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USING RESIDUALS ROBUSTLY I:
TESTS FOR HETEROSCEDASTICITY, NONLINEARITY'

By P. J. BickEL
University of California, Berkeley

We study the asymptotic power functions of tests for heteroscedasticity
and nonlinearity in the linear model which were proposed by Anscombe
and introduce and study some competitors robust against gross errors.

Introduction. In the past few years a variety of methods has been proposed
for estimating the parameters of a linear model which are less sensitive to de-
partures from normality of the error distribution than the classical least squares
estimates. See Huber [13], Jaeckel [14] and Bickel [5] for various approaches.

As Anscombe, Tukey [2], [3], [4] and others have stressed the fitting of a
linear model is often only a first tentative step in the analysis of structured data.
After the parameter values of the model have been fitted by least squares these
authors and most practicing statisticians advocate an analysis of how well the
model fits with an eye to common specific departures such as nonlinearity,
heteroscedasticity and dependence. Most such analyses are graphical and rather
informal. However, Anscombe [2] has proposed some simple test statistics for
nonlinearity and heteroscedasticity which attempt to formalize this process.

This paper is an investigation of the power of Anscombe’s procedures when
the error distributions are not normal and a comparison of these procedures
with some natural alternative tests which are robust against gross errors. The
paper is organized as follows. In Section 1 we introduce Anscombe’s model
and tests for heteroscedasticity and state and discuss rather general asymptotic
properties of these procedures. In Section 2 we do the same for his nonlinearity
models and procedures. In Section 3 we introduce robust tests for hetero-
scedasticity and study their asymptotic theory under less general conditions
than those of Section 1. In Section 4 we do the same for the nonlinearity
problem. Section 5 is an appendix containing the technical results needed for
the proofs of the various theorems of the paper.

1. Testing for heteroscedasticity: Anscombe procedures. Our point of de-
parture is the general linear model, 7, in the form

(1'1) Yf:Ti_I_Si,’ i:19""n7
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where

(1.2) T= DIy

the 3, are free unknown parameters, the ¢,; are known constants and the ¢,
independent identically distributed random errors with common df F and density
f. If Fis the. /7(0, ¢*) df we have the classical normal linear model which we

shall refer to as. /7./”. It is convenient at this point to rewrite (1.1) and (1.2)
in matrix notation and introduce the usual estimates. Let

C=lk

ll"”xl’

Y=(Yy o VY m= (00 B= (B oo By)s € = (e ooy, Then
(1.1) and (1.2) become

(1.3) Y=7-+e¢

(1.4) T =C8.

Without loss of generality suppose C is of rank p. The least squares estimates
of B which we denote 8% = (5%, - - -, j3,*) are given by

(1.5) - =[ccrcy

and the least squares fitted values t* = (1,%, .- ., 1,%) by

(1.6) tr =TY

where by definition,

(1.7) [ = |lrillaxa = C[CC]TIC".

The least squares residuals denoted by r* = (r,”, .- ., r,“)are, of course, given by
(1.8) rr=Y —t- =TY

where by definition,

(1.9) T = |fsilluxn = Losw = T

and finally the residual mean square is defined by

(1.10) = (n = Py S [T

For convenieﬁce, since we only consider least squares fits in this section and
the next, we shall drop the L superscript where there is no ambiguity. The

following standard notation will prove useful. If a,, ..., a, is any sequence
we write
a, =n"'yr a;.
Thus
st = [7*]. .
n=—=p

Inhomogeneity of the variances of the errors is a common phenomenon in
practice. When such inhomogeneity occurs the variances often seem to depend
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on the means r of the observations. Following Anscombe [2] we write such
a model as

(1.11) Y, =17, + o(t)e;, i=1,..-.,n,
where the 7;, ¢; are as before and ¢ is a positive function of r. We suppose that
o can be approximated by a member of a parametric family of curves o(r, ), ¢
real such that

(1.12) o(r, 0) = 1 -+ ba(r) + o(F)

as ¢ | 0 uniformly for bounded z. In this section we consider the simplest case:
a(r) = v. Thus 6 = 0 corresponds to homoscedasticity. The simple model
o = ¢’7, of course, satisfies (1.12) as do many others. More general models are

discussed in Section 3.
We consider the one and two sided testing problems H: # = 0. For F normal
Anscombe [5] proposed an estimate of § which we call A,

h= 2t — 0[S0 ; 7t — I)(t; — 1)
where .
(1.13) f=m—p) Y fut;.
If /% holds, Anscombe shows that
Var (h|6,", -, 1,5) = 2n — p)(n — p + 2)7 [ 2 7H(t: — E)(t; — D))

He suggests that (under conditions somewhat difficult to make precise),
h/[Var (k|t,, - -, t,)]t can be referred approximately to a normal table and used
for a test of significance of H. The resulting test statistic which we shall call
A is given by

(1.14) A=, r¥t, — Dé
where
(L1S) 0" =21 — p)n — p + 2)7%* T Pt — D)t; — 7).

Here is one way of seeing that A is reasonable. Calculate the locally most
powerful test statistic for H: § = 0 vs. K: § > 0 for the model (1.11), (1.12)
when it is assumed that F is .#7(0, ¢*) and the 7, and ¢* are known. This statistic
is proportional to
2 Ti(siz — UZ) .

