAM and BRAM interconnect columns in the FPGA.

The Write Configuration Data command and the correct Device ID must be

written to the FPGA before writing to the FDIR register. These command are already

part of the original bitstream and must remain unaltered. To translate a bitstream,

only the frame address written to the FAR needs to altered since the remaining frames

are addressed relative to the first frame in the packet. The method for calculating

the new MJA is in Section 3.6.6.

3.6.5.1 Command Code Handling. Additional command codes that

change the state of the FPGA configuration logic must be incorperated into the BTP.

The codes that occur in partial bitstreams that require action are listed in Table 3.2.

The remaining of command codes require no action must be and are left unchanged

in the translated bitstream.

3.6.6 Calculating the New Major Address. Once the address being sent to

the FAR has been identified, the Block Type and MJA is extracted from the frame

address. Only the MJA will be altered, but the block type determines how it will

be altered. Additionally, the architecture of the target Virtex-II (Pro) FPGA affects

how the BTP calculates the new address. Using the number of CLB columns and

BRAM columns in the target FPGA, the BTP performs error checking to verify

that the address calculated targets an actual column within the reconfigurable area.

The number of columns in each Virtex-II Pro device is listed in [Xil05b] and can be

47

Figure 3.10: Distance between BRAM columns label in a view
of the top left-hand corner of the XCV2P30 displayed in the
PlanAhead.

automatically set by the BTP based on the Device ID read from the partial bitstream.

The XC2VP30 has 46 CLB columns and 8 BRAM columns.

Critical to the calculation of BRAM addresses is the number of CLB columns

between each BRAM/BRAM Interconnect column as illustrated in Figure 3.10. In all

Virtex-II Pro devices there are 6 CLB columns between BRAM/BRAM Interconnect

columns. Given the width of each reconfigurable module, mod width, the width of the

interconnect modules, inter width and the number of CLBs between BRAM columns,

CLBs between BRAM, the new MJA is calculated based on the current address and

the number of modules the module is being moved as

new CLB MJA = old MJA + (dist in mods)(mod width + inter width), (3.3)

new BRAM MJA = old MJA +
(dist in mods)(mod width + inter width)

CLBs between BRAM
. (3.4)

A Block Type of 0, indicates that the MJA is a CLB column and the new MJA is

calculated using (3.3). A Block Type of 1 or 2, indicates a BRAM column or BRAM

interconnect column and (3.4) is used.

If interconnect modules are not used, inter width is zero. Additionally, (3.3)

and (3.4) could easily be altered to calculate the new MJA based on translation

distance as in [KP06]. Specifying the translation distance allows more flexibility in

the placement of the reconfigurable modules since they do not all have to be adjacent

48

Figure 3.11: V2P Serial 16-bit CRC Circuity [Xil05b].

to one another. Since all of the proposed configurations use the modular design,

translation distance is specified in modules for convenience of the user.

3.6.7 Updating the CRC Value. A 16-bit CRC verifies the integrity of the

bitstream. For each 32-bit word written, with the exception of the Legacy Output

register (LOUT), the CRC is updated. As shown in Figure 3.11, the 5-bit address

code for the register and the 32-bit data word are used as input to the CRC calculation

[Xil05b].

Also included in the CRC calculation is the Frame Address written to the FAR.

Since this address is altered during the translation process, the original CRC value in

the bitstream will not match the CRC calculated by the FPGA. To avoid a CRC error,

the bitstream translation software must calculate the proper CRC value and alter the

bitstream accordingly. Each time the bitstream translation software processes a 32-

bit word that will be written to a resister other than the LOUT or CRC, the CRC

value is updated.

In the Virtex-II Pro, CRC checks are performed in two different ways. In the first

method, the CRC value is explicitly written to the CRC register using a Type 1 write

packet header targeting the CRC register followed by the pre-calculated CRC value.

This is referred to as an Explicit CRC. The second type of CRC check automatically

49

takes place at the end of a write to the FDIR. Once the number of words indicated by

the Type 1 or Type 2 read instruction have been written to the FDIR, the next word

in the bitstream is a CRC value which is automatically written to the CRC register.

This type of CRC check is referred to as an AutoCRC. The calculated CRC value

is set to zero each time the CRC reset command is written to the command register

or after the CRC register is written to using an Explicit CRC or AutoCRC with the

current calculated CRC value.

To perform the CRC calculation in software an algorithm written for the Virtex

series [Xil04d] was altered for the Virtex-II Pro and incorporated into the bitstream

translation program. Changes included support for additional register designations

and 5-bit register addressing. The code for updating the CRC can be found in Ap-

pendix B. As an option, bitstreams can be generated with CRC disabled. Before a

partial bitstream with CRC disabled can be used to reprogram an FPGA, the FPGA

must have been initially programmed using a bitstream with CRC disabled. The ini-

tial bitstream disables CRC checking on the FPGAs and all CRC values are expected

to be set to 0x0000DEFC. The BTP has the option to disable CRC. If this option is

set, the new bitstream uses the CRC values from the original bitstream (which should

be 0x0000DEFC).

3.6.8 Overall Organization of the BTP. The high level organization of the

BTP is shown in Figure 3.12. Since the CRC is not updated when a word is read

from a register, no changes to the bitstream are necessary for a read packet. Since

the frame address is written to the FAR using a Type 1 write before reading from

the FDOR, the BTP can be used without modification to change the location that a

bitstream will read from configuration memory.

3.7 FPGA Design Tools

To use a microprocessor in a partially reconfigurable design, both Xilinx Plat-

form Studio and Xilinx Project Navigator are required. These two software suites are

50

Figure 3.12: Flowchart for Processing a Packet. This flowchart shows actions for
each packet header type. The program in Appendix B implements the above using
a number of functions which decode command registers and commands to allow for
debugging. Note all of actions that alter the bitstream occur in Type 1 or Type 2
write packets. All read packets are left unchanged in the translated bitstream. The
CRC is updated for words written to all configuration registers except the LOUT. A
valid partial bitstream will never write to the FDOR.

51

typically referred to by their major components the Integrated Synthesis Environment

(ISE) and Embedded Development Kit (EDK), respectively. To perform partial re-

configuration, a supported version of ISE must be patched to include the appropriate

version of partial reconfiguration implementation tools. The implementation tools

are modified MAP, Place and Route (PAR), and library files that support partial

reconfiguration [Xil07a]. The version of EDK that is used depends on the version of

ISE that the implementation tools are available for.

Although implementation tools are available for ISE version 8.2i SP1, the design

flow for implementing EDK projects changed dramatically between versions 8.1 and

8.2 of the tools. At this time, the of documentation explaining how to incorporate

microprocessors developed in EDK 8.2 into partially reconfigurable designs created

in ISE 8.2i SP1 is inadequate, so version 8.1 is used. All design and testing of the

partial bitstream is conducted using ISE 8.1i SP1 with “PR 8” implementation tools

(ISE 8.1.01i PR 8) and EDK 8.1 (Build EDK I.18.8).

PlanAhead provides a graphical environment for modular design and partial

reconfiguration. PlanAhead version 8.2.6 is used to designate reconfigurable areas

and to place bus macros. Although the constraints needed for modular designs can

be created using the Floorplanner tool in ISE, PlanAhead provides a more intuitive

and easier to use design environment. For reconfigurable designs that to do not

incorporate a microprocessor, PlanAhead is used to build the partial bitstreams.

The partial reconfiguration support for PlanAhead greatly streamlines the gen-

eration of partial bitstream and eliminates the need for the rigid directory structure

required by the traditional partial reconfiguration design flow. Unfortunately, at this

time the PlanAhead partial reconfiguration flow does not include programming em-

bedded microprocessors or the creation of the ACE file to load the FPGA configuration

from a CompactFlash card.

For more control over the partial reconfiguration process, batch scripts are tai-

lored for each design that uses a microprocessor. Custom batch scripts enable the

52

process of building the partial bitstreams and creating a custom ACE file to be auto-

mated. An example script is included in Appendix C.

3.8 Implementing a Relocatable Partial Reconfiguration Design

The partial reconfiguration design flow for ISE 8.1.01i is well documented on

the Partial Reconfiguration Early Access software tools web site [Xil07a]. The 8.1.01i

partial reconfiguration design flow is not designed for relocatable modules and special

considerations must be made when designing relocatable modules.

3.8.1 Reconfigurable Modules. Relocatable modules are reconfigurable mod-

ules that can be moved on the FPGA. As part of the User Constraints File (UCF),

which defines logical constraints such as pin connections, instances of VHDL com-

ponents can be given area constraints to restrict the area they will be implemented

in. These area groups can be designated reconfigurable regions. Each reconfigurable

module is defined as its own reconfigurable region. Although a frame in a partial

bitstreams reprograms a fraction of a column, the partial reconfiguration design flow

for ISE 8.1.01i allows reconfigurable regions to be defined as any rectangular size.

Thus, for reconfigurable modules in Virtex II series devices no longer have to be the

full height of the column [Xil06]. The partial bitstream produced reprograms an en-

tire column if any portion of the frame in the reconfigurable area changes. Since the

resources available on the XUPV2P are not homogenous between columns (cf., 3.5),

the ability to specify shorter reconfigurable modules allows the logic used by each

reconfigurable module to be targeted to the portion of the column that has consis-

tent resources across the FPGA. Figure 3.13 shows the areas that have homogenous

resources as rectangles above and below the PowerPCs.

3.8.2 Bus Macros. All signals entering or exiting a reconfigurable region

must be routed through bus macros. Bus macros connect two reconfigurable regions

together or connect a reconfigurable region to a static portion of the design. Bus

macros define intermodular routing, forcing the interconnections of different reconfig-

53

Figure 3.13: Areas with Homogenous Resources Across
Columns. Restricting the reconfigurable area to the portions
of the FPGA that have consistent resource across all columns
ensures that the resources needed by module is available when
relocated. The regions shown above avoid the MGT, PowerPCs
and I/O banks.

urable modules to be identical. This insures the reconfigurable modules have identical

interfaces. Bus macros are hard-placed and hard-routed. The bus macros compat-

ible with ISE version 6.x are available as part of XAPP290 [Xil04c] and versions

compatible with ISE 8.x are available from the Early Access Partial Reconfiguration

lounge [Xil07a].

Partial reconfiguration for ISE 8.x allows static routes inside the partially recon-

figurable regions [Xil06]. This is a change from the requirements of XAPP290 [Xil04c],

which specifies that all signals must be routed through bus macros. This change sim-

plifies the design of Partial Reconfiguration design with non-relocatable modules and

improves timing. In non-relocatable designs, different version of the modules are

created by the partial reconfiguration tools. Partial bitstreams include the unique

functionality of that version and the static routing at that location. Since the static

routing is included in all versions of the reconfigurable module, static routing remain

intact during reconfiguration. However, relocatable modules static routes within re-

configurable modules must be prevented since reprogramming a module with a bit-

54

Figure 3.14: The Layout of a Bus Macro in FPGA Editor.

stream that does not program the static route will destroy any static routes that pass

through the module.

3.8.3 Making Reconfigurable Modules Relocatable. If static components are

placed on the FPGA and the reconfigurable modules are relocated, static logic must

not be allowed to use any resources within the reconfigurable areas. Static rout-

ing in reconfigurable modules can be prevented by using the XIL PRCONTROL file

to override the default behavior of the partial reconfiguration design flow. The Al-

low Routing In Dynamic Area field prevents the static portions of the design from

routing through the reconfigurable regions.

Using area constraints to confine a reconfigurable module to a subregion of the

column-based module, as explained in Section 3.8.1, ensures resources needed by the

module are available at all locations but allows static routes to use the resources above

and below the reconfigurable area. In order for Allow Routing In Dynamic Area to

prevent any static routes from being programmed by the partial bitstream, the recon-

figurable module must span the entire height of the column. For systems with static

logic, this further reduces the number of locations for relocatable reconfigurable mod-

ules.

