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Abstract Continuous processing in pharmaceutical

manufacturing is a relatively new approach that has generated

significant attention. While it has been used for decades in

other industries, showing significant advantages, the pharma-

ceutical industry has been slow in its adoption of continuous

processing, primarily due to regulatory uncertainty. This paper

aims to help address these concerns by introducing methods

for batch definition, raw material traceability, and sensor fre-

quency determination. All of the methods are based on

established engineering andmathematical principles, especial-

ly the residence time distribution (RTD). This paper intro-

duces a risk-based approach to address content uniformity

challenges of continuous manufacturing. All of the detailed

methods are discussed using a direct compaction manufactur-

ing line as the main example, but the techniques can easily be

applied to other continuous manufacturing methods such as

wet and dry granulation, hot melt extrusion, capsule filling,

etc.

Keywords Continuous Processing . Residence time

distribution . Traceability . Batch definition . Process

analytical technology (PAT)

Introduction

Pharmaceutical manufacturing has a long history of develop-

ing and manufacturing drug product in batches. This

production technique was used for industrial chemicals and

other consumer products long before the industrial revolution

(eighteenth century) when an initial shift from batch to con-

tinuous processing occurred. Due to continuous process ad-

vantages, today, the majority of commodity chemicals, petro-

chemicals, food, and consumer products are manufactured

continuously, leaving behind pharmaceuticals, which are still

made with traditional batch processes. Many sources have

suggested that pharmaceutical manufacturing has been frozen

in time due to regulatory requirements that generate large

amounts of paperwork, causing huge monetary cost in pro-

duction delays resulting from even minor manufacturing

changes (see, for example, aWall Street Journal article on this

topic [1]). This has lead to fearful, conservative cultures with-

in the industry, which would rather remain steadfast with old

and familiar technology rather than evolve with new technol-

ogies that improve the industry.

With the goal of modernizing and spurring technological

improvement in the regulation of pharmaceutical manufactur-

ing and product quality, in August 2002, the Food and Drug

Administration (FDA, http://www.fda.gov) launched a

regulatory modernization initiative, meant to encourage early

adoption of new technological advances, facilitate industry

application of modern quality management techniques,

encourage implementation of risk-based approaches, ensure

regulatory policies are based on state-of-the-art science, and

enhance the consistency and coordination of drug quality reg-

ulatory programs. [2] A series of guidances have since been

published, which further encourage significant changes to pro-

cesses used to manufacture pharmaceuticals. The FDA has

published the initial process analytical technology (PAT)

framework [3], which supports the move from static batch

processing to more dynamic approaches that mitigate the risk

of producing poor-quality product. The International Confer-

ence on Harmonization (ICH, http://www.ich.org)
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implemented a trio of quality guidances: Q8(R2), Q9, and

Q10 [4]–[5], which introduced valuable new concepts such

as quality by design (QbD).

Although the regulatory guidances describe in detail what

is necessary, they provide little explanation about how to ac-

complish it. To begin filling this gap, the International Society

for Pharmaceutical Engineering (ISPE, http://www.ispe.org)

launched the Product Quality Lifecycle Implementation

(PQLI) initiative in 2007. This initiative aims to provide prac-

tical solutions for implementation challenges of the ICH guid-

ances [6–8], while still recognizing that there are multiple

satisfactory ways to address the concepts described in the

guidelines [6]. However, there is little focus on providing

solutions that directly apply to continuous processing.

One of the main approaches to modernizing and improving

pharmaceutical manufacturing is continuous processing,

which in recent years has gained attention of both the industry

and regulatory authorities [9–17]. Continuous manufacturing

approaches have many advantages over traditional batch

methods, which have motivated many other industries to

adopt them [11, 18]. Continuous processing equipment has a

much smaller footprint leading to lower equipment costs. Be-

cause all the processing steps are interconnected, no interme-

diate storage is needed, lowering the necessary material inven-

tory. Unlike batch processing, the smaller scale and ability to

process different amounts of material simply by changing the

production timemake continuous systems versatile in both the

clinical and commercial scales without the need for scale-up.

Continuous systems with automation and process control

result in high-quality (low-variability) products, whereas

batch processing is far less understood, resulting in often un-

predictable product quality [11]. Blend segregation has been

shown to be prominent in batch systems, while continuous

systems have demonstrated the ability to process segregating

mixtures without issue [19]. Moreover, a properly designed

continuous system handles small portions of material at any

given moment, increasing material monitoring scrutiny. This

is unfeasible for large-scale batch processes with a similar

throughput. Utilizing product and process understanding with

properly implemented online PAT, continuous manufacturing

readily fits the criteria needed to enable real-time release test-

ing (RTRt), leading to rapid and reliable batch release of high-

quality product. In spite of these vast advantages, continuous

manufacturing also has significant challenges, and if imple-

mented incorrectly, continuous processes will fail.

Two notable challenges are batch definition and raw mate-

rial traceability, both required by regulation. [20] This work

presents a method based on the residence time distribution

(RTD), which can be used to address both of these challenges.

The RTD is also used to examine the sensing frequency, with

the goal of defining a sensing speed that would ensure that any

unacceptable content uniformity variations would be detected

and handled. As a case study, a simplified quality risk

management process, including assessment and control, was

completed for a direct compression case study, which identi-

fied high-risk content uniformity issues and reduced them

through redesign that improved system robustness.