If we estimate t, by #,, ¢; by r;, ¢® by s* and, as is often the case, 7,, = 1 — (p/n)
we arrive at the numerator of 4. The denominator ¢ is just an estimate of the
conditional standard deviation of the numerator given t under .##". The use
of  rather than ¢, is dictated by the asymptotics. See the proof of Lemma 1.1,
particularly the centering on the left of (A4), and (1.27).

We shall study the behavior of the numerator and denominator of 4 and the
related statistic 4, which we introduce below as the number of observations
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gets large. Since we are interested in situations such as the additive two way
layout with one observation per cell we shall follow Huber’s [13] lead and
consider sequences of designs in which the number of parameters may grow as
well as the number of observations. We will really be dealing with sequences
of design matrices C, of dimension p, as well as parameters (3,,, - - -, 3y,.) and
let n — co. To simplify matters we drop the subscript n unless confusion could
ensue.

We need to put various conditions on the quantities defining the various
models appearing in this paper. We shall sometimes express these conditions
in terms of “bounds” on the design matrices of the models and on the true
values of the parameters entering into the model ((L) conditions) and on the
error distribution ((F) conditions) and sometimes in terms of rates of conver-
gence to 0 for these quantities. All our convergence in law and convergence
in probability theorems will be uniform in the regions specified by these bounds
when these are given even though we may not make this uniformity explicit.
We use P, throughout this section to denote probabilities calculated under the
model given by (1.11) and (1.12). P is used for P,. We shall use M with and
without subscripts throughout as generic finite positive constants with the un-
derstanding that they may vary from condition to condition.

Here are the conditions for this section. We use the prefix H to indicate those
which are special to the heteroscedasticity problem.

Ll: max,|r,] < M

3

L2: p/n— 0,
HL3: n= ' 37 (v, — 2P = M1 > 0,
L4: |0nt] < M,

F1: F is a distribution symmetric about 0,
F2: 0 < M < EeP < M,
HF3: M= < J(f) < M where

IS = 57 (3 L)+ 1) fioy e

if /" has an absolutely continuous density f with derivative (7, and J,(F) = oo
otherwise.

The asymptotic theory of this section rests on the following proposition whose
proof is given in the appendix.

ProrosiTION 1.1. Suppose that 1.1, 2 and F1, 2 hold. Then,
(1.16) nth (= Brd =t 3 (n — (e — Ee) + o,(1)
(1.17) s* = Ee + o,(1)

(1.18) n 2 T = (G = 1) = n7t (= 1)+ oy(1)
=nt (v — 7Y 4 o (1)
(1.19) (n—p)7 2o (r® — [7°L) = Vare? + o(1).



270 P. J. BICKEL

As a consequence we find that if the assumptions of the proposition and HL3
hold, then an application of the Lindeberg-Feller theorem yields

(1.20) P4 = z] =1 — ®(z(2/Var ¢?)t) + o(1).
Thus,

(i) if F is normal or more generally the kurtosis of F is 0, using normal criti-
cal values for the one and two sided tests based on A4 is appropriate,

(ii) if the kurtosis of F does not vanish, these tests do not have robustness
of validity and, in particular, for long tailed (leptokurtic) distributions have a
greater probability of type I error than under .#7°%.

This is in agreement with Box’s [9] findings for the F test for equality of scale
of two populations.

Remark (ii) and (1.16) lead us (as it did Box) to construct the following
“studentized” version of 4 which we call A,,:

(1.21) Ap = 2 (t; — D6,
where '
(1.22) G = 2 (t; — EP(n — ) X (rd — [PLY -

Clearly by (1.16), (1.18), and (1.19) if L1, 2, HL.3 and F1, 2 hold,
(1.23) A= (3 Vare®)7t4 + o,(1)

has a limiting .#7(0, 1) distribution under -, and can be used to construct
valid tests.

We can investigate the power of tests based on A4,, using Proposition 1.1 and
the following proposition whose proof is given in the appendix.

ProrosiTION 1.2. Suppose 1.1 and L4 and HF3 hold. Then the measures P, Y
and P,Y ! are contiguous and

(1.24) log ZII}Y (V)= -0 5, (1 + eil;(si)>

-3 LI(f) it 4 o(1).
Then:
TurEOREM 1.1. Suppose L1, 2, HL3, L4, F1, 2, HF3 hold. Then,
(1.25) PjApz 2zl =1 — Pz — Ap) + o(1)

where
A0, n) = 20[ X7, (7, — ©.)']*Ee*/[Var &t .

Proor. By Proposition 1.1, under L1, 2, HL3, FI1, 2,
(1.26) Ay = Y, (r, — t)e? — EeP)|[ X (r; — ) Var &t 4 0,(1) .
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Since
(1.27) (£ — 2 £ M(n— p)Hp + 5,7} = O(pn)
we may (using L1, 2, HL3, and F2) replace 7 by r, on the right-hand side of
(1.26).

Let

Wo = (z, — 2! — BT, (7, — =) Var et
_ [
Wo = —bz (1 + o ))-

In view of L1, L3, and L4 we may suppose without loss of generality that
6* 5, vrand o* 3, (v, — t,)* converge to nonzero limits. Then we can apply
the vector Lindeberg-Feller theorem to conclude that, under L (W, W)
has a limiting normal distribution with covariance

lim, — O[3 (r, — =.)}/Var &7} §=. 72 (1 + x[fl(x)>f0(x) dx = lim, A0, n) ,

after an integration by parts. In view of (1.26) and (1.24) A, and
log dP,Y~'/dP,Y~' have the same limiting joint distribution. The theorem now
follows by Le Cam’s third lemma ([11], page 208). [

Statistical implications of the theorem.