55

Using Allow Routing In Dynamic Area severely limits the number of locations

that a reconfigurable module can be placed. In addition to resources such as DCMs

and BUFMUXs which must have routing resource available, designs using the Pow-

erPC require connections to the BRAM interconnect columns around the PowerPC

core as well as a connection to the PowerPC JTAG. Thus, if connections to unique re-

sources must pass through the reconfigurable regions, using Allow Routing In Dynamic Area

effectively prevents the router from making necessary connections.

3.9 Internal Reconfiguration

To support internal partial reconfiguration, a microprocessor feeds the partial

bitstream to the HWICAP. The microprocessor can also translate the partial bit-

streams. To support internal partial reconfiguration, the design includes static and

reconfigurable regions. The static regions contain the microprocessor, peripherals and

other portions of the circuit that will not be altered during reconfiguration.

3.9.1 Using an Embedded Microprocessor to Run the BTP. BTP was de-

veloped and testing on a PC using Microsoft Visual Studio 6.0. To test the BTP,

bitstreams created by the Xilinx partial reconfiguration tools were translated and

used to program the FPGA through the JTAG. Since partial bitstreams are the same

no matter which configuration method is used, the same bitstreams can be used to

program the FPGA through the ICAP.

To actively restore redundancy on an FPGA, the microprocessor can translate

a stored bitstream and reprogram the FPGA. The Virtex-II Pro supports both Mi-

croBlaze and PowerPC microprocessors processors. Each of these microprocessors

supports internal reconfiguration through the ICAP so either could be used to trans-

late partial bitstreams, relocate a module, and send the partial bitstream to the ICAP

interface. Each processor has advantages and drawbacks.

56

Figure 3.15: MicroBlaze System Block Diagram. The connec-
tions between the MicroBlaze and its peripherals are shown. The
MicroBlaze uses a Local Memory Bus (LMB) to access BRAM,
but uses the OPB to connect to all other peripherals.

3.9.2 MicroBlaze and uClinux. Presumably, the microprocessor on the

FPGA will be used for other purposes until it is needed to reconfigure the FPGA to

recover from a fault. To show that the bitstream translation program can be run on the

microprocessor along with other applications, the BTP is run on uClinux. uClinux

is a port of Linux designed to work on microcontrollers that do not have Memory

Management Units. A benefit of using uClinux with the MicroBlaze is availability

of ICAP drivers [WB04]. These drivers take the low level drivers written by Xilinx

and “wrap” them so the ICAP can be mounted as a device in the operating system

and accessed using build-in Linux device commands. The block diagram for the

MicroBlaze design is shown in Figure 3.15. The requirements for using uClinux on

the MicroBlaze can be found in [WSW06]. Instructions for using the ICAP in custom

program can be found in [WB04]. The BTP program only requires minor changes to

work in uClinux to account for the reversed byte order in uClinux fread() and fwrite().

One drawback of using the MicroBlaze is the additional area needed to instan-

tiate the microprocessor. Since the PowerPCs are already on the FPGA, not using

them is waste of reconfigurable area that could be used to increase the number of

locations for spare modules. Furthermore, in addition to the MicroBlaze, all neces-

sary peripherals including the HWICAP, memory controller, OPB controller, UART,

timer, debug module, and DCMs must be instantiated.

57

Figure 3.16: PowerPC System Block Diagram. The connec-
tions between the PowerPC and its peripherals are shown. The
PowerPC uses a Processor Local Bus which must be bridged to
access peripherals on the OPB.

3.9.3 PowerPC. The XUPV2P has two PowerPC 405 cores embedded in

the FPGA. Although many of the same peripherals used on the MicroBlaze need

to be instantiated for use with the PowerPC, the actual microprocessor does not

use any reconfigurable area on the FPGA with the exception of a small number of

configuration bits stored in adjacent BRAM interconnect columns. Xilinx’s ICAP

drivers can be used to write bitstreams to the ICAP. Figure 3.16 is the block diagram

of the PowerPC with the necessary peripherals to take a partial bitstream from a

compact flash, store it in memory, translate the bitstream and reprogram the FPGA

through the ICAP. Instructions on how to set up a PowerPC for partial reconfiguration

are found Appendix B. The BTP for the PowerPC can be found in Appendix B.

Like the MicroBlaze, the PowerPC as some drawbacks. In FPGAs with mul-

tiple PowerPCs, both PowerPCs must be connected to the PowerPC JTAG chain.

Unless both PowerPCs are instantiated in the design and properly connected to the

jtagppc cntlr signal, the EDK design will not pass EDK design rule checks. The exis-

tence of the non-global jtagppc cntlr signal which needs to connect to the otherwise

unused PowerPC core requires static logic be routed through the reconfigurable area

around the PowerPC.

58

3.10 Summary

This research determines if an efficient fault recovery system can be developed

which allows a user circuit to operate through fault. Efficiency is gained by not

storing individual bitstreams that implement the same function multiple locations on

the FPGA. Instead, the bitstreams are relocated by the BTP. The BTP is evaluated to

determine if successfully translates bitstreams. The suitability of using the XUPV2P

to implement the fault recovery system is also determined.

Additionally, this research explores using relocatable modules to implement fault

tolerant designs in FPGAs. The designs take advantage of portions of the Virtex-

II Pro that have homogenous resources to make the modules relocatable by simply

changing the frame addresses in the partial bitstreams. Each configuration will be

tested to validate that the designs work.

59

IV. Implementation

4.1 Introduction

The primary goal of this research is to develop an efficient fault recovery system

that allows a user circuit to operation through faults. Three TMR configura-

tions are developed. Each of these configurations can provide passive redundancy

and support the replacement of modules without interrupting the correct operation

of the user circuit. The BTP correctly translates the partial bitstreams and can be

implemented on an embedded microprocessor to perform internal partial reconfigura-

tion. Additionally, the XUPV2P development board provides sufficient resources to

implement the fault recovery system and user circuit.

4.2 Verifying Relocation of Partial Modules

The changes made by performing partial reconfiguration must be verified. Since

all changes are internal to the FPGA, the only way to determine if the modules are

relocated properly is to design the circuit so that the effect of the reconfiguration is

evident. A straightforward design to test is the interconnect module design shown in

Figure 3.3. Modules 1, 2, and 3 are programmed to add 1, 2 and 3, respectively, to the

input received on the input bus. All other functional modules pass data through the

bus macros unchanged. The results from the functional modules are placed on their

corresponding data busses by connecting through the interconnect modules as shown

in Figure 4.1. The 4 LSB of the data received on each result bus and the input bus is

displayed in hexadecimal on four 7-segment displays. Each of the 7-segment displays

correspond to one of the result busses or the data input bus as shown in Figure 4.2.

Figure 4.2a shows the initial configuration with modules 1, 2, and 3, connecting

through interconnect modules to busses 1, 2 and 3 respectively. Figure 4.2 shows

the results of the partial bitstream for module 1 being translated and used to replace

module 2. Similarly, the results of routing changes can also be observed using this

configuration.

60

Figure 4.1: Interconnect Module Layout Test Configuration.
To determine if module translation is successful redundant func-
tional modules are replaced with modules that add 1, 2 or 3 to
the input. A 7-segment display is used to display the results.
The spare modules is labeled with “S”.

Before implementing the modular designs developed in Chapter III on an FPGA

with a microprocessor, each configuration is tested by translating the partial bit-

streams using the BTP running on a PC and reprogramming the FPGA using the

JTAG. This technique determines if the translation and reprogramming of the module

is successful.

4.2.1 Testing the Interconnect Module Designs. Testing the interconnect

module design requires bitstreams for the functional module and each of the inter-

connect modules. To generate these partial bitstreams, the configuration shown in

(a) (b)

Figure 4.2: Partial Reconfiguration Status Display. The test
modules and top level layout are designed to show which module
connects to each bus.

61

Figure 4.3: Top Level VHDL Organization.

Figure 4.1 is implemented. The configuration uses 3 active functional modules, 1

spare functional modules, and 4 interconnect modules. The top level design, shown

in Figure 4.3, contains all I/O instances, clock buffers, base design instantiations,

partial reconfiguration module instantiations, signal declarations and bus macro in-

stantiations needed for the design in accordance with [Xil06]. Each of the static and

reconfigurable modules are created and synthesized separately.

4.2.1.1 Setting Design Constraints Using PlanAhead. To avoid the

nonhomogeneous resources on the FPGA, the design is placed in the lower right corner

of the FPGA below the PowerPC as shown in Figure 4.4. All module constraints and

bus macros placement are set using PlanAhead. PlanAhead also performs design

rule checking to verify that all design rules have been met for partial reconfiguration.

The process of laying out the design in PlanAhead uncovered a major flaw in the

use of interconnect modules. According to design rules, the minimum width for a

reconfigurable area with bus macros placed on both sides of the reconfigurable area is

two CLB columns. Since very little logic is implemented by the interconnect modules,

and no other logic is allowed in the region, using two entire columns for routing

prevents valuable resources from being used.

The configuration shown has 4 CLB wide functional modules and 2 CLB wide

interconnect modules thus, approximately 33% of the CLB resources the reconfig-

urable region is used by the interconnect columns. Considering that the only purpose

of the interconnect modules is routing, this may be an unacceptable use of resources.

62

Figure 4.4: PlanAhead Layout for the Interconnect Module
Configuration. A portion of the area constraints of the recon-
figurable modules are shown. Bus macros can be seen along the
right and left sides of the reconfigurable regions.

Although this configuration shows 100% of the BRAM/BRAM Interconnect columns

in the reconfigurable region being used by the interconnect columns, this was only for

convenience of module placement and could be used by the functional modules.

4.2.1.2 Translating the Modules. To test the BTP each of the four

functional module are translated to target each of the other functional module loca-

tions. The bitstreams produced by the BTP program the FPGA and their effect is

determined by the status of the system shown on the 7-segment display. The circuit

works as expected except when bitstreams for modules 2, 3, 4 are translated to target

the location of module 1. Using a translated partial bitstream to reprogram module

1 causes the circuit on the FPGA to crash. The result is that only one digit on the

7-segment display remains lit.

The 7-segment display is a common anode display which uses the same anodes

to drive all 4 digits on the display. Displaying only one digit is an indication that

63

Figure 4.5: FPGA Editor View of NCD for Interconnect Mod-
ules Design. The reconfigurable modules are outlined in black.
The buffered clock signal that is distributed to all reconfigurable
modules and the 7-segment display driver in the static logic is
highlighted. The BUFMUX connection is in the same column
as module 1.

64

Figure 4.6: Area Constraints Direct Connect and LUT-based
Configurations. To avoid disconnecting the system from the
clock, the columns that include the I/O blocks for the system
clock are not using in the reconfigurable modules.

the clock driving the state machine to determine which of the 4 digits should being

drive has been disconnected. By examining the NCD file in FPGA editor, shown in

Figure 4.5, it can be seen that static routing in the same column as module 1 connects

the system clock input to the BUFGMUX for clock distribution. Moving functional

module 2, 3, or 4 to location 1 removes the connection to the buffered system clock

and reprograms the I/O block. To prevent the system from crashing, modules that

have static routing can not be written over using translated bitstreams from another

location. However, in the configuration developed in Chapter III, the columns that

include connections to the clock pins and for routing the output of the BUFGMUX

can be used as one of the initial locations of the modules.

To test the interconnect modules, each of the interconnect modules were trans-

lated to each of the other interconnect module locations. The circuit performed as

expected for each reconfiguration; no problems were observed.