In the chemical processing field, the residence time distri-

bution (RTD) is used to describe how a material travels inside

the unit operations of a continuous process system. RTD is a

critical, yet underutilized tool in pharmaceutical process un-

derstanding, quality assurance, and equipment and sensing

design. Although traditionally applied to fluid systems [21],

there have been many publications showing this the same

probability-based time distribution also applies to granular

or powder systems. [22–30]

Continuous Manufacturing System

The model system used for the methods developed in this

work is the prototype continuous direct compaction (DC)

manufacturing system, which was developed and built by

the Engineering Research Center for Structured Organic Par-

ticulate Systems (ERC-SOPS, http://www.ercforsops.org/)

located at Rutgers University. A photo and model of the

continuous manufacturing platform are shown in Fig. 1a, b,

and a simplified model highlighting the unit operations is

shown in Fig. 1c. The continuous DC system was

constructed on a three-tiered scaffolding platform, which has

multiple loss-in-weight feeders on the highest level. The

feeders supply the multiple components of formulation

through to a Quadro Comil, which is located on the middle

level and serves a triple purpose. The Comil sieves breaking

large agglomerates, performs initial high shear mixing, and

ensures intimate contact of poorly flowing ingredients with

glidants, thus improving blend flow properties. Also, on the

middle level, the Comil’s exit passes milled material to a Glatt

continuous mixer, which consists of a horizontally rotating

shaft with triangular-shaped paddles that mix the blend as it

travels through the tubular body. An additional feeder supplies

lubricants (i.e., MgSt) directly to the blender, bypassing the

Comil. Following the mixer is a Kikusui tablet press, which

compresses the blended formulation into tablets at the ground

floor level.

Methods

Residence Time Distribution Experiments

The residence time distribution (RTD) can be easily obtained

for all unit operations in a continuous line with a tracer re-

sponse experiment performed for each unit operation separate-

ly and for the mechanically integrated line as well. In this

testing, a pulse or step change of tracer is added to the inlet
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of the continuous equipment being characterized, and the re-

sponse of the tracer concentration profile at the outlet is mea-

sured. The concentration measurements can be recorded using

online spectroscopy, or samples can be collected for off-line

measurement. In either case, it is important that the tracer

concentration be readily measureable by an analytical tech-

nique. Additionally, the presence of the tracer should not im-

pact the flow properties of the bulk material for which the

RTDmeasurements are being taken, because the RTD is high-

ly dependent on the flow behavior of the material within the

apparatus. Any significant changes to the flow behavior will

cause the measured RTD not to be representative of the

material.

Furthermore, the RTD can be sensitive to all process pa-

rameters, which means that the entire design space of a unit

operation needs to be investigated. This is particularly

important, because a continuous system with process control

will change process parameters to maintain a consistent

product.

For tracer pulse tests, the response will be a concentration

profile, C(t), that has the same shape as the residence time

distribution, E(t). The RTD can be calculated by normalizing

the concentration profile by the area underneath the profile:

E tð Þ ¼
C tð Þ

Z

∞

0

C tð Þdt

ð1Þ

It is important that the data set for the concentration profile

be completed and includes the entire tail. If the profile is not

complete or the tail is very long, the RTDwill be inaccurate. If

Fig. 1 ERC-SOPS prototype

direct compaction line located at

Rutgers University: a Photo of the

platform. b Model of the

platform. c Simplified model of

the system showing the connected

unit operations without the

scaffolding
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this occurs, it is possible to extrapolate the tail as an exponen-

tial decay, which will improve accuracy of an incomplete

dataset [31].

The tracer pulse technique also relies on the ability to add a

pulse that is as close to instantaneous as possible. If this is not

possible or the residence time is very short, this can also add

inaccuracies. However, when correctly applied, this method is

the most direct method for determining the RTD [31].

If the pulse technique is not reliable, an alternative is the

step change technique. For tracer step change tests, the re-

sponse will be a concentration profile with the same shape

as the cumulative distribution function (CDF), F(t). To calcu-

late the CDF, the concentration profile needs to be normalized

so that the initial value is 0 and the final value is 1:

F tð Þ ¼
C tð Þ−Cinitial

Cfinal

ð2Þ

where Cinitial and Cfinal are the initial and final tracer concen-

trations. Typically, the initial tracer concentration would be 0,

which simplifies this equation to:

F tð Þ ¼
C tð Þ

Ctracer

ð3Þ

The cumulative distribution function (step response) and

residence time distribution (pulse or point response) are relat-

ed by the following equations:

F tð Þ ¼

Z

t

0

E tð Þ dt ð4Þ

E tð Þ ¼
dF tð Þ

dt
ð5Þ

A residence time distribution has several moments that can

be used to characterize its shape. For this study, only the first

two integer centered moments are used, respectively the mean

residence time and the variance (square of standard deviation).

The equations for the mean residence time and the variance

are as follows:

τ ¼

Z

∞

0

tE tð Þdt ð6Þ

σ
2 ¼

Z

∞

0

t−τð Þ2E tð Þdt ð7Þ

The mean residence time can be used to quantify the center

of the residence time distribution, whereas the standard devi-

ation is used for determining its width. These moment values

are useful for describing the shape of a distribution without

relying on the entire distribution.

Residence Time Distribution Fitting

Continuous unit operations vary dramatically in both function

and geometry, and correspondingly, the residence time distri-

bution (RTD) of any unit operation is equally as varied. In

liquid flow and mixing applications, this has resulted in the

development of many RTD models, some of which may not

be appropriate for solid unit operations.

However, the examples shown in this work use the Bstirred

tanks in series^ model, which is an empirical model based on

equally sized continuously stirred tank reactors (CSTRs)

placed in series (see Fig. 2). The model for a CSTR assumes

a mixed vessel with perfect back-mixing. However, placing

CSTRs in series results in a model for realistic mixing.

Figure 3 shows a range of residence time distributions

modeled with tanks in series. The number of tanks in this

figure ranges from 1 up to infinity. A larger number of tanks

in series result in a narrower distribution. An infinite number

of CSTRs in series are equivalent to a plug flow tubular reac-

tor (PFR), which does not have any axial mixing and is rep-

resented by a pulse response.