(1) The one and two sided tests based on A4, are asymptotically unbiased
under the assumptions of the theorem.

(2) If Fis normal, A and A,. have equivalent power behavior by (1.23) and
Proposition 1.2. Work in progress at Berkeley suggests that if F is normal these
statistics are in a suitable sense asymptotically best among asymptotically un-
biased tests (e.g., for p fixed in the sense of Neyman [15]).

(3) The power of the tests based on A,, is low if F is leptokurtic since A,, is
inversely proportional to (kurtosis)t.

Comments on regularity conditions.

(1) The theorem as stated has minimum conditions on the designs, p/n — 0,
but excessive symmetry and moment conditions on F. An examination of the
proof of Lemma 1.1 given in the appendix reveals that we can replace F1 by
the minimal condition

Fl: Ee, =0

and have the conclusion of Theorem 1.1 still hold provided that we replace L2 by

(1.28) P _0.

n:

This last condition is not onerous. In the balanced case y,, = p/n it corresponds
to p*/n* — 0. If we replace F2 by the natural minimal condition,

F2: M < Esf< M
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and (1.27) holds we can show that all assertions of Proposition 1.1 hold savé
(1.19). I do not know whether reduction to F2’ is possible or (1.28) can be
dispensed with. A sketch of the argument needed for the assertions of this
comment is in the appendix.

2. Testing for nonlinearity: Anscombe-Tukey tests. Nonlinearity and non-
additivity are two different kinds of departures from % which are difficult to
distinguish from each other. By nonlinearity we mean that the E(Y,) are non-
linear functions of the parameters of interest. By nonadditivity, in accordance
with Tukey and Anscombe, we mean that the Y’s themselves do not follow a
linear model but that there is a nonlinear transformation T such that the T(Y,)
do follow -, In this section we consider some special nonlinear models. Fora
special case see Andrews [1]. Nonadditivity will be treated in a later paper. Let

(2.1) Y, =s(z)) + ¢, i=1,.---,n,
where the 7; are given in (1.2) and the ¢; are as before. For example, suppose
our linear model is an additive two way layout with one observation per cell.
Thus,

(2.2) Yu=pv+a;+ B + s a,=£,=0,1Z;j=/J,1ZkZK.

If s is quadratic then as yx, a;, 8, vary (2.1) sweeps out a family of models of a
form related to-one given by Scheffé [16],

E(ij)"—"/l‘f—a'j'i‘,ék‘l‘cajﬁk, a,=p=0.
As in the previous section we introduce a parameter ¢ and suppose that
(2.3) s(t, 0) =t 4 Oa(c) + o(0)

as # | 0 uniformly on compact sets of ¢. For this section we shall consider the
simplest case: a is quadratic with leading coefficient 1.

In this case if there is an additive main effect and the observations are normally
distributed it is natural to use a test statistic discussed by Anscombe [2] for a
related nonadditive model. This statistic is just

B, = 3t [ 200 Tas 7]
where s* and the ¢, r, are as in Section 1. If § = 0 and F is .47(0, ¢*) the dis-

1 7

tribution of B, s is .#7(0, ¢°) and thus critical values for Bcan be approximated
by normal critical values. In fact, if we define

a(t) = (a(t), - - -, a(1,))

and
(2.4) §'=(n— p— 1)7[(n — p)s* — (a(t)r)*/a(t)Ca(t)]
then
B,=B"
§
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is just Tukey’s one degree of freedom for nonadditivity and has, under . /77,
a t distribution withn — p — 1 degrees of freedom (see, €.g., Scheffé [16], Prob-
lem 4.19). B, can be motivated on the same grounds as A, as a studentized
estimate of the LMP test statistic for H: § = 0 vs. K: 6 > 0 under the assump-
tion F normal and z, known.

We study B, and B, using the same large sample framework and conditions
as in the previous section. Of course P, now denotes probabilities under the
model given by (2.1) and (2.3). We shall need the following new conditions.
The prefix N indicates they are special to the nonlinearity problem.

NL3: T, ;7y7it2= M >0,

NLS: >:7,;=0 for all i (the regression has a constant term),

NF3: 0 < M~ < Ji(f) £ M where

@.5) HJ) = §7 (L ) S0

if F has an absolutely continuous density f with derivative f’ and J,(f) = oo
otherwise.

The proofs of the following two propositions are given in the appendix.
ProposITION 2.1. Suppose L1, 2, NLS5 and F1, 2, hold. Then,

(2.6) Tt 3t = 0Tt 3 Fa T + 0,(1)
(2.7) P e Tttt = 0 2 Ta Tt 0,(1)
(2.8) =254 0,(n") = Ee’ + 0,(1).

ProrosiTiON 2.2. Suppose L1, 14 and NF3 hold. Then, P,Y-* and P,Y~* are
contiguous and

(2.9) log Zﬁ"y L(Y) = —0 %, a() f7 () = 2 (/) Ted(w) + 0,(1)
As a consequence of the propositions we have

THEOREM 2.1. Suppose L1, 2, 4, NL3, 5 and F1, 2, NF3 hold. Then,

(2.10) PIB, zz]=1—®(z— )+ o(1)
where
(2.11) 20, 1) = O[22, ; 77 T P Bl

The same assertion holds for B,.