4.2.2 Testing the Direct Connect Modular Design. To test the direct connect

module design, a top level-design based on the layout in Figure 3.1 is developed using

functional modules that add 1, 2, and 3 to the value on the input bus. Modules 4 and

65

5 pass input and data bus values without changing them. A diagram of the top level

design is shown in Figure 4.7. Interconnect modules are not used in this layout and

the functional modules must be altered, and resynthesized to connect directly to result

busses. That is, each of the active functional modules replace the data on one of the

results busses with the result of the function it implements. Once again PlanAhead is

used to layout the reconfigurable area and produce partial bitstreams. The layout for

the reconfigurable modules is shown in Figure 4.6. It avoids static routing and clock

pin connections in the center of the FPGA by creating a gap between reconfigurable

modules where static logic can be placed. Since functional modules implemented by

the partial bitstreams connect to specific busses, the design is more difficult to test.

To verify that the partial bitstreams reprogram the FPGA properly, the partial

bitstream for module 4, which only passes through the data is used to “remove” all

of the modules. When modules are “removed” the display reads “0000” since the

modules in all locations place the data they receive on the inbound result busses

onto the outbound result busses without changing the data. Translated bitstreams

for modules 1-3 are used to implement functional modules in locations other than

their original locations. Since the proper translation of the module 4 bitstreams is

confirmed by their successful removal to the original modules, they can be used to

verify that other bitstreams are translated properly. Using the module 4 bitstreams,

the target of translated bitstream can be verified by replacing it with the module 4

bitstream targeted to the same location.

4.2.3 Implementing the LUT-based Modular Design. The LUT-based mod-

ular design, shown in Figure 3.4, requires additional constraints to be placed on the

modules for synthesis and implementation. Care must be taken to ensure the LUTs

used to control the multiplexors are not broken into multiple LUTs or eliminated due

to optimizations during implementation. To test the concepts behind the LUT con-

figuration, a simple design with three LUT controlled multiplexors is created using

the LOC, BEL, and LOCK PINS constraints. The LUT and BEL constraints force

66

Figure 4.7: Top Level VHDL Organization for the Direct Con-
nect and LUT-based Designs.

the three LUTs to be implemented in specific locations and LOCK PINS prevents the

pins of the LUT from being switched [Xil05a]. Forcing the LUTs to be in the same

column, not only makes them easier to find, it also minimizes the number of frames

changed by the difference-based partial bitstream. Since the locations of the LUTs

are known, the NCD file is easily edited to invert the equations implemented by the

LUTs.

Producing the difference based partial bitstream using the BitGen utility, as

described in [Xil04c], produces a bitstream which changes 49 frames. This is higher

than expected since an entire CLB column is only 22 frames [Xil05b]. The BitGen

utility takes a .NCD file and compares it to an existing bitstream to determine which

frames changed. Using the BitGen utility on the original .NCD file reveals that 48

frames have changed. Using the BTP to analyze the bitstreams, it can be seen that

both bitstreams change a series of frames with MJAs equal to 3, 4, 47, 48, and 49,

but only the partial bitstream produced from the altered .NCD file programs a frame

with a MJA of 35. This MJA corresponds with the location of the LUTs.

Although PlanAhead identifies the LUTs in the .NCD file for the reconfigurable

modules and permits the addition of location constraints, it does not include these

constraints in the user constraint file it creates for generating the partial bitstreams.

Only top level constraints are included. Even when the constraints are manually

added to the .UCF file used by the NGCBuild process for each reconfigurable module,

67

the LUTs cannot be constrained and are optimized out of the design. Due to this

limitation in the partial reconfiguration design flow, a reconfigurable design which

changed the routing within a reconfigurable region could not be demonstrated.

4.3 Adding a Microprocessor to the Design

Adding a microprocessor to the same FPGA as the reconfigurable circuit in-

creases the complexity of the design. For testing, the microprocessor is added as a

module of the top-level design and has no direct connection to the reconfigurable

area. Assuming the location of the fault is known, the microprocessor on the FPGA

can perform reconfigurations to repair the fault. In an actual system the reconfig-

urable area would be connected to the microprocessor to report faults that have been

detected.

4.3.1 Resources Used By Microprocessors. To evaluate the amount of re-

sources needed by each microprocessor and the peripherals used in the configurations

in Figures 3.15 and 3.16, the designs are synthesized in EDK and exported to PlanA-

head. In a typical FPGA design, the number of resources needed to implement the

design is a good indication of how much of the FPGA the design will use because

unused resources can usually be used by other components in the system. However,

in a modular reconfigurable system only static modules can be placed in the same

region as the microprocessor and peripherals. PlanAhead is used to determine how

large the module containing the microprocessor and peripherals must be to provided

the required resources. In both cases, the modular areas needed to be expanded until

they included the required amounts of BRAM.

Resources needed by the MicroBlaze and PowerPC with the peripherals shown

in Figures 3.15 and 3.16, are shown in Table 4.1. Although the PowerPC uses more

resources, this is largely due to the fact that the PowerPC design used 64KB of BRAM,

compared with only 8KB of local memory for the the MicroBlaze design, and includes

SystemACE loading of the initial configuration and access of partial bitstreams on

68

Table 4.1: Resources Required to Implemented each Microprocessor
and Peripherals.

PowerPC MicroBlaze

Resource Available Required Utilized Available Required Utilized
LUT 8,576 3,459 40.33% 4,922 3,204 64.18%
FF 8,576 3,078 35.89% 4,922 2,382 47.72%
SLICE 4,288 2,110 49.21% 2,492 1,954 78.29%
MULT18X18 50 0 0% 34 3 8.82%
RAMB16 50 33 66% 34 29 85.29%
TBUF 2,144 0 0% 1248 0 0%

a compact flash card. The large difference in BRAM usage is due to the difference

in operating systems and storage of the BTP, and are not inherent to the choice of

microprocessors. Figure 4.8 shows the portions of the xc2vp30ff896-7 that must be

reserved for each processor and peripherals.

Although the MicroBlaze has a smaller footprint than the PowerPC, the Pow-

erPC was chosen over the MicroBlaze due to stability problems encountered during

implementation. Additionally, the design flow for the MicroBlaze required a cus-

tom uClinux kernel be compiled for each major hardware and minor software change,

making testing cumbersome. The PowerPC design used a Xilinx standalone operating

system which could be quickly recompiled in EDK. The operating system used on the

PowerPC could also be used on the MicroBlaze, but it was not expected to improve

stability.

4.3.2 Changes to BTP for PowerPC. The BTP program requires changed

to use drivers written for the PowerPC and, to eliminate the need to load the BTP

into external memory, to place into the 64KB of BRAM used as internal memory.

To reduce the size of applications written for Xilinx embedded microprocessors, XPS

includes Xilinx versions of standard C libraries. Although they have less functionality,

they also use less memory than the standard C libraries. XPS automatically adds

libraries for standard C functions so care must be taken to avoid using common

69

(a) (b)

Figure 4.8: Footprint for each Microprocessor and Peripher-
als. The portion of the xc2vp30ff896-7 FPGA that must be ded-
icated to the PowerPC and peripherals (a) and the MicroBlaze
and peripherals (b).

functions as a printf(), which causes the stdio to be included in the compiled version

of the BTP increasing its size beyond 64KB.

On startup, the partial bitstreams are loaded from the compact flash into ex-

tended memory. To minimize the memory used to store bitstreams, BTP translates

the bitstream in memory without copying it. Therefore BTP stores the location the

bitstreams are currently targeted to and calculates new MJAs based on the desired

target.

To verify that the PowerPC version of the BTP correctly translated the bit-

streams, the CRC values are calculated are compared with those calculated for the

same bitstreams using the PC version.

4.3.3 Internal Reconfiguration using the PowerPC. To test the PowerPC

and make sure it properly applies the partial bitstreams to the ICAP, the blanking

bitstreams generated by the partial reconfiguration tools are used. Blanking bit-

streams contain all of the static routing and logic within the reconfigure module, but

70

not the logic implemented by the reconfigurable module. Since the bus lines that

pass through the results are part of the reconfigurable module, using the blanking

bitstreams removes these connections. The digits shown on the 7-segment displays

were consistent with the connections being removed and the circuit could be repaired

by reprogramming with the original bitstreams for each module.

4.4 Preventing Static Routing

To allow modules to be relocated internally using the PowerPC, static routing in

dynamically reconfigurable areas must be prevented. The PowerPC requires dozens of

I/O pin including clocks, external memory, compact flash and the UART. These I/O

pins are located on all sides of the FPGA package so static routing in dynamic areas

can not be avoided just by placing the reconfigurable portion of the circuit in a certain

area of the FPGA. Figure 4.9 shows all the routing on the FPGA for the interconnect

module design with a PowerPC and peripherals. The NCD file was created with no

restrictions on static routing in reconfigurable areas.

Although restricting the location of the reconfigurable areas to the area below

the PowerPC ensures all of the resources available at each location are homogenous, it

limits the effectiveness of the Allow Routing In Dynamic Area override. The override

is used to prevent static routing in the dynamic area, but does not prevent routing

above and below the reconfigurable area. The static routing above and below the

area will be included in the partial bitstream. To prevent static routing from being

included in the bitstream, the reconfigurable module must be frame bounded. That

is, the reconfigurable area must include entire frames. In the case of the Virtex-II

Pro, the reconfigurable modules must span the entire column.

4.4.1 Problems Caused by Restricting Routing. If static routing within re-

configurable areas is not allowed, design errors occur when unique resources utilized

by the static logic fall within the reconfigurable areas. Full column height reconfig-

urable areas in the Virtex-II Pro make it difficult to avoid including unique resources

71

Figure 4.9: FPGA Editor View of Interconnect Module Design with the Power
PC. The major components and all routing used for this configuration are shown
here. When relocating a module, all of the logic and routing programmed by the
configuration bitstream in the columns it occupies will be relocated. In additional to
the routing around the righthand PowerPC, including the PPC JTAG, the routing
connection made to distribute the output of the BUGFMUXs and the static routing
crossing through the reconfigurable areas are highlighted. Also note the bus lines that
make connections above the boundaries of the reconfigurable areas.

72

in reconfigurable area and prevent some of the areas from being used. Prohibiting

static routing within the reconfigurable areas prevents the resource within the recon-

figurable area from being connected to the static logic. This problem does not exist

in non-relocatable modular partial reconfiguration since each version of the reconfig-

urable module includes the necessary static logic.

4.4.1.1 Unique Resources. In the VC2V2P30, the BUFMUXs located

at the top and bottom of the center CLB columns of the FPGA can not be accessed by

static logic if these CLB column are included in the reconfigurable region. BUFMUXs

are used to buffer clock inputs and must be in designs that include a microprocessor.

Although, if static routing is not allowed, connections to DCMs can also become

unroutable if the DCM being used is in a reconfigurable area. On the VC2V2P30 there

are 8 DCMs and only two DCMs are required for the PowerPC or the MicroBlaze

designs. Location constraints must be used to ensure that the DCMs used are in the

static area.

Using the PowerPC to perform partial reconfiguration adds additional con-

straints to the areas where static routing can safely be restricted. The VC2V2P30

has two PowerPC cores. Although only one of the PowerPCs is used for the BTP

and to reprogram the FPGA, the other PowerPC must be connected to the global

ground signal and the PowerPC JTAG. EDK does not allow the second PowerPC to

be removed from the design because, by design rules, both must be connected to the

PowerPC JTAG. The routing around the second PowerPC is clearly evident in Figure

4.9.

4.4.2 Programming of I/O Blocks. Configuration data to program the I/O

blocks at the top and bottom of the FPGA is included in the configuration frames

[Xil04b]. If any pin connections are made within the configuration frame, moving the

frame will presumably create new connections to the corresponding I/O blocks at that

location. Although these connections may not affect the function of the circuit, using

a translated bitstream to replace a module that makes pin connections will destroy

73

Figure 4.10: I/O Blocks Used by Static Logic. The PowerPC
and display logic connect to I/O blocks located throughout the
FPGA. The SystemACE Compact Flash connections are high-
light with a lighter color (yellow).

all of the connections made by the original module. Additionally, it is unknown if

permanent damage can occur from configuring I/O blocks improperly.