Generalizing the model for tanks in series results in the

following equations for RTD [31]:

E tð Þ ¼
tn−1

n−1ð Þ! τ

n

� �n e
−nt
τð Þ ð8Þ

where τ is the mean residence time and n is the number of

CSTRs. The concentration profile for the pulse response test-

ing is similarly generalized by:

C tð Þ ¼ C0E tð Þ ¼ C0

tn−1

n−1ð Þ! τ

n

� �n e
−nt
τð Þ ð9Þ

where C0 depends on the amount of material added in the

pulse.

The RTD experimental data was fit to the tanks-in-series

model using a built-inMatlab function, Blsqcurvefit,^which is

a least squares curve fitting function based on the trust-region-

reflective algorithm described by Coleman et al. [32, 33]. The

concentration profile defining parameters (C0, τ, and n) are

determined by this least squares technique, which seeks these

values while minimizing the sum of square (SS) error between

estimated and experimental values:

SS ¼ min
X

X

i

C X ; tið Þ−Cið Þ
2

ð10Þ

where C(X,ti) is the estimated concentration, ti and Ci

represent the ith points from the experimentally collect-

ed time and concentration datasets, and X is the param-

eter set for the model:

X ¼ C0; τ ; n½ � ð11Þ
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Convolution

A single residence time distribution can be used to trace the

passage of materials through a continuous flow system. Since

the RTD is the pulse or point response of the system, if the

system response is linear (i.e., if the tracer does not modify the

flow properties of the blend), any point in time will behave

and spread through the system just like a pulse of equal mag-

nitude. A measured input stream could be represented with a

string of discrete values representing the fluctuations in the

stream. Using the convolution integral for mixing:

Cout tð Þ ¼

Z

t

0

Cin t−t0ð ÞE t0ð Þdt0 ¼

Z

t

0

Cin t0ð ÞE t−t0ð Þdt0 ð12Þ

represented in short hand by the convolution operator equa-

tion:

Cout tð Þ ¼ Cin tð Þ*E tð Þ ð13Þ

it is possible to predict the outlet of a unit operation as long as

the concentration of the inlet stream, Cin(t), and the RTD, E(t),

are both known. This can be extended to a series of unit op-

erations by calculating the overall RTD recursively, for exam-

ple, for two unit processes, as:

E tð Þ ¼ E1 tð Þ*E2 tð Þ ð14Þ

where E1(t) is the RTD from a first unit operation and E2(t) is

from a second operation.

This convolution technique is depicted in Figs. 4 and 5. In

Fig. 4a, the first RTD, E1(t), is discretized with approxima-

tions for the time interval of 2.4 s, where the discrete version

of the RTD is now represented by a sequence of bars.

Figure 4b shows the second RTD, E2(t), which is scaled for

each of the elements in the discrete approximation from

Fig. 4a and is plotted in Fig. 4c. For example, the first element

is 0 when t=0, which is why the peak of E2(t), 0.36 at t=5 s,

results in the scaled response of 0 at 5 s. The second element,

which is 0.0378 at t=2.4 s, results in a product of 0.033

(0.36*0.0378*2.4), which is the value shown for the peak of

the scaled response at t=7.4 (5 s+2.4 s). This was repeated for

all of the elements in the discrete approximation, while the

time was offset by 2.4 s for each subsequent approximation,

which was the time interval. These are then summed, and are

shown in Fig. 4d overlaid with the solution from the Matlab

Bconv^ function. The Bconv^ function uses a time interval

corresponding to the resolution of the RTD, which creates a

smooth solution in contrast to the example, which was limited

to the 2.4-s time interval. Figure 5 shows a plot of the two unit

operation RTDs, E1(t) and E2(t), with their convoluted solu-

tion or overall RTD, which is both broader and has a longer

mean residence time.

The Matlab function’s generalized definition is:

E tkð Þ ¼
X

j

E1 t j
� �

E2 tk−t j þΔT
� �

ΔT ð15Þ

where ∆T is the time interval for the two RTDs and tk and tj are

the kth and jth points of the time array.

Traceability of Raw Materials in Continuous Processing

Systems

The overall process RTD can be determined using the mathe-

matical tool of convolution in combination with the residence

time distributions (RTDs) for each unit operation. Figure 6

shows a process flow diagram for a direct compaction

Fig. 2 Depiction of the tanks-in-

series model where n=3

Fig. 3 Residence time distributions for tanks-in-series model having a

mean residence time of 1 and a number of tanks ranging from 1 to infinity
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continuous manufacturing system. After the feeders at the top,

the first unit operation is a mill, which has a short and narrow

RTD. Next is the continuous blender, which has significant

back-mixing and therefore a broader residence time distribu-

tion. Finally is the tablet press, which has an even longer

residence time due to the feed hopper and the feed frame,

but only a small amount of back-mixing in the feed frame.

Combining these three unit operations through the convolu-

tion technique yields an overall system RTD, which is both

longer and wider than any of the individual unit operations.

This overall system RTD can be used to trace raw materials

across the entire system, all the way to the tablets.

RTD modeling of the system allows for tracking the evo-

lution of any process disturbance through the process so that

the affected downstream material can be easily identified as

well as backtracking to pinpoint the source of the disturbance

making it a useful predictive tool for risk management. How-

ever, RTDmodeling needs to be utilized with other tools to be

effective. For example, the ability to detect a disturbance is

contingent of having appropriate sensors in optimal locations.

Paired with an exceptional event management framework as

described by Hamdan et al. [34], RTD modeling can provide

the mapping needed for corrective action needed for excep-

tional events in the form of dynamic process changes or re-

moval of out of specification material. The result is reduced

variability and an improvement in product quality.