The proof follows the same lines as that of Theorem 1.1 and will not be re-
peated. We only note the provenance of 7, from

- Py '

[Be?]-+ Cov {[-ZZ—%%% . —0 Y, a(cy) f7 (ek)}

(2.12) = O[Ee1 ] 2on vt Tul ™ 2o Tutifa(zy)
- 77z(‘9’ n)

by NLS5 and the structure of a. []
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Statistical implications of the theorem.

(1) The one and two sided tests based on B, or B, have robustness of validity
and are asymptotically unbiased.

(2) Work in progress at Berkeley suggests that if F is normal these tests are
asymptotically UMP unbiased. However, better procedures can and will be
found if F is leptokurtic.

(3) The condition NL5 guarantees only that the test statistic B, is sensible.
If it does not hold ¢.? should be replaced by a(z,) in B,. The appropriate statistics
for general a and F and their theory are developed in Section 4.

Comment on regularity conditions. As in Section 1 we can show that the con-
clusion of Theorem 3.1 holds if F1 is replaced by F1’ and L2 is replaced by
(1.28). F2 can also be weakened to F2’ but in this case F2’ still involves mo-
ments of higher order than those appearing in (2.11). I do not know whether
second moments are enough.

3. Testing for heteroscedasticity: general models and robust procedures. In
this section we consider models satisfying (1.11) and (1.12) for general a(r).
More significantly we introduce procedures which in the special case a(r) = ¢
and more generally are robust against gross errors, i.e., have better power
behavior than A,, for leptokurtic errors and perform almost as well when F is
normal. The following notation is useful. Let g be a function of a real vari-
able. If x,, ..., x, is an arbitrary sequence let

0.() = St 0(x) -

With a(.) given by (1.12) and assumed known we consider statistics A, de-
fined by
(3.1) Ay = 3, (a(t) — a,(0)b(r)/a,
where

;" = 2 (a(t) — a.(0))(n — p)7t X (6%(r) — [6(N)) -

We do not assume in this section and the next thatt = t*, r = r%. Rather (¢, ---, 1))
is a vector of fitted values obtained in some way, i.e., an n-dimensional statistic taking
values in the column space of C and r = Y — t. Natural conditions to be put on
t, b will become evident as we proceed.

Such statistics can be motivated readily. If we assume the r,, F known the
LMP test statistic of H: @ = 0 vs. K: # > 0 is proportional to

— ¥, a(r) <e£f_ () — Ee, i}_ (ei)> .

If we let b(x) = —x(f’/f)(x) and estimate the z,, ¢, appropriately we are led to
the numerator of (3.1).
If fis symmetric about 0 and strongly unimodal ((f’/f) |) & is an increasing
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function of |x|. This class of b’s seems particularly natural and as we shall see
below only members of this class lead to statistics having “reliable” power
behavior.

Another approach proceeds from (M) estimation in the linear model (scale
known). Here we obtain the fitted values t* as minimizing >, o(Y, — t;) where
(t;, - - -, t,) ranges over the column space of C. For robustness p is chosen to
emphasize large residuals less than x*. If o’ = ¢ exists and the minimum t* is

assumed then t# satisfies
C'o(Y —t8)y =0

where ¢((u,, - - -, u,)') = (¢(u), - - > ¢(u,)). Equivalently we can think of t*
as being least squares fitted values for the “pseudo observations,”

(3.2) Y = t* + 1Y — tF)

where

A=nt 3, (Y, — t5).
(The choice of A is unimportant for this discussion. A rationale for its use and
further discussion will be found in the reply to discussants in [7].)

The residual vector of the pseudo observations is proportional to ¢(Y — t7).
If we substitute these residuals in A, given in Section | we obtain essentially
A, with b = ¢* (and a(c) = r). The only difference is in the use of ¢, rather
than 7 but that is asymptotically negligible as we have seen in Section 1. If we
require that ¢ be odd and increasing b = ¢* is an increasing function of |x|.

Some interesting choices of b.
The power family:

(3.3) b(x) = |x|*, I<ag2.
These 5’s correspond to the LMP tests for f(x) oc e=** and to the (M) estimates
for ¢(x) = |x|*?sgn x.
Huber’s function squared.
(3.4) b(x) =x*, |x| £k
=k, |x}>k.
Here b corresponds to Huber’s classical
(3-3) Pu(x) = x x| < &
=ksgnx, |[x>k.

It was proposed in a different context (for estimation of scale for a single sample)
in Huber [12]. )
A smooth bounded increasing function of |x|:

(3.6) b(x) = tanh® x = <e_—f;>2
ex + e—CC

This b corresponds to ¢y = — f’/f where fis the density of the logistic distribution.
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Unfortunately an asymptotic theory of the generality presented in Section 1
can easily be obtained only for functions such as (3.5). We shall develop the
theory for smooth bounded b and general p here and discuss its shortcomings,
extensions, etc. at the end.

We need some further conditions on the model. We use the prefix G to
indicate that these conditions correspond to weaker or special conditions in
Section 1.

GHL2: pn—t—0,
GHL3: n' 3ir, (a(r,) — a)! = M- > 0.

Smoothness conditions on a:

S: a is continuously twice differentiable.
(i) ld(x) =M
(ii) Ja"(x) < M.
Regularity conditions on b:
HRI: (i) &(x) = b(—x) for all x,
(ii) & is increasing for x = 0;
R2: Varb(e,) = M > 0;
R3: b is twice continuously differentiable.
(i) |6(x)] < M for all x,
(ii) |p'(x)] £ M for all x,
(iii) 6”(x)] < M for all x.
A basic condition on t:
Let dZ =t — T,

T: Xr.d’ = 0, (p).
Again P, corresponds to computations under (1.11) (1.12) and P = P, is the dis-
tribution under .&.