On the XUPV2P, the I/O blocks for external memory are located on the left

side of the FPGA and the SystemACE Compact Flash connections are on the bottom

of the FPGA. Figure 4.10 is a view from PlanAhead with only the PowerPC and

static logic placed. The I/O block connections are represented by lines radiating from

these modules. The connections on the left and right side of the FPGA do not cause

a problem in the column-based relocatable designs, but connections on the top and

74

bottom of the FPGA prohibit relocatable modules from being placed in that location.

The SystemACE connections are shown highlighted using a lighter color (yellow).

In addition to the SystemACE, the DDR clock output and UART connect to the

top of bottom of the FPGA. Although it makes testing more difficult, the SystemACE

can be removed and partial bitstreams can be loaded directly into memory using

the Xilinx Microprocessor Debugger (XMD). Although in a real system it would be

possible to removed the UART, it is not practical in a development system. The DDR

clock output is in the static region so it does not cause a problem.

4.5 Safe Locations for Relocatable Modules on the XUPV2P

Removing the SystemACE Compact Flash decreases the number of columns that

are effected by I/O block placement, but the number of locations where relocatable

modules can be placed on the XUV2P is still severely limited. Figure 4.11 shows the

locations reconfigurable modules can and can not be when using a PowerPC to run

the BTP with support for the UART.

Given the minimum width of each reconfigurable region is two CLB columns,

the number of reconfigurable regions can be no greater than 6. If BRAM is required

by the relocatable modules, the number locations for the module is reduced to 3.

4.6 Errors During Bitstream Generation

By restricting the relocatable modules to the areas determined to be safe as

shown in Figure 4.11, a simple proof of concept design with only two relocatable

module can be created to demonstrate that the PowerPC can relocate the two modules

and reprogram the FPGA. The design is assembled properly when static routing is

allowed in the dynamic area but when static is prohibited, the process for creating

the partial bitstreams fails during the merge phase. In the merge phase the complete

design is built from the base design, containing the static logic, and each of the

reconfigurable modules.

75

Figure 4.11: Location Suitability for Relocatable Modules.
Considering required I/O blocks, PowerPCs, and static routing
to unique resources, suitable locations are shown. Note that the
PowerPC peripherals must be placed on the FPGA and require
enough BRAM to support the 64KB of internal memory. In the
VC2V2P30, this is 3 BRAM columns. Considering the BRAM
requirements and the large number of I/O block connections
on the left side of the FPGA, the most logical placement of
the PowerPC Peripherals is shown as rectangle surrounded by a
dashed line.

76

NCD files created for the partial bitstream by the partial reconfiguration tools

do not pass the PR verify design stage which checks to make sure that resources

used by the static portions of the design are not used by the reconfigurable modules.

PR verify reports that routing for a counter signal used by module that drives the

LED display and a global ground signal use “illegal arcs.” Defining the boundary

of reconfigurable module and prohibiting static routing within reconfigurable areas

should have prevented these routes from being placed in the reconfigurable modules.

The PR verify phase of the partial bitstream generation process identifies the illegal

use of resources exists and halts the bitstream creation process.

Without valid bitstreams for relocatable modules which do not include any

static routing in the reconfigurable areas, internal relocation and reprogramming can-

not be demonstrated. To verify that this problem was not fixed in the 8.2 partial

reconfiguration toolchain, all components except the PowerPC and peripherals were

resynthesized using the ISE 8.2 SP1. The same errors occurred using the 8.2 partial

reconfiguration toolchain.

4.7 Relocatable Module Support in 8.2 Partial Reconfiguration Toolchain

Although the ISE 8.2 partial reconfiguration toolchain was not used as the

primary toolchain for evaluating relocatable of modules for the Virtex-II Pro, it has

additional support for relocatable modules. Although it still in development, Xilinx is

adding additional constraints that can be used with the partial reconfiguration design

flow to specify that a reconfigurable region is intended to be relocatable [Blo06]. The

area group for a reconfigurable module can be specified as being relocatable to other

area groups.

Assuming pblock M1, pblock M2, pblock M3 and pblock M4 has been declared

as reconfigurable areas defined on frame boundaries and have the same size and in-

terface, relocation can be specified in the UCF as follows:

AREA GROUP "pblock M1" RELOCATABLE=pblock M2

77

AREA GROUP "pblock M1" RELOCATABLE=pblock M3

AREA GROUP "pblock M1" RELOCATABLE=pblock M4

For the Virtex-II Pro defining an area on frame boundary means the reconfig-

urable area spans the full height of the FPGA. Additionally, the area groups definition

in the UCF must include all I/O blocks included in the reconfigurable areas. When

a module is declared as relocatable, the partial reconfiguration tools ensure that the

resources used to implement the logic and routing implemented in its original loca-

tion are available in all of the locations it can be relocated to. Static routing in the

relocatable areas is automatically prohibited and no changes to the partial reconfig-

uration override are needed. In applications where timing is critical, variations of

the RELOCATABLE constraint can be used to make sure that resources that effect

timing are considered.

Ideally, this constraint could allow a reconfigurable module to utilize the com-

mon resources above and below the PowerPC, but on the Virtex-II Pro this is not the

case. Attempts to implement a relocatable module which contains any portion of the

PowerPC yields an error stating that the PowerPC is in a relocatable module but is

not part of the relocatable module. Currently, the only work around is to make sure

the relocatable regions do not overlap with the PowerPC [Mas07].

4.8 Relocatable Modules in the Virtex-4

Unlike the reconfiguration frames on the Virtex-II Pro which span the full col-

umn of the FPGA, the frames on the Virtex-4 are tiled within the clock regions of

the FPGA. Configuration frames in the Virtex-4 are 1-bit wide portions of a CLB

column that spans 16 CLBs high. Just as in the Virtex-II, a column in the Virtex-4

is made up of many configuration frames. Figure 4.12 shows the basic configuration

architecture for Virtex-II and Virtex-4 devices. A graphical representation of the por-

tion of the FPGA programmed by each configuration frame in each type of device is

shown. Also note that the I/O blocks are placed in columns through the FPGA fabric

78

(a) (b)

Figure 4.12: Layout of the Virtex-II and Virtex-4. The configuration frame in the
Virtex-4 spans the full height of a clock region, spanning only 16 CLB rows instead
of the entire height of the column as Virtex-II devices [SBB+06].

and not around the perimeter of the FPGA. The Virtex-4 uses “glitchless” logic and

unlike the Virtex-II this includes the LUT RAM and SRL16 logic [SBB+06].

The architecture of the Virtex-4 eliminates many of the problems encountered

in implementing relocatable modules on the Virtex-II Pro. Since the configuration

frames no longer span the entire height of the device, static routing can go around

relocatable modules. This also allows reconfigurable modules to be placed below and

above the PowerPCs. Additionally, since I/O block are are not programmed with CLB

configuration frames, reconfigurable modules can be moved without reprogramming

the I/O blocks.

4.8.1 Drawbacks of the Virtex-4. Bitstream translation for the Virtex-II Pro

is possible because the frame addressing scheme is published [Xil05b]. At this time,

the frame addressing scheme of the Virtex-4 has not been published. Presumably,

79

the addressing structure is similar to that of the Virtex II-Pro with considerations for

the architectural changes. Relocatable modules in the Virtex-4 should be able to be

translated vertically or horizontally. Relocation at run-time, in which “all of the frame

bits of the module bitstream are shifted by 16 CLBs rows”, has been demonstrated

using the Virtex-4 [SBB+06] but no details on what was done to shift the frames are

included.

4.9 Comparison with REPLICA2Pro

REPLICA2Pro demonstrates that a module can be relocated using hardware

MJA translation, but does not apply the technique to fault tolerance. REPLICA2Pro

translates bitstreams by changing the MJA in the partial bitstream in the same way

the BTP performs bitstream relocation. The primary difference in implementation

is that the changing of the bitstream is performed in hardware by REPLICA2Pro

instead of software. Although implementing the BTP with a PowerPC and peripherals

requires more resources than the REPLICA2Pro, the PowerPC can be used for other

functions.

Hardware MJA translation allows REPLICA2Pro to perform bitstream location

during the regular internal reconfiguration process. The BTP must translate the entire

bitstream before it can be sent to the HWICAP. In the TMR configuration, the system

is only able to tolerate one fault at a time, and although the system can continue to

produce a correct result, it is operating without redundancy. In each of the TMR

configurations developed, the location of the next replacement module is independent

of which module becomes faulty. To minimize the amount of time before redundancy

is restored, the bitstreams can be translated to the location that will be used for

the next spare before they are needed. If “pre-translated” bitstreams are used the

reconfiguration time for Replica2Pro and the BTP would be identical.

REPLICA2Pro avoids many of the problems encountered in this research by

using Virtex-II modules which are specifically design to connect all important signals

on the right side of the FPGA eliminating the use of I/O blocks on the top and

80

bottom of the FPGA that would be reprogrammed by relocating the module. To

allow relocation, REPLICA2Pro uses custom designed tools outside of the Xilinx

partial reconfiguration toolchain. REPLICA2Pro uses a bus generation system to

create a fixed horizontal communication infrastructure that takes the place of bus

macros. REPLICA2Pro uses Xilinx ISE 6.3 and generates the partial bitstreams

using the PartialMask Bitgen feature. The PR design and PR verify commands used

to generated bitstreams in the 8.1 and 8.2 toolchains are not available for ISE 6.3.

4.10 Summary

This chapter presents the results of implementing each of the TMR designs on

the XUPV2P development board and using the BTP to relocate the bitstreams. The

interconnect module and direct connect designs work as expected when unique re-

sources, such as pin connections, are avoided. The LUT-based routing design could

not be tested using the 8.1 partial reconfiguration toolchain. The BTP was im-

plemented on the PowerPC and proper operation of the the BTP was verified by

comparing the resulting bitstreams with those generated using a standalone PC. Un-

fortunately, demonstrating an automatic fault recovery system was not possible due

to the limitations of the partial reconfiguration toolchain. The architectural features

that limit the use of reconfigurable modules were identified and it was determined

that the Virtex-4 resolves many of these problems. Finally, the BTP is compared

with a hardware implementation that relocated modules using a similar method. The

next chapter draws conclusions from these results and presents suggestions for future

work.

81

V. Conclusions

5.1 Introduction

This chapter presents a summary of the problem, the conclusions based on the

implementation in Chapter IV and makes suggestions for future research.

5.2 Problem Summary

Partial reconfiguration has been shown to be an effective way to implement

fault tolerance in FPGAs. Reprogramming an FPGA to repair a fault requires that a

partial bitstream to implemented a replacement module be available at the time of the

fault. Since partial bitstreams target specific locations on an FPGA, most previous

fault recovery systems pre-generated and stored all of the partial bitstreams needed

to implemented a replacement module in each possible location. Upon relocation the

module must be connected to the user circuit.

5.3 Conclusion of Research

The goal of this study is to develop an efficient fault recovery system that

allows a user circuit to continue to operate through a fault without the need to store

individual bitstreams. Due to limitations in the partial reconfiguration tools used to

generate the partial bitstreams, and the placement and utilization of resources on the

target board, although the basic components of such a system are demonstrated, a

functional fault recovery system is not demonstrated.

Three TMR configurations are developed and tested that allow the user circuit

to remain operational through a fault and during reconfiguration. The configurations

provide passive redundancy and the routing techniques used allow faulty modules

to be replaced using translated partial bitstreams. The interconnect module design

provides a convenient way to change which result bus each functional module connects

to, but the area required to implement the interconnect modules does not justify

this benefit. Adding some of the functionality to the interconnect module is a way

82

to reduce the amount of resources left unused in the interconnect module, but the

viability of this approach is application dependent.