For simplicity of this depiction in Fig. 6, the RTD of the

feeders and feeder refill system is not shown, but to trace raw

material back to a drum will require mapping those unit oper-

ations as well. The method for this or other continuous sys-

tems is the same. The RTD for each feeder will be unique to

the equipment and powder used under the actual operation

conditions used. Because of this, each component will have

a separate overall residence time distribution. This would be

the case anytime multiple streams are combined. For example,

consider a process to create a bi-layer tablet. The process

Fig. 4 Visual representation of the convolution technique for two

residence time distributions (RTDs), E1 and E2. a Discrete approximation

of E1. b E2. c E1’s discrete approximation-scaled responses of E2

and their sum. d Sum of impulse responses for a time interval of 2.4 s

and result from convolution function
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would involve separate blending of the blend used to make

each side of the tablet, usually in unequal proportion and hav-

ing a different composition (i.e., a different active pharmaceu-

tical ingredient (API)) causing the ingredients in the two sides

to have different RTDs. However, RTDs vary monotonically

with respect to material properties and processing conditions;

thus, the development for predictive correlations for RTDs is

entirely feasible [35].

BBatch^ Definition

One of the early barriers to developing and implementing

continuous processing was, and to some extent remains, un-

certainty regarding regulatory compliance. One of the main

concerns is the ability to trace materials by batch and lot, a

regulatory requirement. According to 21 CFR 210 [36], the

definitions of batch and lot are:

Batch BA specific quantity of a drug or other material that is

intended to have uniform character and quality,

within specified limits, and is produced according to

a singlemanufacturing order during the same cycle of

manufacture.^

Lot Ba batch, or specific identified portion of a batch,

having uniform character and quality within specified

limits’ or, in the case of a drug product produced by

continuous process, it is a specific identified amount

produced in a unit of time or quantity in a manner that

assures its having uniform character and quality

within specified limits.^

Fig. 6 Residence time distribution of the individual unit operations and overall system

Fig. 5 Representation of the convolution of two residence time

distributions (RTDs), E1*E2, plotted with the two component RTDs,

E1 and E2
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The regulatory definition of batch has no stipulation or

requirement as to the method of manufacture, and in fact,

the definition of lot specifically includes continuous process-

ing. It is still necessary to define batch and lot to comply with

various aspects of current good manufacturing practice [20,

37]. Compliance requires:

& Batch production and control records

& Laboratory conformance testing and release

& Investigation of failures or discrepancies

& Recall procedures

While both batch and lot are defined, precise specification

of each is left to the manufacturer’s discretion and design. For

a continuous manufacturing process, specification may be

based on production time period, amount of material, variation

in production, or maintenance cycles. A variation in produc-

tion, such as a change in feedstock lot, may be the most ap-

propriate method as a batch is Bintended to have uniform

character and quality^ [36].

In a batch process, the Bbatches^ are physically separated

into enclosed vessels, making batch identification straightfor-

ward (see Fig. 7a). In continuous manufacturing, a physically

separated Bbatch^ does not exist; instead, a continuous non-

stop stream of product is generated. The lack of a physical

barrier between batches in a continuous process causes the

boundaries between batches to become confounded because

of back-mixing across the system. A naive and unrealistic

view of batch specification for a continuous processing might

assume that there is no back-mixing. However, this is only

true for an ideal plug flow system (see Fig. 7b), in which an

arbitrary boundary would suffice and then the identification

would be similar to that of batch processing. Such a plug flow

system, however, would have no back-mixing capabilities and

therefore would be unable to eliminate any variability entering

the system due to either material properties or processing con-

ditions. Thus, substantial back-mixing would be an intrinsic

characteristic of any robust and effective continuous

manufacturing process, and batch definition must address its

presence.

Therefore, in a realistic continuous system (see Fig. 7c),

which would have some amount of back-mixing, materials

would comingle between subsequent batches. Although there

is no specific regulatory conformance problem with using an

arbitrary division, it must be determined how many batches

are affected by any potential manufacturing inconsistency.

Additional procedures would need to be developed to address

these inconsistencies. See Fig. 7c for an example. In this case,

if there were a need to recall BBatch 3,^ then, it must be

assumed that the recall might also apply to BBatch 2^ and

BBatch 4.^As the batches may be quite large, this would result

in a large amount of recalled or rejected material. To solve this

problem, smaller batches could be used, resulting in less ma-

terial loss, but increased release-related testing (thus empha-

sizing the importance of RTRt). With any batch size, experi-

mental qualification of the equipment must be determined to

properly identify the batches that should be considered

adulterated.

An alternative to drawing an arbitrary line between batches

in a continuous system would be to separate the interface

region between batches and define the batch as the material

between the interfaces. See Fig. 8. In the case where batches

are specified by a component lot change, this method would

ensure that each batch contains only a single feedstock lot.

Removing the interface is analogous to the removal of the first

and last parts of a batch made by batch processing, which is

often performed to maintain uniform quality. However, the

need to do this in batch processing is due to actual quality

problems, such as blend segregation. In continuous

manufacturing, such quality problems are minimized; thus,

the possible need to discard the interface is entirely a regula-

tory compliance issue.

In continuous processing, the size of the interface between

batches can be minimized using experimentally measured

Fig. 7 Visual comparison of

batch definition for a Btraditional^

batch processing, b continuous

Bplug flow^ processing, and c

realistic (non-plug flow)

continuous processing. The

dotted lines represent arbitrary

divisions between batches
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RTDs. Since the RTD represents the pulse response of the

system, it can be applied to represent the point response from

a feedstock lot change, which behaves exactly like a tracer

step change. For example, given the RTD measured from a

continuous blender shown in Fig. 9a, the cumulative distribu-

tion function (CDF), F(t), shown in Fig. 9b can be derived.