THEOREM 3.1. Suppose L1, GHL2, GHL3, L4, F1, HF3, HR1(i), R2, R3, S
and T all hold. Then,

3.7 PfA4, Zz 2] =1 — D(z — 4;) + o(1)
where ‘
(3.8) A0, n)y =03, (a(r)) — a,(7))*E(e, ' (e,))[Var b(e,)] ¢ .

Proor. In view of R3 and S we can apply (A37) of the appendix with w,; =
0;; — (1/n) (which satisfies (A29)) to get
(3-9)  Zi(a(t) — a.(0)b(r) = n7t X, (a(z)) — a.())b(e)
+ T (&) s (a(7s) — al(0))(6 — 7)
+ o,(1).
By F1 and HRI(i), Eb'(}) = 0, and the second term in (3.9) vanishes. Now
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apply (A34) of the appendix to get

(3.10) nt Lila(t) — a(0) = n7" B (a(z) — a.(7)) + o (1) -
Finally, since 4* satisfies R3 if & does, we can apply (A36) to get

(3.11) =t 30 (B (r) — [8°).(r))F = Var b%(e;) + o0,(1) .

The rest of the proof of the theorem uses Proposition 1.2 and parallels the proof
of Theorem 1.1 exactly. []

Comments on the regularity conditions.
(1) Condition T is satisfied by least squares estimates if Ee, = 0, E¢?* < oo,
since then
E(XN.d’) = i Var g, = /’E"-lz‘-

1=1"{

Huber [13] has extended this property to (M) estimates with known scale
under some regularity conditions on ¢ and the condition yp = o(1).

Results similar to Huber’s theorem are not at present available for the other
methods of estimation except for the case p bounded (see [6], [14]). It has,
however, been stated by Huber in [13] that this property as well as the other
important linear approximation properties of his theorem carry over to (M)
estimates with unknown scale.

(2) Conditions L1, GHL3, L4, HF3, and R2 seem dictated by the nature of
the problem.

(3) Conditions S and GL2 are probably not necessary but do not rule out
many interesting situations.

(4) Conditions F1 and HRI(i) or at least Eb’(s;) = O are necessary for the
conclusion of the theorem. See (A37).

(5) Condition R3 is unsatisfactory. The power family does not belong since
R3(i) is always violated and R3(ii), (iii) fail if « < 2. Huber’s function squared
does not satisfy R3(ii), (iii). Unfortunately I am unable to obtain results without
R3 unless p is bounded and fitting is by least squares or at least we can estimate
quantities such as 3, d;*.

Even so the results are inelegant. Here is a typical theorem.

Introduce

GL2: (i) pis fixed,
(il) n'C'C — Z,,
(iii) max, ; |c;;| = o(n?).
GHF3: F3 holds and f’ is continuous.
R2: (i) M~ £ Varb(e) = M
(ii) E(b(e,) — Eb(e))e = M.
R3’: b is absolutely continuous with R-N derivative 4’ such that

b'(x)| = M for all x.
T t=tland Es, =0, E(e) < M.
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THEOREM 3.2. Suppose L1, GL2’, GHL3, L4, F1, GHF3, HRI (i), R2’, R¥,
S and T' hold. Then (3.7) holds.

Thus (3.7) holds for the Huber squares and b(x) = |x| under mild conditions
since R3’ is satisfied for such . The proofs of these assertions are sketched in

the appendix.

Statistical implications of Theorems 3.1 and 3.2.

(1) If we refer A, to normal critical values and b satisfies HR1, then, under
the conditions of the theorem, the resulting tests are asymptotically unbiased
since F1 and HR1 imply Ee, b'(¢;) > 0.

(2) The power is independent of the method of estimation of the parameters
of ~ and depends only on the choice of . Thus using robust estimates in A4,
would not improve its performance in leptokurtic situations. On the other
hand least squares estimates could be used with appropriate b’s to give better
performance in such situations (see below).

(3) The power depends on the design sequence only through the .

(4) The theorems enable us to compare statistics based on different 5’s. We
can perform the usual Pitman efficiency computation. That is, we calculate
the limiting reciprocal ratio of sample sizes needed by tests based on 4, , 4,
respectively to reach the same asymptotic power at the same level for a sequence
of alternatives 8, = O(n~%). If e(b,, b,) denotes the Pitman efficiency we find,
provided that E(b,'(¢,)s;) > 0,1 =1, 2,

Var by(e,) EXb/(1)e,)
Var by(e,) EXb,(s)e,)

(3.12) e(b,, by) =

which depends only on b,, b,. If we specialize to b,(x) = |x|, by(x) = x* we find
%< Eet 1)

(Eer')’
(B 1)

(Eler]?
This expression occurs in Bickel-Lehmann [8] (among other places) as the ef-
ficiency of the mean deviation to the standard deviation as measures of scale.
The bounds and numerical results of that paper are thus available.

If F is normal, e = .88. In general e can be arbitrarily large bute = .25
whatever be f. For scale mixtures of normal distributions with mean 0, e > .48.