The direct connect method is straightforward and requires no dedicated space

for routing. Although bitstream relocation reduces the number of partial bitstreams

needed, the configuration still requires three partial bitstreams to implement the entire

functional module and one partial bitstream to program spare modules. Testing of

the direct connect design demonstrates that if I/O blocks and unique resources are

avoided, modules can be relocated to any reconfigurable location.

The LUT-based design has the potential of being the most efficient method for

altering the routing in a reconfigurable module since small bitstreams can be used to

change the routing of a standard functional module. Although the principles behind

this method were demonstrated, a reconfigurable design which dynamically changes

LUT output could not be implemented due to limitations in the partial reconfiguration

tool chain which did not incorporate lower level constraints placement.

The BTP successfully translates partial bitstreams to relocate a module by

changing the frame address and CRC values in the partial bitstream, eliminating the

need to store partial bitstreams for multiple modules that perform the same function

but target different locations on the FPGA.

The hypothesis of this study is that the architecture of the Virtex-II Pro and

Xilinx partial reconfiguration toolchain allow for the development of a bitstream relo-

cation system which performs bitstream manipulation in software on an embedded mi-

croprocessor to relocate partial bitstreams on the FPGA. It was shown that although

it is theoretically possible, a usable system cannot be implemented on the XUPV2P

development board using the ISE 8.1 partial reconfiguration toolchain. Consolidat-

ing many of the steps required for partial reconfiguration into the PR assemble and

PR verify, Xilinx streamlined the process for the user but reduced the flexibility of

the tools. To implement more advanced designs, a higher level of control is needed.

83

Furthermore, the unique resources on the FPGA must be taken into account

when defining relocatable modules to make sure that they can be relocated without

disrupting the system. The resources used by the reconfigurable module at its initial

location must be available in all locations the module will be relocated to, and static

routing must be avoided. Additionally, since configuration data for the I/O blocks are

included in each frame, the XUPV2P is a poor target platform for relocating partial

bitstreams when using an embedded microprocessor.

5.4 Significance of Research

This research develops a more efficient method for implementing a fault tol-

erance system using software bitstream translation. Although higher levels of re-

dundancy can be achieved without the need for partial reconfiguration by using N

modular redundancy, instantiating the redundant modules before they are needed

increases the power consumption of the FPGA. Using TMR with replaceable mod-

ules, only three functional modules are instantiated on the FPGA at a time reducing

power required. Such a technique could be called “just in time redundancy” since new

modules are placed on the FPGA only when they are needed to restore redundancy.

In addition to developing three TMR-based modular designs which take advan-

tage of bitstream translation, the requirements for ensuring that a module can be

translated are clearly defined. The resources used in the original location must be

available in all of the potential destinations, no static routing can be allowed in the

reconfigurable area and the module must not prevent static logic from connecting to

unique resources.

5.5 Recommendations for Future Research

A method for relocation modules on the Virtex-II Pro was demonstrated in this

study but the target XUPV2P development board did not provide enough usable lo-

cations for relocatable modules to properly demonstrate the automatic fault recovery

system. Larger versions of Virtex-II and Virtex-II Pro FPGAs have the same archi-

84

tectural features which restrict the placement of reconfigurable modules, such as the

PowerPCs on the Virtex-II Pro, but since the FPGAs are larger the restrictions affect

a smaller portion of the FPGA. In larger FPGAs, a greater percentage of the FPGA

could be used to implement the reconfigurable design.

An alternative to storing the partial bitstreams in memory is to retrieve the

configuration data for a module from configuration memory. The retrieved configu-

ration data could be translated and used to create a partial bitstream to relocate the

module. This eliminates the need to store partial bitstreams but assumes that the

configuration memory has not been corrupted by a SEU and is not corrupting the

process reading the configuration data.

With relocatable modules, an alternative approach to using TMR is double

modular redundancy. If the system can be stopped when a fault is detected, two

modules can be used instead of three. Faults can be detected by monitoring the

output of the modules to make sure they match. When a fault occurs the outputs

will no longer match and the system halted to allow for recovery. A new module can

be created to determine which of the two modules is faulty. Once the faulty module

has been identified it can be removed from the system to save power.

The Virtex-4 is a more suitable platform for modular reconfiguration. Many

of the limitations imposed by the architecture of the Virtex-II (Pro) are not in the

Virtex-4. The fault tolerant designs developed should be adapted and evaluated for

use on the Virtex-4. The ability to specify a module as RELOCATABLE in the

8.2 toolchain will greatly reduce the complexity of defining relocatable reconfigurable

modules and provide the ability to address timing issues associated with relocation.

85

Appendix A. Using the PowerPC for Partial Reconfiguration

This appendix describes how to create a PowerPC design using Xilinx Platform

Studio that is capable performing partial reconfiguration. This design is based

on an Xilinx University Program workshop given by Xilinx on 1 September 2006 in

Madrid, Spain.

A.1 Creating the EDK Project

A design using the PowerPC can be built quickly using the Base System Builder

(BSB). Before starting the design the board definition package must in installed on

the computer. The board definition package for the XUPV2P can be download from

https://www.xilinx.com/univ/xupv2p.html and can be placed at any location.

Create and New Project

• Select Base System Builder wizard

• Enter the path and filename of the new project

• Check use repository paths and specify the path to the lib directory of the board

definition

• Click OK

• Verify “I would like to create a new design” is selected and click OK

Select Board The target developed board can be selected. Note that if the reposi-

tory path correctly points to the board definition only the correct board vendor,

name and revision will be available in the drop down menus.

• Select Board vendor: Xilinx

• Select Board name: XUP Virtex-II Pro Development System

• Select Board revision: C

86

Select Processor The FPGA selection drop down menus should be grayed out. The

next series of screens allow for customizations to the PowerPC and peripherals.

The ICAP works at the same speed at the OBP, so the bus clock frequency and

processor frequency do not need to be adjusted.

• Select PowerPC

Configure PowerPC Select the following:

• Set Processor clock frequency to 100MHz

• Set Bus clock frequency 100MHz

• Select FPGA JTAG for the Debug I/F

• Check the enable box for cache setup

• Enable cache setup

• Select None for both Data and Instruction On-chip memory

Configure I/O devices as follows. All other I/O devices should not be

included (uncheck):

Universal Asynchronous Reciever/Transmitter RS232 Uart1

• Peripheral: OPB UARTLITE

• Baudrate: 9600

• Data bits: 8

• Parity: None

• Use Interrupt should not be checked

SystemACE for Compact Flash SysACE CompactFlash

• Peripheral: OPB SYSACE

87

• Use Interrupt should not be checked

Extended External Memory DDR 256MB 32MX64 rank1 row13 col10 cl2 5

• Peripheral: PLB DDR

• Use Interrupt should not be checked

Note that is could be different if a difference size memory module is used.

BRAM controller pbl bram if cntlr 1

• Peripheral: PLB BRAM IF CNTLR

• Memory size: 64KB

Cache Setup Since all instructions will be stored in the BRAM, instruction cache

is not needed for the external memory.

• DDR 256MB 32MX64 rank1 row13 col10 cl2 5: Check DCache

• pbl bram if cntlr 1: Check both ICache and DCache

Software Setup

• STDIN: RS232 Uart 1

• STDOUT: RS232 Uart 1

• Check the memory test checkbox

• Uncheck the Peripheral selftest

Memory Test

• Instruction: pbl bram if cntlr 1

• Data: pbl bram if cntlr 1

• Stack/Heap: pbl bram if cntlr 1

88

A.2 Adding Software, Exporting, and Integration

Once the base system has been generated, two additional peripherals can be

added. To allow for partial reconfiguration the obp hwicap must be added to the

design. The opb timer is used to measure the time it takes for the PowerPC to alter

the bitstream and reprogram the FPGA and can be accessed from the PowerPC using

Xilinx drivers. To add these components, find them in the IP catalog, right click on

them and select add IP. Both of these devices connect to the OPB. Once they are

visible in the System Assembly view, click on the hollow green circles on the OPB bus

to connect each device to the bus. To assign addresses to the HW ICAP and timer,

select the “Address” filter and click on the “Generate Addresses” button.

The design can be tested using the memory test program. Next, software is

added using the applications tab and support for the FAT16 file system on the Com-

pact Flash is added by selecting xilfatfs in the Software Platform Setting Menu.

To prepare the design to be exported into ISE, the clock buffer for the main

system added by EDK must be removed. Right click on dcm 0, select configure IP,

select buffers and choose “False” for “Insert a BUFG for CLK0”. This buffer must

be added at the top level so that it can also be used as the clock of the reconfigurable

design. The project can now be exported into ISE. First change the setting on the

Hierarchy and Flow Tab in the Project Options menu. Check both the “Processor

Design is a sub-module” and the “Use Project Navigator Flow” boxes. Then select

“Export Project to ISE” from the Project menu.

Exporting the EDK project creates a new ISE project with a top level file sys-

tem stub.vhd which instantiates the PowerPC system and defines the proper pin con-

nections. A system.ucf file is also created with the pin assignment. The system must

be synthesized by running XST. Using the instantiation template for the PowerPC

design from system stub.vhd, a top level design which includes both the microproces-

sor and the reconfigurable areas can be created. The clock buffer removed from the

EDK project must be replaced with a clock buffer at the top level.

89

Appendix B. Bitstream Translation Programs

This appendix contains the functions used to translate to the PowerPC. Unlike

the PC version, module translation distance is specified in CLBs and device

specific attributes such as the number of CLB columns in the device are hard coded

for efficiency. The translate() and supporting functions changes the frame address and

CRC values for a bitstream in memory given a pointer to the start of the bitstream in

memory, the size of the bitstream, and the distance in CLBs to translate the module.

The following definitions can be used for debugging and customization:

#define verbose 0

#define basic_info 0

#define crc_debug 0

#define bypass_crc 0

#define show_crc 0

#define CLB_width 6

The translate function starts on page 97 and is preceded by the functions it

calls.

/**

The update BCC function updates the bcc value which is used to calculate

the CRC. The BCC/CRC is determined by both the word being writen and the

address being written to. This function returns the bcc value.

get CRC(bcc) returns the CRC value based on bcc.

***/

unsigned int update BCC(unsigned int bcc, unsigned int current word, update BCC

int current reg){

unsigned long sw36 32, sw31 0; // used variable from

unsigned int sw, x16, x15, x2; // XAPP151 10

int i, j, addr, word;

addr = current reg;

90

word = current word;

sw36 32 = addr;

sw31 0 = word;

for (i=0; i<37; i++){ // iterate over the 37 bit input to CRC function

if (i<32){ j=i; sw = ((sw31 0 >> j) & 1); } // if i<32 used sw31 0

else {j=i−32; sw = ((sw36 32 >> j) & 1);} // if i<=32 use sw36 32

x16 = (bcc >> 15)^(sw); // bcc[15] XOR sw[j]

x15 = (((bcc >> 14)^(x16)) & 1); // bcc[15] XOR x16 20

x2 = (((bcc >> 1)^(x16)) & 1); // bcc[1] XOR x16

bcc = ((x15 << 15) | ((bcc & 0x3FFC) << 1)

| (x2 << 2) | ((bcc & 1) << 1) | (x16));

}

if (show crc){

xil printf(" (Data: %4X Reg: %4X BCC:%4X) \n\r ", word, addr, bcc);

}

return bcc;

}// end of update BCC update

/** 30

The getCRC function take the value of BCC and reverses the bits to get

the current CRC value. The code to reverse the bits in CRC crc[0. .15]=

bcc[15. .0] found at http://graphics.stanford.edu/˜seander/bithacks.html

***/

unsigned int get CRC(unsigned int bcc){ get CRC

int i = 0;

unsigned int crc;

unsigned int rem me = bcc;

crc = bcc << 1; 40

bcc >>= 1;

for (i =16 − 2; i; i−−)

{

91

crc |= bcc & 1;

crc <<= 1;

bcc >>= 1;

}

crc |= bcc;

crc = crc & 0xFFFF;

bcc = rem me; 50

if (show crc){

xil printf(" BCC:%4X CRC:%4X ", bcc, crc);