The CDF represents the fraction of new feedstock that will

exit in the outlet stream as a function of time. For instance, the

value is 0 at t=0, meaning none of the new feedstock will be

exiting. When the value of the CDF becomes 1, the old feed-

stock has completely exited and only the new feedstock would

be exiting. The old feedstock would follow the inverse wash-

out profile, represented by:

W tð Þ ¼ 1−F tð Þ ð16Þ

As an example, batch boundaries were defined using 0.5

and 99.5%, which are shown by the vertical lines in Fig. 9a, b.

At a time of 30 s, the new feedstock would start to appear at

the outlet of the system. At 160 s, the last of the old feedstock

has left the system and the outlet only contains the new feed-

stock. Therefore, the material exiting from 30 to 160 s could

be discarded as the transition interface (or released as a sepa-

rate Bbatch,^ to be recalled if necessary). The material before

and after this time interval becomes two different and separate

batches. The result is a short 130-s interface. At a total pro-

cessing throughput for a formulation of 30 kg/h, the discarded

interface would amount to about 1 kg of material. This is

modest compared to the often used procedure of discarding

the first and last portions of large batch-processed batches.

Results

Identifying Sources of Disturbances

A quality risk management process should include the assess-

ment, control, communication, decisions, and review of risks

to the quality of the drug product across the product life cycle.

[38] In the work presented here, the focus is specifically on the

first two parts, assessment and control, as they relate to content

uniformity. A risk assessment includes identifying hazards,

estimating the risk, and evaluation. Although there are an in-

finite number of hazards that can occur in any process, any

unmonitored risk is based on both the probability and severity

of the hazards. However, adequate detection and process con-

trols can be utilized to reduce or eliminate risks.

In a continuous direct compaction line, the highest proba-

bility for content uniformity risk is at the feeders and blender.

Assuming the blend is uniform at the exit of the blender, there

is a very low risk of content uniformity issues arising. A prop-

erly designed continuous blender should have no dead zones

and should have enough radial mixing to blend multiple com-

ponents into a uniform mixture. Typically, the real issue is not

the blender, but instead the composition of the inlet stream. If

the ingredients in the inlet streams are not entering the blender

Fig. 8 Depiction of batch definition for continuous processing, which removes the interface regions (in yellow boxes) between batches. The remaining

material between these regions then become the batches (in green boxes)

Fig. 9 Define the boundaries of a batch for a continuous process by using

a residence time distribution (RTD) and b cumulative distribution

function (CDF). The boundaries shown here are 0.5 and 99.5 %, which

may not be the ideal values, but were chosen to demonstrate this exercise
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at the correct ratios, no amount of blending will correct the

composition of the blend. The feeders and the downspout

from the feeders are the most likely cause of content unifor-

mity risks.

The recommended feeders for pharmaceutical continuous

processing are loss-in-weight feeders, which use internal

gravimetric control based on load cell measurements. Gravi-

metric control greatly reduces the risk of feeder error.

However, a few hazards that may arise have been identified

as the following:

& Poor load cell calibration can cause the feeder to dispense

at the wrong rate with the feeder’s controller unable to

detect an issue. This is an operator error that will require

system shutdown to correct. Detection depends on down-

stream PAT or monitoring the feeder’s drive speed. A cal-

ibration problemmay be indicated by significant deviation

from the historic behavior of the feeder’s screw speed

while the reported load cell measurements remain within

range.

& Some feed rate fluctuation (see Fig. 10a) is unavoidable.

Fluctuation can be minimized with proper design, but still

poses a potential risk.

& Disturbances can lead to deviations (i.e., hopper refill).

See Fig. 10b. The most common cause of significant de-

viations in the feed rate of the feed stream is caused during

hopper refill. When refilling, the feeders temporarily op-

erate in volumetric mode and therefore do not correct for

the density changes associated with hopper refill. This can

be minimized with refill scheduling optimization, but still

needs to be considered a potential risk [39].

& Downspout accumulation (see Fig. 10c) can cause a sud-

den rise in concentration of a component if accumulated

material suddenly breaks off and falls. This typically indi-

cates a design problem and requires redesign. However,

small accumulation may still occur.

& Feeder bearding (see Fig. 10d) can also pose a risk when

the material suddenly discharges and falls.

This above list of common feeding hazards is not exhaus-

tive. Depending on the formulation and process, there may be

other unlisted hazards, or the ones listed here may not be

relevant. The cases displayed in Fig. 10 are all extreme cases

and will not necessarily occur to the same degree with every

powder. These can be summarized into two different cases

that require analysis: fluctuations and pulse disturbances.

Feeder Fluctuations and Filterability of the Mixer

Due to the intrinsic physics of powder flow, there will be some

degree of variability in the feed stream. This variability can be

minimized through feeder and tooling selection [40–42], but

in any case, these fluctuations need to be quantified, and the

system needs to be designed to handle these unavoidable var-

iations. Typically, feeders would feed individual components

into a continuous blender, blending them into a homogenous

mixture through radial mixing. If the blender were a perfect

plug flowmixer, then, the variations from the feeders will pass

through the blender causing variations in content uniformity.

Axial mixing within the blender enables a secondary function

of smoothing or filtering out feeder variability. The degree to

Fig. 10 Sources of content

uniformity variability: a feeder

fluctuations, b deviations caused

by refill, c downspout

accumulation, d feeder bearding
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which this occurs depends on the residence time distribution

of the blender and the magnitude and frequency of the fluctu-

ations from the feeder.

The relations between the feeder and the blender can be

evaluated using the Fourier series analysis demonstrated by

Gao et al. [43] This paper defines the filterability, which quan-

tifies a blender’s variance reduction ratio as a function of the

frequencies of fluctuations. The filterability function can be

derived from any residence time distribution. Similarly, the

feed stream from a feeder can also be transformed into the

frequency domain [40, 41].