Tables 5.1, 5.2 of [8] show just how favorably the mean deviation statistic
A, compares with Anscombe’s statistic for reasonable slightly heavy tailed dis-
tributions. As was noted by Tukey in [17] the classical normal procedures for
estimation (and testing) for scale are much more sensitive to nonnormality than
the corresponding procedures in location problems. Application of these pro-

cedures to selected data sets suggests that the asymptotic predictions are borne
out. This and other numerical work will appear elsewhere.

(3.13) e(by, by) =
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(5) From (3.8) we see that it is proportional to the square root of the re-
ciprocal asymptotic variance of the (M) estimate of log scale based on x = b.
Thus the minimax theory of Huber [12] can be carried over and b given by (3.4)
is suggested for moderate contamination.

(6) Suppose fis known. From (3.8) it is clear that the unique most powerful
test within the class of all based on 4, satisfying the regularity conditions of
the theorems would have to have

b(x) = — (xf%(x) + 1>.

Of course, the regularity conditions of Theorem 3.1 typically rule out b but
the optimum power can always be approached arbitrarily closely. Work in
progress at Berkeley suggests that this is the best that can be done among all
asymptotically unbiased or invariant tests.

The asymmetric case. As Sukhatme and other authors (see Crouse [10]) found,
the asymmetric case poses peculiar difficulties. The asymptotic behavior of the
numerator of 4, now depends through the second term in (A37) on the method
of estimation of the ¢,. It is possible to modify the denominator of 4, to obtain
an asymptotically standard normal test statistic under the hypothesis. How-
ever, its power behavior is complicated, efficiency comparisons depend on the
design, etc. We do not pursue this although the question is clearly an impor-

tant one.

Extensions and related procedures.

(1) It seems reasonable that, if instead of observing z, + (1 + 07))e,, i =
1, ..., n, we observe t, + (1 4 f7,)a¢;,, i =1, ..., n our inferences about 4
and hence our power curve should be the same at least asymptotically. It may,
however, be shown that of the tests based on A, essentially only those in which
b(x) = |x|* for some a have this invariance property. This is, of course, re-
lated to the fact that the statistics 4, were motivated from locally most powerful
tests in which the distribution was assumed known and from (M) estimates with
scale known. Invariant tests may be constructed in the obvious way by re-
placing b(+) in A, with b(./G) where G is a data dependent estimate of the scale
of the observations satisfying at least

(3.14) (oY) = aé(Y)
and
(3.15) 3(Y) = a(F) + o,(n7?)

where o(F) is some positive measure of scale. A commonly used choice in
estimation of location is

(3.16) 4(r) = median {|r,|, - - -, |}/ @Y(.75) .

Another less robust possibility is, of course, ¢* = s,°.
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It may be shown that if the conditions of Theorems 3.1 or 3.2 hold as well
as (3.15) then

(3.17) Pfdy, 2zl =1—®@z—A,) + o(l),
where
(3.18) by(x) = b (%)
X
(3.19) by(x) = b <W> :

A proof is sketched in the appendix.

(2) An alternative approach to the problem discussed in (1) above is to use
other random transforms of the residuals than b(r;/¢). One possibility is to
replace b(r;) by the square of the rank of r, among r,, - .-, r,. This procedure
was considered by Sukhatme and others (see Crouse [10]) when .~ is the two
sample model and a(r) = r. Unfortunately as with the estimates based on ranks
studied by Jaeckel [14] and others only bounded p results seem attainable for
such statistics. However, where these have been obtained, the qualitative pic-
ture agrees with ours, e.g., lack of dependence on the method of fitting, diffi-
culties with asymmetry.

4. Testing for nonlinearity: general models and robust procedures. In thissec-
tion we consider models satisfying (2.1) and (2.3) for general a(r) and introduce
generalizations of the Tukey-Anscombe tests which are robust against gross
errors. Naive local power considerations lead to studentizing — 3, a(#,)(f"'/ f)(r:)-
On the other hand, applying the Anscombe-Tukey statistic in the form given in
Scheffé [16], problem 4.19, to pseudo observations similarly leads to studentizing
2 a(t)g(r;). Thus we again arrive at statistics of the form 4, where, however,
the function b is naturally taken to be antisymmetric and increasing. Actually
because we do not necessarily want to match the method of fitting and b we
are led to the following form:

4.1) B, = 6,7 Ylip Tua(t)0(r)
where
0 = (n — p)7 2 (b(r)) — b)) e Tua(t)a(ty) -
This form agrees with A4, if the vector (b(r,), - - -, b(r,))’ is orthogonal to the
column space of I'.
Some interesting choices of b.
The power family:
(4.2) b(x) = |x|*sgn x, 0agl.
Huber's ¢, given by (3.5).