}

return crc;

}// end of get CRC

/**

The change address function changes the location of the modules

contained in the partial bitstream by changing the major address of for

the columns. It recognizes the block address of the frame address and 60

makes the appropriate changes using the global variables describing

the architecture of modular configuration. Frame Address Composition:

BA MJA MNA Byte Number

31-27 26-25 24-17 16-9 8-0

***/

unsigned int change address(unsigned int old address, int dist in mods) change address

{ unsigned int new address;

unsigned int new mja;

unsigned int new mja confirm; // used to verify shift worked properly 70

unsigned int block type = ((old address & 0x06000000) >> 25);

unsigned int mja = ((old address & 0x01FE0000) >> 17);

/**

92

Define the architecture of the modular design here

***/

int n clb = 46; // number of clb columns (device dependent)

int m ram = 16; // number of ram columns (device dependent)

int mod width = 4; // width in CLB colums of functional modules

int inter width = 2; // width in CLB colums of interconnect modules 80

int CLBs between RAM = 6; // number of CLBs between RAM columns

/**/

if (block type==0){ // for CLB columns

if (verbose){ xil printf("CLB Column ");}

new mja = mja + (dist in mods * (mod width + inter width));

// calculate the new major address

new mja = new mja << 17;

// shift the major address into position

new address = ((old address & 0xFE01FFFF) + new mja);

// put the unchanged bits back around the the new MJA 90

}

else if(block type==1){ // for BRAM Column

if (verbose){ xil printf("BRAM Column ");}

new mja = mja + (dist in mods * (mod width + inter width)

/CLBs between RAM);

// calculate the new major address

new mja = new mja << 17;

// shift the major address into position

new address = ((old address & 0xFE01FFFF) + new mja);

// put the unchanged bits back around the the new MJA 100

}

else if(block type==2){ // BRAM Column Interconnect

if (verbose){ xil printf("BRAM Interconnect Column "); }

new mja = mja + (dist in mods * (mod width + inter width)

/CLBs between RAM);

93

// calculate the new major address

new mja = new mja << 17;

// shift the major address into position

new address = ((old address & 0xFE01FFFF) + new mja);

// put the unchanged bits back around the the new MJA 110

}

else{

xil printf("ERROR: Unknown Column Type\n\r");

// shouldn’t happen

}

new_mja_confirm = ((new_address & 0x01FE0000) >> 17);

//extracts MJA to check

if (verbose){

xil_printf("Frame Address: BA:%d MJA:%d => MJA:%d\n\r",

block_type, mja, new_mja_confirm); 120

}

return new_address;

} //end of change address()

/**

The decode_command functions allows for special actions for each of the

possible commands that are sent to the command register. Most important

is clearing the CRC register when the CRC is written to and when the

pulse GCAPTURE signal is detected signifing the end of the bitstream.

***/ 130

unsigned int decode_command(unsigned int command_code, unsigned int bcc)

{

char command_name[30]= "no command";

bcc = update_BCC(bcc, command_code, 4); // command_reg = 4

switch(command_code) // determine type of instruction

{

94

case (1) : { strcpy(command_name, "Write Configuration Data"); break;}

case (2) : { strcpy(command_name, "Multiple Frame Write Register"); break;}

case (3) : { strcpy(command_name, "Last Frame"); break;}

case (4) : { strcpy(command_name, "Read Configuration Data"); break;} 140

case (5) : { strcpy(command_name, "Begin Startup Sequence"); break;}

case (6) : { strcpy(command_name, "Reset Capture"); break;}

case (7) : { strcpy(command_name, "Reset CRC");

bcc = 0;

if (crc_debug){ xil_printf("*CRC RESET* ");} break;}

case (8) : { strcpy(command_name, "Assert GHIGH_B Signal"); break;}

case (9) : { strcpy(command_name, "Switch CCLK Frequency"); break;}

case (10): { strcpy(command_name, "Pulse the GRESTORE Signal"); break;}

case (11): { strcpy(command_name, "Begin Shutdown Sequence"); break;}

case (12): { strcpy(command_name, "Pulse GCAPTURE Signal"); break;} 150

case (13): {

if (verbose){

xil_printf("Command Code : Reset DALIGN Signal \n\r");

} // this signal indicates the end of the bitstream

if(basic_info){ xil_printf("End of bitstream found.\n\r");}

break;}

default : { strcpy(command_name, "Warning: UNKNOWN COMMAND \n\r");

xil_printf("%s \n\r", command_name);

break;}

} 160

if (verbose && (command_code != 13)){

xil_printf("Command Code : %s Returned BCC: %X \n\r",

command_name, bcc);

}

return bcc;

} // end of command ID

95

/**

The id_device identifes the device type by getting the next word after

a Type 1 instruction to write to the device id register. The word is 170

decoded to the device name.

***/

unsigned int id_device(unsigned int device_id_code, unsigned int bcc)

{

char device_name[15];

bcc = update_BCC(bcc, device_id_code, 14); // device register = 14

//write_word(device_id_code); // never change device code

switch(device_id_code) // determine name of the device

{

case (19030163) : { strcpy(device_name, "XC2VP2"); break;} 180

case (19128467) : { strcpy(device_name, "XC2VP4"); break;}

case (19177619) : { strcpy(device_name, "XC2VP7"); break;}

case (19292307) : { strcpy(device_name, "XC2VP20"); break;}

case (25583763) : { strcpy(device_name, "XC2VPX20"); break;}

case (19390611) : { strcpy(device_name, "XC2VP30"); break;}

case (19472531) : { strcpy(device_name, "XC2VP40"); break;}

case (19521683) : { strcpy(device_name, "XC2VP50"); break;}

case (19636371) : { strcpy(device_name, "XC2VP70"); break;}

case (25927827) : { strcpy(device_name, "XC2VPX70"); break;}

case (19751059) : { strcpy(device_name, "XC2VP100"); break;} 190

default : { strcpy(device_name, "UNKNOWN DEVICE"); break;}

}

if(basic_info)

{

xil_printf("Bitstream Target Device: %s\n\r", device_name);

}

return bcc;

}

96

/**

The translate function determines what type of instructions each word 200

is and calls all related functions based on the type of instruction.

***/

void translate(Xuint32 *bsPtr, Xuint32 bsSize, Xuint32 distance){

int i = 0; // used for master pointer

int j = 0; // used in local loops

int register_num; // holds the register being accesses

int bcc = 0; // calculated BCC

int bsCRC = 0; // CRC in bitstream

int new_address; // the new address after translation

int word_count; // the number of words listed in the instruction 210

int auto_CRC; // the auto_CRC from the original bitstream

char register_name[40]="no reg"; // decoded register name

// find the synchronization sequence

while (i < bsSize){

if (bsPtr[i]==0xAA995566){

if(basic_info){

xil_printf("Synchronization Sequence Found\n\r");

xil_printf("Translating Bitstream %d modules\n\r", distance);

}

i++; 220

break;

}

i++;

if (i >= bsSize){

xil_printf("Synchronization Failed");

exit(1);

}

}

while (i < bsSize){

97

// Use the bitstream size to determine when to stop 230

if(verbose){ xil_printf("0x%x | ", bsPtr[i]);}

// displays the HEX for each command (not skipped words or addresses)

if ((bsPtr[i] & 0xF8000000) == 0x28000000) // type 1 read op

{//start type 1 read

word_count = bsPtr[i] & 0x000007FF;

for (j=0; j<word_count; j++){ // skip words

i++; // skip words in the bitstream (no CRC for read)

}

if (verbose){

xil_printf("Type 1 read operation: reading %i words\n\r", word_count); 240

}

}// end type 1 read

else if ((bsPtr[i] & 0xF8000000) == 0x48000000)

{//Type 2 read operation

word_count = bsPtr[i] & 0x07FFFFFF; // extract word count

for (j=0; j<word_count; j++){ // skip words

i++; // skip words in the bitstream (no CRC for read)

}

if (verbose){

xil_printf("Type 2 read operation: reading %i words\n\r", word_count); 250

}

}// end type 2 read operation

else if ((bsPtr[i] == 0x20000000))

{// Type 1 No OP

if (verbose){ xil_printf("Type 1 NOOP word 0\n\r"); }

i++;

}

else if ((bsPtr[i] & 0xF0000000) == 0x30000000) //type 1 write

{

register_num = ((bsPtr[i] & 0x07FFE000) >> 13); 260

98

// extract the register from the instruction

word_count = bsPtr[i] & 0x000007FF; // Determine word count

i++;

switch(register_num) // Determine name of register

// this greatly helps in debugging allowing the bitstream to be readable

{

case (0) : { strcpy(register_name, "CRC Register"); break;}

case (1) : { strcpy(register_name, "Frame Register Address"); break;}

case (2) : { strcpy(register_name, "Frame Data Input Register"); break;}

case (3) : { strcpy(register_name, "Frame Data Output Register"); break;} 270

case (4) : { strcpy(register_name, "Command Register"); break;}

case (5) : { strcpy(register_name, "Control Register"); break;}

case (6) : { strcpy(register_name, "Masking Register for CTL"); break;}

case (7) : { strcpy(register_name, "Status Register"); break;}

case (8) : { strcpy(register_name, "Legacy Output Register"); break;}

case (9) : { strcpy(register_name, "Configuration Option Register"); break;}

case (10) : { strcpy(register_name, "Multiple Frame Write Register"); break;}

case (11) : { strcpy(register_name, "Frame Length Register"); break;}

case (12) : { strcpy(register_name, "Initial Key Address Register"); break;}

case (13) : { strcpy(register_name, "Initial CBC Value Register"); break;} 280

case (14) : { strcpy(register_name, "Device ID Register"); break;}

}

if (verbose) { xil_printf("Type 1: Write %d word(s) to %s

register\n\r", word_count, register_name); }

switch(register_num) {

// Decode register and perform required actions

case (0) : { // CRC Register

if (crc_debug){ xil_printf("Calculated Explicit CRC: %X ", get_CRC(bcc));}

bsCRC = bsPtr[i++]; // get value of CRC in bitstream for comparison

if (bypass_crc){ 290

// do nothing

99

}

else {

bsPtr[i-1] = get_CRC(bcc); // write over old CRC value

};

if (crc_debug){ xil_printf("Bitstream Explicit CRC: %X\n\r", bsCRC);

// identified this as an explicit bitstream CRC write

}

break;}

case (1) : 300

{ // Frame Register Address

new_address = change_address(bsPtr[i], distance);

// calculated the new address based on old and translation distance

bcc = update_BCC(bcc, new_address, register_num);

// update BCC based on the new address

bsPtr[i] = new_address; // write new address to memory

i++; // points to the next command

break;}

case (2) : { // Frame Data Input Register

// pass through each of the configuration words 310

if (word_count > 0){// skip words with CRC update

for (j=0; j<word_count; j++){

bcc = update_BCC(bcc, bsPtr[i], register_num);

i++; // skip words in the bitstream

} // end of for

if (crc_debug){ xil_printf("Calculated CRC: %X ", get_CRC(bcc));

// prints the current value of crc

}

auto_CRC = bsPtr[i]; // get the bitstream’s auto CRC for comparison

// during testing 320

if (bypass crc){

//do nothing

100

} // end of if

else {

bsPtr[i++] = get CRC(bcc); // writes new CRC value

} // end of else

if (crc debug){xil printf("Auto CRC: %X\n\r", auto CRC, get CRC(bcc));}

// Displays the crc value from the bitstream

bcc = 0; // clears the bcc register (therefore crc)

} // end of if word count >0 330

break;}

case (3) : { // Frame Data Output Register case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // end of skip words with CRC update

break;}

case (4) : { // Command Register 340 case

bcc = decode command(bsPtr[i++], bcc);

break; }

case (5) : { // Control Register case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // end of skip words with CRC update

break;} 350

case (6) : { // Masking Register for CTL case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