The effect of residence time distribution on an incoming

feed stream is shown in Figs. 11 and Fig. 12. Figure 11a shows

a very narrow RTD, and Fig. 12a shows a broad distribution.

Using the same feed stream, a bi-modal sine wave with fre-

quencies of 0.05 and 0.1 z results in a very different behavior

as shown in Figs. 11b and 12b. For the narrower distribution,

the bi-modal sine wave is only shifted in the time scale, but the

Fig. 11 Simulated results for a

bi-modal sine wave feed stream

being fed to a blender with a

narrow residence time

distribution (in comparison to

Fig. 12). a Residence time

distribution. b Concentration

profiles for the inlet and outlet of

the blender. c Calculated filtering

ability of the blender as a function

of frequency. d Frequency

domain of inlet and outlet streams

Fig. 12 Simulated results for a

bi-modal sine wave feed stream

being fed to a blender with a

broad residence time distribution

(in comparison to Fig. 11). a

Residence time distribution. b

Concentration profiles for the

inlet and outlet of the blender. c

Calculated filtering ability of the

blender as a function of

frequency. d Frequency domain

of inlet and outlet streams
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shape is nearly identical before and after the blender. For the

broad distribution, which has significantly more back-mixing,

the higher frequency is filtered out, and the amplitude of the

lower frequency is reduced. These results are more clearly

reflected in the frequency domain plots of Figs 11d and 12d.

For the filtering ability plots in Figs. 11c and 12c, a value of

1 indicates that fluctuations will pass through, and a value of 0

indicates that the fluctuation has been spread and therefore

reduced in magnitude. Figure 11c shows the filtering ability

for the narrow distribution, which will not filter out most fluc-

tuations with frequencies longer than 0.15 Hz. In contrast,

Fig. 12c shows the filtering ability for the broad distribution,

which filters most fluctuations above 0.05 Hz.

The effect of changing the parameters of the tanks-in-series

model is shown in Figs. 13 and 14. Figure 13a shows the

residence time distributions as the number of tanks was in-

creased from 1, which resembles a CSTR, up to infinity,

which resembles that of a PFR. As the number of tanks was

increased, the variance of the distribution decreases, which is

indicated by a narrower distribution. Figure 13b shows that as

the number of tanks increased, the ability to filter fluctuations

decreased, which is indicated by the filterability increasing

towards a value of 1.

Figure 14a shows the effect of increasing mean residence

time on the shape of the residence time distribution. The mean

residence timewas increased from 1 to 25 s using the tanks-in-

series model. Due to the arrangement of parameters within the

equation of the model, an increase in mean residence time also

increases the variance, which is shown by the broadening of

the distribution. This resulted in a significant amount of back-

mixing, which improved the ability to filter fluctuations as

shown in Fig. 14b. Since the tanks-in-series model is a

mono-modal distribution, filtering ability tends to decrease

Fig. 13 Effect of changing number of tanks in the tanks-in-series model:

a residence time distribution and b ability to filter fluctuations of different

frequencies

Fig. 14 Effect of changing the mean residence time in the tanks-in-series

model: a residence time distribution and b ability to filter fluctuations of

different frequencies
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down to 0 with increasing frequency. This indicates that lower

frequencies are more likely to pass through, whereas higher

frequencies will be smoothed and filtered out entirely.

Traceability of Pulse Disturbances

Simulated Pulse Disturbances

With the potential hazards identified, the next step of a quality

risk assessment is risk analysis and evaluation. Hazards

affecting content uniformity have a high potential to produce

harm and need to be addressed. For most of the hazards iden-

tified above, the result is a sudden pulse-like addition of a

component, which may cause a significant deviation from

product content specification. Using the residence time distri-

butions for each unit operation and the system as a whole, the

significance of any pulse addition can be quantified via

simulation.

Consider a pulse input into the mill, such as from feeder

bearding or downspout accumulation breaking off and falling.

Fig. 15 Simulation results

showing the active

pharmaceutical ingredient (API)

concentration profile for the

various unit ops and their

response to a pulse of API added

to the entrance to the mill. The

blender has a mean residence time

of 41.6 s and a standard deviation

of 12 s. The sizes of the pulse are

a 0.25 and b 1 g
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Figure 15a shows the response of a 0.25 g pulse into a direct

compaction system with an overall throughput of 30 kg/h and

a nominal active pharmaceutical ingredient (API) concentra-

tion of 6%. The API pulse in the feed stream occurred at 300 s

with the response from the mill immediately following. The

spike in API concentration after passing through the blender

occurred between 325 and 375 s, which added a significant

amount of spreading due to back-mixing. Finally, the tablets

exited between 800 and 900 s. This resulted in tablets within

specification, <7.5 % (125 % of 6 %), meaning that no action

was needed. However, if the pulse was increased to 1 g, as

shown in Fig. 15b, there would be tablets out of specification

(OOS). In this case, detection of the disturbance should trigger

an exceptional event and corrective action should be taken,

such as the removal of the OOS material from the product

stream. Without predictive modeling, this would present a

significant challenge. If material testing indicates a high prob-

ability of one of the identified hazards rather than a rare ex-

ceptional event, then, the system should be designed to handle

that hazard, which is quality by design (QbD). Figure 16

shows the results for a system where the blade pattern in the

continuous blender was changed, which caused it to have a

broader residence time distribution. This resulted in a more

robust system that could handle a 1 g pulse of the API without

generating OOS product.

Sampling Frequency/Adequate PAT

Online process analytical technology is crucial for control of

any continuous manufacturing process. However, its imple-

mentation is not as simple as adding sensors to measure prop-

erties of the blend at various stages in the system.

Measurement needs to be meaningful, which requires a mea-

surement that is representative, accurate, and timely. In batch

manufacturing, the challenge is typically obtaining a measure-

ment that is representative of the batch, because sensors or

sampling is very localized. In continuous manufacturing,

timely measurements are the larger challenge.