The logistic score function:

4.3) b(x) = tanh x .
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We shall need the conditions

GNL2: yp* -0,
GNL3: 33, 7ia(r)a(r;) = M~ >0,
NR1: (i) b(x) = —b(—x),
(ii) b is increasing.
THEOREM 4.1. Suppose L1, GNL2, GNL3, L4, NF3, R2, R3, Sand T all hold.
Suppose also that either NL5 kolds or NR1(i) and F1 hold. Then,

(4.4) PB, =z z]=1—®(:z — ) + o(l)
where
(4.5) 75(0, n) = O[3, ; a(z)a(r ;)7 Eb'(e))[ Var b(e;)]* -

ProoF. Using R3and S expand the numerator of B, using (A37) with @,; = 7,;-
Note that NLS5 is just (A29) while NR1(i) and F1 imply (A30).
We obtain only the leading term

Dieg Ti59(To)b(e;)
since 33, 7,,(t; —7,) = 0 for all i. The remainder is O,(p(1 + [nmax, 7,}}))
from T and the following estimation
L 4 max, 31 |7l
I+ nb max, [3; 7,
1 + n*max 7} .

max; 3, |74l

A 1A

(4.6)

{l

If we similarly apply (A34) and (A36) to the terms of the denominator we
arrive at

(4.7) By = (X ; Tuya(r)b(e;)/[Vart b(e)[ 2 a(z)a(z)i ]t} + 0,(1) -
Moreover
max; n74| 3, 7,,a(z,)| < nm{max; |a(z;) + [ X @X(z,)]* max; rh}

o(1)

since y — 0.

Therefore the leading term on the right of (4.6) has a limiting N(0, 1) dis-
tribution by the Lindeberg-Feller theorem. The rest of the argument proceeds
as that of Theorem 2.1.

Comments on the regularity conditions.

(1) Again L1, GNL3, L4, NF3, and R2 are dictated by the problem while
S is reasonable.

(2) NL2 is surprisingly strong. It is forced by the estimate (4.6) and can
undoubtedly be improved at least in special cases. Note, however, that even
when we can write 3, ; 7,;a(1,)b(r;) as 3, a(t;)b(r;) we must use the former form
in the expansion in order to conclude that the “Eb’(e;)” term vanishes. Thus
some norm of I' must appear in the remainder estimates.
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(3) The pair F1, NR1(i) can be replaced by Eb(¢)) = 0.
(4) Condition R3 is again unsatisfactory. It is easy to establish

THEOREM 4.2. Suppose L1, GL2’, GNL3, L4, NF3, R2’, R3’ and either NL5
or NR1(i) and F1 hold. Then (4.4) is valid.

Thus (4.4) holds for the Huber functions under mild conditions. Unfortunately
b(x) = sgn x is not covered.

Statistical implications of Theorems 4.1 and 4.2.

(1) If we refer B, to normal critical values and b satisfies NR1 (ii) the re-
sulting tests are asymptotically unbiased.

(2) The asymptotic power is independent of the method by which the r; are
estimated. It does, however, depend on the designs rather than just on the <,.

(3) The Pitman efficiency of tests based on &,, b, respectively is, if Eb,/(¢,) > 0,
i=1,2,
(4.8) (b, b)) = YL bi(e) Eb/()

Var b,(s,) E?b,/(c,)

and is independent of the design. This is the same as the relative efficiency of
the (M) estimates of location based on 5, and b,.

(4) In view of Theorem 4.2, we can apply the results of [12]. For instance,
if there is an additive main effect we conclude that » = ¢, given by (3.5) maxi-
mizes the minimum asymptotic power in neighborhood of the normal distribu-
tion of the form {F: F = (1 — ¢)® + ¢H} where ¢ is known. (The restriction
to F symmetric about 0 is unnecessary since the tests based on b, b + ¢ coincide
if there is an additive main effect.)

(5) If fis known it is clear from (4.5) that the most powerful test within the
class of all tests based on B, satisfying the regularity conditions of the theorems
would have

bm=_§@.

Again such tests are typically ruled out by the regularity conditions but can be
approached arbitrarily closely and seem to be “optimal” within a larger class.

Extensions and related procedures.
(1) Again it seems appropriate to replace b(+) by b(+/G). If ¢ satisfies (3.15)
and the conditions of Theorems 4.1 or 4.2 hold then

(4.9) Py[By, z z] =1 — ®(z — p,,) + o(1).

On the basis of asymptotic efficiency these procedures withbd = ¢,, k = 1, 1.5,
¢ estimated using Huber’s proposal 2 or given by (3.16) (say) perform much
more satisfactorily than Tukey’s one degree of freedom (B,). Again, application
to specific data sets seems to support the asymptotics.

(2) Rank procedures are possibilities here as well. Their properties have
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not been studied even for the case p bounded although it seems clear how they
should behave.

5. Appendix.

SA. Contigui‘ty results. Lemmas 1.2 and 2.2 follow readily from Theorem Al
below, which is an immediate consequence of the discussion on pages 210-214
of Hajek-Sidak [11]. Consider the following perturbations of model .

LYy =14+ e i=1,..-,n
where the ¢, and r, are as before and g, - .-, 4, are arbitrary constants.
LY, =1, + 0,6, i=1,.--,n

where the ¢, are arbitrary positive constants. As with the r; we suppose the
; and g, are really a double array depending on n.
Let g,; denote the density of Y, under .%; and

() =Ry — )
denote the density under ..
THEOREM Al. (a) The model £ is contiguous to & if

max, ., || = o(1)

M7 < X p? <M,
for all n, fis absolutely continuous, and

M7 S U(f) =M,

Moreover, in that case, under &,

(A1) zulogfw)——zuyzf}(m KD go, 4 0,1

(b) The model <7, is contiguous to £ if
max, gz, o, — 1] = o(1)
M7 < Pt (o — 1) = M,
for all n, f is absolutely continuous and
Mo S U(f) = M,

Moreover, in that case, under £,
(A2) 1ogi;2(Y) = Tt -1+ eifT(ei)>

J(f) T (0, — 1) + 0,(1).