101

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // end of skip words with CRC update

break;}

case (7) : { // Status Register case

if (word count > 0){// skip words with CRC update 360

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // skip words with CRC update

break;}

case (8) : { // Legacy Output Register case

if (word count > 0){// skip words with NO CRC update

for (j=0; j<word count; j++){

i++; // skip words in the bitstream 370

// legacy output does not update CRC

}

} // skip words with NO CRC update

break;}

case (9) : { // Configuration Option Register case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

} 380

} // end of skip words with CRC update

break;}

case (10) : { // Multiple Frame Write Register case

if (word count > 0){// skip words with CRC update

102

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // skip words with CRC update

if (verbose){ 390

xil printf("packet data write MFMR word %i\n\r", i);

}

break;}

case (11) : { // Frame Length Register case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // skip words with CRC update 400

break;}

case (12) : { // Initial Key Address Register case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

} // skip words with CRC update

break;}

case (13) : { // Initial CBC Value Register 410 case

if (word count > 0){// skip words with CRC update

for (j=0; j<word count; j++){

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

}

103

} // skip words with CRC update

break;}

case (14) : { // Device ID Register case

bcc = id device(bsPtr[i++], bcc);

break; 420

}

}

} // end of else if

else if ((bsPtr[i] & 0xE0000000) == 0x40000000) if

{ // Type 2 write

word count = bsPtr[i++] & 0x07FFFFFF;

if(verbose){

xil printf("Type 2: Write %d word(s) to last register\n\r", word count);

}

for (j=0; j<word count; j++){ // skip words 430

bcc = update BCC(bcc, bsPtr[i++], register num);

// skip words in the bitstream and update CRC

} // end skip words

auto CRC = bsPtr[i++]; // get the auto CRC from the bitstream

if (crc debug){xil printf("Auto CRC: %X

Calculated CRC: %X \n\r", auto CRC, get CRC(bcc));}

// Displays the crc value from the bitstream

bcc=0; // reset the bcc (and crc)

} //end Type 2 write else if

440

else { // catch all

xil printf("WARNING: Unknown Type\n\r");

i++;

}

} // end of while statement that searches for end of file

104

} // end of translate function

105

Appendix C. ISE 8.1 and PlanAhead Design Flow

The design flow for partial reconfiguration continues to change as Xilinx improves

the tools available to create partially reconfigurable designs. The latest docu-

mentation is available on Xilinx’s Early Access Partial Reconfiguration web site.

C.1 ISE 8.1 Partial Reconfiguration Design Flow

The partial reconfiguration design flow for 8.1 (without using PlanAhead) is

found in [Xil06]. The user guide includes the requirements for partial configuration

designs including those with EDK components. Instruction on using PlanAhead for

partial reconfiguration can also be found at this site.

PlanAhead greatly simplifies the process of creating partial bitstreams. Once

the top level and each of the static and reconfigurable modules have been synthesized

using XST, only the .ncd, .ucf, and bus macro .nmc files are needed to create the

partial reconfiguration design. Once area group constraints and bus macros have

been placed using the graphical interface, the built-in design rule checker can be used

to verify the partial reconfiguration design rules have been met. To perform the

partial reconfiguration design flow, PlanAhead takes the .ncd, .ucf, and .nmc files

and copies them to the appropriate directories. Scripts to perform the necessary ISE

actions are automatically generated and can be run from within PlanAhead. Although

PlanAhead makes constructing a basic partial reconfiguration design easier, the scripts

generated by PlanAhead do not extend the design flow to included generation of the

ACE file or programming the microprocessor included in a partial reconfiguration

design.

For designs with microprocessor or for more flexibility, batch scripts can be tai-

lored to implement the partially reconfigurable design. Figures C.1 and C.2 illustrate

the complexity of the partial reconfiguration design.

106

Figure C.1: Partial Reconfiguration Design Flow (1). The design
starts as individual VHDL files for each of the static and reconfigurable
modules. The top level design (top.vhd) is created by adding top-
level logic such as bus macros, connections between static modules, pin
connects, and clock buffers to the system stub.vhd created in EDK.
For easy module and bus macro placement, the synthesized modules,
system constraint file and bus macros can be loaded into PlanAhead
even if PlanAhead is not used to generate the scripts.

107

Figure C.2: Partial Reconfiguration Design Flow (2). The synthe-
sized top level design and module are combined in this phase to im-
plement the base design and each of the PR modules. The designs
are merged together using the PR verify and PR assemble functions
which first verify that all partial reconfiguration rules are followed then
produce the partial, blanking and full bitstreams.

108

C.2 ISE 8.2 Partial Reconfiguration Toolchain

The Xilinx 8.2 partial reconfiguration tools chain was also experimented with to

determine it provided a greater level of support for partial reconfiguration. Although

it was not used because of the deprecated flow for exporting EDK designs to ISE, one

key changes was discovered.

Stating with the 8.2, the partial reconfiguration toolchain creates compressed

bitstreams by default. Data2mem.exe can not be used with a compressed bitstream.

To prevent the bitstreams from being compresses the "-g compress:no" option must

be used with PR verifydesign and PR assemble. To use the following script in 8.2,

this option must be added.

C.3 Example PR Implementation Script

The following script is based on an Xilinx University Program workshop given

by Xilinx on 1 September 2006 in Madrid, Spain. For brevity only two reconfigurable

modules are used.

Build top level context

echo -e " \ nStart: 1) Build top level context\n"

cd Top

rm *

cp ../Synth/Top/top.ngc .

cp ../Data/top.ucf .

cp ../Data/*.nmc .

ngdbuild -modular initial -p xc2vp30-7-ff896 top.ngc

cd ..

build static portion of the design

echo -e "\nStart: 2) Build static portion of

the design\n"

cd Static

rm *

109

cp ../Synth/display_mem/display_mem.ngc .

cp ../Synth/led_driver/led_driver.ngc .

cp ../Synth/static_in/static_in.ngc .

next 3 lines are required for edk project

cp ../Synth/edk/implementation/*.ngc .

cp ../Synth/edk/implementation/system_stub.bmm .

cp ../Synth/edk/projnav/*.ngc .

cp ../Data/top.ucf .

cp ../Data/*.nmc .

ngdbuild -p xc2vp30-7-ff896 -bm system_stub.bmm

-modular initial ../Top/top.ngo

map top.ngd

par -w top.ncd top_routed.ncd

cd ..

Build m1_mod reconfig module

echo -e "\nStart: 4a) Build m1_mod reconfig module\n"

cd ReconfigModules/m1_mod

rm *

cp ../../Synth/m1_mod/function_mod1.ngc .

cp ../../Data/top.ucf .

cp ../../Data/*.nmc .

cp ../../Static/static.used arcs.exclude

ngdbuild -modular module -p xc2vp30-7-ff896

-active function_mod1 ../../Top/top.ngo

map top.ngd

par -w top.ncd top_routed.ncd

cd ../..

Build m2_mod reconfig module

echo -e "\nStart: 4b) Build m2_mod reconfig module\n"

cd ReconfigModules/m2_mod

rm *

110

cp ../../Synth/m2_mod/function_mod2.ngc .

cp ../../Data/top.ucf .

cp ../../Data/*.nmc .

cp ../../Static/static.used arcs.exclude

ngdbuild -modular module -p xc2vp30-7-ff896

-active function_mod2 ../../Top/top.ngo

map top.ngd

par -w top.ncd top_routed.ncd

cd ../..

Merge ncds and generate bitstreams

echo -e "\nStart: 7) Merge ncds and generate bitstreams\n"

cd Merges

rm *

rm -rf PRtmpdir

cp ../Static/top_routed.ncd static.ncd

cp ../ReconfigModules/m1_mod/top_routed.ncd function_mod1_routed.ncd

cp ../ReconfigModules/m2_mod/top_routed.ncd function_mod2_routed.ncd

next line required for edk design

cp ../Synth/edk/implementation/system_stub.bmm .

PR_verifydesign.bat static.ncd function_mod1_routed.ncd function_mod2_routed.ncd

PR_assemble.bat static.ncd function_mod1_routed.ncd function_mod2_routed.ncd

cd ..

Create download.bit

cd Merges

echo -e "\nStart: 8) Create download.bit \n"

cp ../Synth/edk/TestApp_Reconfig/executable.elf .

data2mem -bm system_stub_bd.bmm -bt static_full.bit

-bd executable.elf tag plb_bram_if_cntlr_1_bram -o b download.bit

cd ..

echo -e "\nStart: 9) Copy bitstreams back to EDK project \n"

cd Merges

111

cp static_full.bit ../Synth/edk/implementation/system.bit

cp download.bit ../Synth/edk/implementation

cp system_stub_bd.bmm ../Synth/edk/implementation/system_bd.bmm

cd ..

Create system.ace

echo -e "\nStep 10) - Creating system.ace file \n"

cd Merges

rm ../CF_files/*

cp ../Data/genace.opt .

cp ../Data/genace.tcl .

xmd -tcl ./genace.tcl -opt genace.opt

cp system.ace ../CF_files

cp function_mod1_routed_partial.bit ../CF_files/m1_mod.bit

cp function_mod2_routed_partial.bit ../CF_files/m2_mod.bit

cp pblock_m1_blank.bit ../CF_files/m1_blank.bit

cp pblock_m2_blank.bit ../CF_files/m2_blank.bit

cd ..

echo -e "\nDone!\n"

112

Bibliography

AL81. T. Anderson and P. Lee. Fault Tolerance Principles and Practice. Prentice
Hall, 1981.

Alp98. C. J. Alpert. The ISPD98 circuit benchmark suite. In Proceedings of the
1998 international symposium on Physical design, pages 80–85, 1998.

BJRK+03. Brandon Blodget, Philip James-Roxby, Eric Keller, Scott McMillan, and
Prasanna Sundararajan. A Self-reconfiguring Platform. In Lecture Notes
in Computer Science, volume 2778, pages 565–574, September 2003.

Blo06. B. Blodget. Research Engineer, Xilinx Labs, Logmont, CO. Personal
Coorespondance. 11 December 2006.

CCMM04. E. Carvalho, N. Calazans, F. Moraes, and D. Mesquita. Reconfigura-
tion Control for Dynamically Reconfigurable Systems. In Proceedings of
Conference On Design of Circuits and Integrated Systems (DCIS), pages
405–410, 2004.

DFR+05. Alberto Donato, Fabrizo Ferrandi, Massimo Redaellii, Marco D. Santam-
brogio, and Donatella Sciuto. Caronte: a complete methodology for the
implementation of a partially dynamically self-reconfigurating systems
on FPGA platforms. Field-Programmable Custom Computing Machines,
2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 321–322,
2005.

DP94. S. Durand and C. Piguet. FPGA with Self-Repair Capabilities. ACM
Int Workshop on Field-Programmable Gate Arrays (FPGA94), Berkeley,
February, pages 1–6, 1994.

FHA03. R.J. Fong, S.J. Harper, and P.M. Athanas. A versatile framework for
FPGA field updates: an application of partial self-reconfiguration. In
Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE International
Workshop on, pages 117–123, 2003.

GAF05. M. Gericota, G. Alves, and J. Ferreira. Robust Configurable System
Design with Built-In Self-Healing. In Conference on Design of Circuits
and Integrated Systems, 2005.

GLS99. S. Guccione, D. Levi, and P. Sundararajan. JBits: A Java-based inter-
face for reconfigurable computing. 2nd Annual Military and Aerospace
Applications of Programmable Devices and Technologies Conference
(MAPLD)., 1999.

HL01. E.L. Horta and J.W. Lockwood. PARBIT: A Tool to Transform Bitfiles to
Implement Partial Reconfiguration of Field Programmable Gate Arrays.

113

Department of Computer Science, Applied Research Lab, Washington
University, Tech Rep. WUSC-01-13 edition, July 2001.