It is important to highlight a critical difference between a

batch process and a continuous process. A batch process

varies with time, whereas a continuous process varies primar-

ily with respect to the spatial dimension. This means that the

measurement at a fixed location in a batch process will be

different at the beginning as opposed to the end. In a contin-

uous process, this is not the case. If a sensor was fixed at the

entrance to a continuous blender, the sensor would see the

individual unmixed components throughout the entire pro-

cessing time. If the sensor was fixed at the exit of the blender,

the sensor would see a fully mixed blend after a short steady-

state start-up time and until the line is shutdown. A sensor in a

batch process only measures the final blend at the end of

processing, whereas a continuous process conducts many

measurements of small sections of the final blend throughout

processing. Therefore, the measurements from the continuous

process are more representative of the entire product stream

(and therefore of entire batches).

In a continuous system, the most meaningful measurement

is to characterize the intensity and frequency of fluctuations in

the process stream. This means the sensors must be fast

enough to detect any of these disturbances, ensuring nothing

important passes the sensor undetected. This would be equiv-

alent to a high concentration pocket or a segregated section

not being detected in a batch process, due to the section not

being within a sampling region. To ensure that this does not

Fig. 16 Simulation results

showing the active

pharmaceutical ingredient (API)

concentration profile for the

various unit ops and their

response to a 1 g pulse of API

added to the entrance to the mill.

The blender has a mean residence

time of 71.7 s and a standard

deviation of 24.9 s
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occur in continuous processing requires investigating how a

fluctuation would spread in the process. The most difficult

fluctuations to detect in a feed stream are narrow pulses, but

as they progress along the system, pulses are spread based on

the residence time distribution (RTD). Thus, the RTD contains

the information needed to design the sensing system in order

to ensure that pulse fluctuations do not travel through the

system undetected.

Figure 17 shows an example residence time distribution

from the continuous blender. In this plot, the mean (68.8 s)

is represented with a single vertical red line, and the standard

deviation (22.4 s) is represented with two vertical green lines

spaced on either side of the mean by the value of the standard

deviation. It is logical to assume detection of the downstream

response is easier than detecting the pulse disturbance itself. If

the system were Bplug flow,^ the perturbation would be large-

ly unchanged as it travels along the system, meaning that a

pulse into the system would result in a pulse response. This

would be difficult to detect without a very rapid measurement.

Fortunately, this is not the case, and the sampling frequency

only needs to be fast enough to catch a disturbance equivalent

in shape to the RTD. A reasonable approach is to use a sam-

pling or measurement regime that results in three to five mea-

surements across the time interval represented by double the

width of the RTD, which is quantified by its standard devia-

tion. The following equations can then be used to define the

maximum time between sampling and the minimum sampling

frequency:

τ sampling ¼
2σ

nsamples

ð17Þ

f sampling ¼
1

τ sampling

¼
nsamples

2σ
ð18Þ

where nsamples represents the number of samples and σ is

the standard deviation of the RTD. For the RTD represented in

Fig. 17, this would result in a sampling time of 8.96 to 14.93 s

or a sampling frequency of 0.07 to 0.11 Hz. Utilizing high-

frequency PAT sensors as defined by Eq. (18) would ensure

adequate sensing to determine the approximated shape of the

RTD. Aided by a simple peak detection algorithm, most sig-

nificant spikes can be easily detected.

However, using 125 % concentration as an upper limit for

detection with a binary Bpass/fail^ outcome may result in

smaller anomalies passing the PAT system undetected,

resulting in small amounts of super-potent product, unless

the sampling frequency is extremely high. Figure 18 shows

the pulse response to various size pulses that result in differing

amounts of super-potent product. The percentages for out of

specification (OOS) product were calculated based on an as-

sumed Bbatch^ size based on a single disturbance event occur-

ring once per 15 min (900 s) of continuous processing. Large

deviations such as the one that results in 5 % OOS product, as

shown in Fig. 18, will be detected easily as there will be

several measurements indicating OOS material. However,

the smaller deviations, 1 and 2 % OOS, do not exceed

125 % API concentration by much nor for very long, making

online detection a challenge.

Figure 19 shows the percent chance of detection of a single

pulse disturbance of various magnitudes, resulting in 1, 2, and

5 % OOS product, as a function of increasing sampling rate.

The percent chance of detection is represented by the follow-

ing equation:

Dcontinuous ¼ tbatch f samplingP ¼ nsamplesP ð19Þ

where P represents the percent of material that is over the

upper limit, fsampling is the sampling frequency, and tbatch is the

total time per batch (15 min=900 s).With increasing sampling

Fig. 17 Residence time distribution with vertical lines representing the

mean (68.8 s in red) and standard deviation (22.4 s in green). The

sampling interval represented by the diamonds is 8.96 s, which was

selected based on using five points across double the standard deviation

Fig. 18 aAPI concentration pulse response resulting in various amounts

of OOS material with a pass/fail value of 125 % API concentration. b

Zoomed version for better resolution of the peak
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frequency, the probability of detecting a single exceptional

event increases and eventually reaches 100 % for all three

cases. Since the larger deviations are easier to detect, the de-

tection percent is highest for 5 % OOS at any sampling fre-

quency, which is followed by 2 %OOS, and finally 1 %OOS.

The chance of detection reaches 100 % at the following sam-

pling frequencies (and sampling time intervals) for the various

deviations: 0.022 Hz (45 s) for 5 % OOS, 0.056 Hz (18 s) for

2 % OOS, and 0.111 Hz (9 s) for 1 % OOS. This means that at

any of these sampling rates, there is 100 % coverage for de-

viations of that respective size. However, as the percent of

OOS material decreases closer to 0 % the ability to detect

these very small deviations requires infinitely faster sensing.

To increase the ability of slower or less accurate PAT sen-

sors to detect OOS material, the upper limit for the binary

pass/fail criteria should be lowered. To detect a deviation at

even the smallest deviation above 125 % requires sensing the

limit where a single point reaches 125%. Figure 20 shows this

limiting concentration profile that peaks at 125 % API con-

centration and shares the shape of the RTD displayed in

Fig. 17. Lowering the upper limit to 121.75 % results in ma-

terial that exceeds the limit for 22.4 s, which is also the stan-

dard deviation of the RTD. Assuming a sampling frequency as

defined by Eq. (18) would ensure that a fewmeasurements are

made during this interval allowing for adequate detection.

Figure 21a shows a depiction of the material that would fail

if the upper limit were reduced to 121.75 %, and Fig. 21b

shows the corresponding chance of detection plotted as a func-

tion of increasing sampling frequency. The chance of detec-

tion reaches 100% at the following sampling frequencies (and

sampling time intervals) for the various deviations: 0.02 Hz

(50 s) for 5 % OOS, 0.036 Hz (28 s) for 2 % OOS, and

0.042 Hz (24 s) for 1 % OOS. For comparison, the similar

plots are also shown as dotted lines for the case using 125% as

the upper limit. For the smaller deviations, 1 and 2 % OOS,

the improved detection ability is dramatic, whereas the larger

deviation, 5 %, has less improvement.

The advantage of the continuous measurements of PAT

versus sampling of a batch after processing is shown in

Fig. 22. The sampling frequency for the continuous PAT

Figure 19 Probability of detection as a function of sampling frequency

for pulses resulting in various amounts of OOS material: 1, 2, and 5 %

Fig. 20 Concentration profile for a pulse response resulting in a peak of

125 % concentration. The red horizontal dotted line indicates a 121.75 %

limit and the two vertical blue dotted lines indicate the width of the

standard deviation (22.4 s) of the corresponding RTD, which is shown

in Fig. 17

Fig. 21 aAPI concentration pulse response resulting in various amounts

of OOS material with a pass/fail value of 121.75 % API concentration. b

Probability of detection as a function of sampling frequency for pulses

resulting in various amounts of OOS material: 1, 2, and 5 % for both

121.75 % limit and 125 % limit. OOS material is determined by 125 %

limit in both cases

Fig. 22 Probability of detection as a function of sampling frequency for

pulses resulting in various amounts of OOS material: 1, 2, and 5 % for

both a continuous process with online PAT (solid lines) and a batch

process (dotted lines) with off-line random sampling. OOS material is

specified by an upper limit of 125 % concentration, and the limit used

for detection is 121.75 % concentration
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measurements were translated into number of samples based

on an assumed 15 min of processing for a batch allowing for

direct comparison to a batch with a similar amount of OOS

material. Differing from the continuous case which utilizes

PAT, the batch curve assumes the sampling is completely ran-

dom:

Dbatch ¼ 1− 1−Pð Þnsamples ð20Þ

PAT sensors in a continuous system have a set sampling

frequency, which ensures that each measurement is observing

a different section of material. Therefore, the sampling cover-

age and ability to detect all deviations will rapidly approach

100 %, at which point no deviation will pass the sensors un-

detected. To reach this same amount of coverage, a completely

random or batch process will require orders of magnitude

more samples. An initial comparison of continuous versus

batch processing made from this plot is that there will be more

correctly failed batches for a continuous process. However,

this is not entirely the case, as these PATsensor measurements

allow downstream batch correction, such as a rejection chute,

ensuring batches that would have failed do not contain any

OOS material and therefore are of higher quality than batch

processing with random sampling could ever achieve.

Conclusions

Methods were presented to address challenges of batch defi-

nition, raw material traceability, and adequate PAT sensor fre-

quency as it pertains to continuous manufacturing with refer-

ence to regulatory requirements. At the present time, available

ICH guidances offer little explanation on implementation for

continuous systems. Although batch definition is left open for

the manufacturer to specify, other requirements, such as re-

cording specific identification for each component within the

batch records, make production changes, such as a feedstock

lot change, a favorable factor for specification. To minimize

crossover between batches, it was suggested to measure resi-

dence time distribution to quantify and define reasonable

boundaries to remove the interface between batches, which

may contain multiple batches of components.

To access and control risks associated with content unifor-

mity, higher probability hazards were identified, categorized,

and discussed. Solutions to these potential risks were present-

ed where raw material traceability was a prevalent focus and a

significant part of the solution. Residence time distribution

(RTD) play an important role in raw material traceability as

it characterizes the spreading of the materials through the sys-

tem. Thus, a disturbance could be predictively tracked through

the entire continuous system, allowing for downstream con-

trol or even removal of the affected material. Coupled with a

diagnostic system, corrective action at the onset of a distur-

bance is possible (i.e., fault mitigation).

An important requirement of any PAT instrumentation is

the reliability of the measurements, which includes a sensing

frequency high enough to detect all significant disturbances.

Since pulse disturbances would require an extremely fast sen-

sor for detection, it was suggested that a downstream sensor

could be used. This would not require such high-frequency

sensing, but instead would only need sensing fast enough to

detect the downstream response, which would have the shape

of the RTD. This resolves the potential issue of OOS material

passing through to the product undetected and also sets up

some of the conditions needed for real-time release testing

(RTRt). RTRt also requires verification that the measurements

from PAT instrumentation reflect the testing results that would

be collected in traditional batch release testing.

Although the methods described focus on direct compaction,

they apply to any continuous processing system. To apply these

methods to other continuous formulating techniques requires on-

ly minor changes. Together, the methods presented in this work

bring continuous processing in the pharmaceutical industry to the

point of understanding for actual commercial installations.
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