HM01. W-J. Huang and E.J. McCluskey. Column-Based Precompiled Configura-
tion Techniques for FPGA. The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’01), pages 137–146,
2001.

Ive06. J. Ives. Evaluation of a Field Programmable Gate Array Circuit Recon-
figuration System. Master’s thesis, Air Force Institute of Technology,
2006.

Kha02. Jamil Khatib. Introduction to Programmable Logic Devices. 2002.
http://www.geocities.com/jamilkhatib75/fpga/FPGA intro.html.

KJdlTR05. YE Krasteva, AB Jimeno, E. de la Torre, and T. Riesgo. Straight Method
for Reallocation of Complex Cores by Dynamic Reconfiguration in Virtex
II FPGAs. The 16th IEEE International Workshop on Rapid System
Prototyping, pages 77–83, 2005.

KP06. H. Kalte and M. Porrmann. REPLICA2Pro: task relocation by bitstream
manipulation in Virtex-II/Pro FPGAs. Proceedings of the 3rd conference
on Computing frontiers, pages 403–412, 2006.

KZJS00. D. Keymeulen, R.S. Zebulum, Y. Jin, and A. Stoica. Fault-Tolerant
Evolvable Hardware Using Field-Programmable Transistor Arrays. IEEE
Transactions on Reliability, 49:305–316, 2000.

Lap85. J. Laprie. Dependable Computing and Fault Tolerance: Concepts and
Terminology. In Digest of Papers FTCS-15: 15th International Sympo-
sium on Fault-Tolerant Computing, pages 2–11 IEEE Computer Society
Press, Los Alamitos, CA, Los Alamitos, CA, 1985.

LMSP99. J. Lach, W.H. Mangione-Smith, and M. Potkonjak. Algorithms for ef-
ficient runtime fault recovery on diverse FPGA architectures. In DFT
’99. International Symposium on Defect and Fault Tolerance in VLSI
Systems, pages 386–394, 1999.

Mas07. Jeff Mason. Research Engineer, Xilinx Labs, Logmont, CO. Personal
Coorespondance. 3 January 2007.

Max04. C. Maxfield. The Design Warriors Guide to FPGAs. Academic Press,
Inc., Orlando, FL, 2004.

McF94. C. McFarland. Computer Subsystem. 1994.
http://www.tsgc.utexas.edu/archive/subsystems/.

MHS+04. Subhasish Mitra, W.-J. Huang, N.R. Saxena, S.-Y. Yu, and E.J. Mc-
Cluskey. Reconfigurable architecture for autonomous self-repair. IEEE
Design & Test of Computers, 21(3):228–240, 2004.

114

MMP+03. D. Mesquita, F. Moraes, J. Palma, L. Möller, and N. Calazans. Remote
and Partial Reconfiguration of FPGAs: tools and trends. Proceedings
of the 17th Parallel and Distributed Processing Symposium (IPDPS03),
pages 1–8, 2003.

NAS00. NASA. Radiation Effects & Analysis: Single Event Effects. 2000.
http://radhome.gsfc.nasa.gov/radhome/see.htm.

Nel90. Victor P. Nelson. Fault-Tolerant Computing: Fundamental Concepts.
IEEE Computer, pages 20–25, 1990.

RS02. A.K. Raghavan and P. Sutton. JPG A Partial Bitstream Generation
Tool to Support Partial Reconfiguration in Virtex FPGAs. Proceedings
of International Parallel and Distributed Processing Symposium. IPDPS
2002, Abstracts and CD-ROM, pages 155–160, 2002.

SA04. N. Steiner and P. Athanas. An Alternate Wire Database for Xilinx FP-
GAs. In Proceedings of the Twelfth Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM 2004, pages 336–
337, 2004.

SBB+06. P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght. Modular
dynamic reconfiguration in Virtex FPGAs. IEE Proceedings Computers
and Digital Techniques, 153(3):157–164, 2006.

Tor02. Jim Torresen. Reconfigurable Logic Applied for Designing Adaptive
Hardware Systems. In Proc. of the International Conference on Advances
in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine
on the Internet (SSGRR2002W), 2002.

US05. Andres Upegui and Eduardo Sanchez. Evolving Hardware by Dynami-
cally Reconfiguring Xilinx FPGAs, September 2005.

VN56. J. Von Neumann. Probabilistic logics and the synthesis of reliable organ-
isms from unreliable components. Automata Studies, Annals of Math.
Studies, (34):43–98, 1956.

WB04. J. Williams and N. Bergmann. Embedded Linux as a platform for dy-
namically self-reconfiguring systems-on-chip. In Proceedings of the Inter-
national Conference on Engineering of Reconfigurable Systems and Algo-
rithms (ERSA04), 2004. Las Vegas, Nevada.

WSW06. J. Wu, I. Syed, and J. Williams. Creating a
Simple uClinux ready MicroBlaze Design. 2006.
www.itee.uq.edu.au/wu/downloads/uClinux ready Microblaze design.pdf.

Xil04a. Xilinx. Dynamic Reconfiguration of RocketIO MGT Attributes.
XAPP660 (v2.2), 2004. http://www.xilinx.com .

Xil04b. Xilinx. OPB HWICAP. DS 280 (v1.3), 2004. http://www.xilinx.com .

115

Xil04c. Xilinx. Two Flows for Partial Reconfiguration: Module Based or Differ-
ence Based. XAPP290, 2004. http://www.xilinx.com .

Xil04d. Xilinx. Virtex Series Configuration Architecture User Guide. XAPP151,
2004. http://www.xilinx.com .

Xil05a. Xilinx. Constraints Guide 8.1i. 2005. http://www.xilinx.com .

Xil05b. Xilinx. Virtex-II Pro and Virtex-II Pro X FPGA User Guide. UG012,
2005. http://www.xilinx.com .

Xil06. Xilinx. Early Access Partial Reconfiguration User Guide For ISE 8.1.01i.
UG208, (UG208), 2006. http://www.xilinx.com .

Xil07a. Xilinx. Partial Reconfiguration Early Access software tools. 2007.
http://www.xilinx.com/support/prealounge/protected/index.htm.

Xil07b. Xilinx. Virtex-5 and Virtex-4 Features. 2007. http://www.xilinx.com .

XSHL99. Jian Xu, Paifa Si, Weikang Huang, and F. Lombardi. A novel fault
tolerant approach for SRAM-based FPGAs. In Dependable Computing,
1999. Proceedings. 1999 Pacific Rim International Symposium on, pages
40–44, 1999.

116

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–02–2007 Master’s Thesis Aug 2005 — Mar 2007

Using Relocatable
Bitstreams For
Fault Tolerance

Montminy, David P., Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/07-09

AFRL/VSSE
Attn: Mr. Ken K. Hunt
Air Force Research Laboratory
3550 Aberdeen Ave SE, Bldg 891
Kirtland AFB, NM 87117-5776 DSN 246-4959

Approval for public release; distribution is unlimited.

This research develops a method for relocating reconfigurable modules on the Virtex-II (Pro) family of Field
Programmable Gate Arrays (FPGAs). A bitstream translation program is developed which correctly changes the location
of a partial bitstream that implements a module on the FPGA. To take advantage of relocatable modules, three
fault-tolerance circuit designs are developed and tested. This circuit can operate through a fault by efficiently removing
the faulty module and replacing it with a relocated module without faults. The FPGA can recover from faults at a
known location, without the need for external intervention using an embedded fault recovery system. The recovery
system uses an internal PowerPC to relocate the modules and reprogram the FPGA. Due to the limited architecture of
the target FPGA and Xilinx tool errors, an FPGA with automatic fault recovery could not be demonstrated. However,
the various components needed to do this type of recovery have been implemented and demonstrated individually.

FPGA, partial reconfiguration, fault tolerance

U U U UU 131

Dr. Rusty Baldwin

(937) 255–3636 x4445, rusty.baldwin@afit.edu

	Using Relocatable Bitstreams for Fault Tolerance
	Recommended Citation

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	I. Introduction
	1.1 Overview
	1.2 Motivation and Goals
	1.3 Organization

	II. Literature Review
	2.1 Introduction
	2.1.1 Applications of Fault Tolerance
	2.1.2 Motivation for using FPGA reconfiguration for Fault-Tolerance

	2.2 Fault Tolerance
	2.2.1 Methods for Fault Tolerance
	2.2.2 Reconfiguration as a Method for Fault Tolerance

	2.3 FPGAs
	2.3.1 SRAM FPGA Technology
	2.3.2 SRAM FPGA Reconfiguration

	2.4 Current Research in FPGA Reconfiguration
	2.4.1 Methods for Partial Reconfiguration
	2.4.2 Hardware Bitstream Relocation
	2.4.3 Automatic Dynamic Active Partial Reconfiguration for Fault Tolerance

	2.5 Summary

	III. Development of a Dynamic Reconfiguration System
	3.1 Introduction
	3.2 Problem Definition
	3.2.1 Goals and Hypothesis
	3.2.2 Approach

	3.3 A Column-Based Fault Tolerant Configuration
	3.3.1 Benefits
	3.3.2 Routing and Timing

	3.4 Using Relocatable Modules in TMR Designs
	3.4.1 Bitstream Storage Savings With Relocatable Modules
	3.4.2 Routing with Relocatable Interconnect Modules
	3.4.3 Rerouting Using Difference Based Reconfiguration

	3.5 The Target FPGA
	3.6 Developing the Bitstream Translation Program
	3.6.1 Virtex-II Pro Bitstream Composition
	3.6.2 Configuration Memory Addressing
	3.6.3 Bitstream Packet Type
	3.6.4 Software Emulation of the Packet Processor
	3.6.5 Virtex-II Pro Configuration Registers
	3.6.6 Calculating the New Major Address
	3.6.7 Updating the CRC Value
	3.6.8 Overall Organization of the BTP

	3.7 FPGA Design Tools
	3.8 Implementing a Relocatable Partial Reconfiguration Design
	3.8.1 Reconfigurable Modules
	3.8.2 Bus Macros
	3.8.3 Making Reconfigurable Modules Relocatable

	3.9 Internal Reconfiguration
	3.9.1 Using an Embedded Microprocessor to Run the BTP
	3.9.2 MicroBlaze and uClinux
	3.9.3 PowerPC

	3.10 Summary

	IV. Implementation
	4.1 Introduction
	4.2 Verifying Relocation of Partial Modules
	4.2.1 Testing the Interconnect Module Designs
	4.2.2 Testing the Direct Connect Modular Design
	4.2.3 Implementing the LUT-based Modular Design

	4.3 Adding a Microprocessor to the Design
	4.3.1 Resources Used By Microprocessors
	4.3.2 Changes to BTP for PowerPC
	4.3.3 Internal Reconfiguration using the PowerPC

	4.4 Preventing Static Routing
	4.4.1 Problems Caused by Restricting Routing
	4.4.2 Programming of I/O Blocks

	4.5 Safe Locations for Relocatable Modules on the XUPV2P
	4.6 Errors During Bitstream Generation
	4.7 Relocatable Module Support in 8.2 Partial Reconfiguration Toolchain
	4.8 Relocatable Modules in the Virtex-4
	4.8.1 Drawbacks of the Virtex-4

	4.9 Comparison with REPLICA2Pro
	4.10 Summary

	V. Conclusions
	5.1 Introduction
	5.2 Problem Summary
	5.3 Conclusion of Research
	5.4 Significance of Research
	5.5 Recommendations for Future Research

	Appendix A. Using the PowerPC for Partial Reconfiguration
	A.1 Creating the EDK Project
	A.2 Adding Software, Exporting, and Integration

	Appendix B. Bitstream Translation Programs
	Appendix C. ISE 8.1 and PlanAhead Design Flow
	C.1 ISE 8.1 Partial Reconfiguration Design Flow
	C.2 ISE 8.2 Partial Reconfiguration Toolchain
	C.3 Example PR Implementation Script

	Bibliography