PROOF.

n g — 11 f(e — )
Timlog g (V) = 2lalog ™3
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and we can apply the theorem of Section 2.2 of [11] directly. Similarly,

. lo Yz Y)= 32, lo O'i"lf(eigi—l) .
A OB e

Translating the conditions of the theorem of Section 2.3 of [11] into ours is
then straightforward.

REMARK. Clearly one can have perturbations both of type 4, and .%#, and
contiguity of this super model to < is obtained by combining the conditions
of (a), (b).

5B. Proofs of Propositions 1.1 and 2.1.

Proor oF ProrosITION 1.1: Letd, =1t — 7, i = f, cee,n

ProO¥ OF (1.16). Let E(¢?) = 1. Write
(A3) ity —HrP =Y, =i+ 2 (d; — ‘Z)riz
where d = (n — p)=' Y, #,,d;. Then,

it — Ot = 2 (v — 0 — 2 5, (1 — B)ady + X, (7, — £)d?
(Ad) = 2T — 8 — 2 35, (Ts — Dracis
+ 2ina (Te — Dratucesr -

The expectation of the left-hand side of (A4) is 0 if E(e,) = 0. Therefore if we
center the last two variables at their expectations and call them R,, R, we obtain

(A5) 2 (Ti - f)"f = Zz (Ti - f')(ei2 — 1) + R, + R,.
Now
E(R?) = 4{(E(s)*) — 1) Xarh(zs — ) + Ding T?j[(fi - {-)(Tj — %)+ (z.— 7)1}

Therefore, using [ = I" and max, ; [7,,| < 1 we get

(A6) E(R?) = O(Zi7a) = O(p) -

Similarly,

(A7) E(R?) = O(X; [(ri — Oz — O Xk rherhe + 73]
=0(X:ira) = O(p) -

Therefore,

(A8) ‘ R, + R, =0,(p).

Next consider
(A9) 2 (d; — d-)"iz = 2 (d; — ‘i_)("i2 — Tu)
= Ju (di - d)[(5i2 -1 - 2(di5i — Tii) + (di2 — Tti))] .

d = (n — Pyt (i TaTu)en
Ed) =0,
Ed) = (n—p)? Tu(Tifural < (n — p) Tuih = O(n7Y) .

Since
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Therefore

(A10) dY (2 — 1) =0,1).
The estimates used for R, yield
(Al1) d % (die: — 1) = O,((pn~2)})
while those used for R, give
(A12) d X (di2 — Tii) = Op((pn‘l)%) .
Simple computations of the same type yield
(A13) Zodel — 1) = 0,(ph),
(A14) 2 dirs = 0,(p) .
Thus
(A15) 2 (d, — j)"f =23,d% + 3,d*+ 0,,([7%) .

Now consider
2 — .
2 die = Diied VikTu€iCuty -

Since f is symmetric about 0, };, d%, has expectation 0 and variance which is

O(Zi,k Yoo + 2k Tl + Diik TaTh + Daik TaiTonThe
+ DikmThlie + Zi,k,m YiilieTim + szm Vit Uk TimTkm) .

The terms in the 0 expression (which correspond to nonvanishing moments)
can be bounded as follows:

Dk Tie E Dikiie = LiTu =P
|Zi,k Th Tkkl = Zi,k Th
Dk ThTi = 2iTh = Xitu
20k TaTuTiel = [ 20 70 2 [ 20 1o
< YT since I' is a projection matrix
|2 tem Tei ThaTimTeml = | ik Tl el £ 2 7
| 22 ceum TaiT i Toml = 1 2500 Tas Ve 7 il
Diiveon Tielim = 230 The »

Therefore
(A16) 2idle = 0,(ph) .
Finally we note, using the symmetry of fagain, that

E(X:d* =0
and after some simplification,

Var (20:d®) = O(X s tatulie + Dusn Thlier; + Do Turury + 2oy i) -
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The terms in the 0 expression can be bounded as follows:
|20 Teatae 7ol = | 206 (e Taa¥a 205 73)]
S [ Zeraral® 26 (25 7P
< DT
| s The 73l = 20 220 [205 75e4s]”
S X DT = 2k Tuk
| X sttt = 2 (575570 = 21
lZi.j ng| = Zi,j 7’:2']' = 2T~
In conclusion,
(A17) Zd? = 0,(pY)
and combining (A15)—(A17) with (A5) and (A8), (1.16) follows. []
Proor oF (1.17).
(Al8) = (n—p i’ + 2 20 6d + 30 d7
= E(&") + O,(pn7")
by arguing as for (Al1) and the law of large numbers.

ProorF oF (1.18).
nt B it — D)(6; = 1)
(A19) =nt Y, (1, — £
+ O (n [ X rhi(ts — I8, — 1) + Xarults — ) -

The expression under the O, sign is nonnegative since ||7},]| is nonnegative defi-
nite by Schur’s theorem. Its expectation is easily seen to be O(pn~') under L1
and F2.

Moreover
(A20) i X (D)= X (r— 0 + 2 5 (r— B)(d — d) + X, (d; — d
=n Za (5 — 1)+ O,((pIn)h)
and (1.18) follows. :

Proor of (1.19). We need to show (in view of (1.17))

(A21) (n—p) Nirt = (n— )7 Diet 4 0,(1) -
But (A21) follows readily upon applying the estimate
(A22) E(Y.dY) S [Zi1h + ZaridEet = 0,(rp)

and Schwartz’s inequality to the various terms of the difference between the
leading term of the right- and left-hand sides of (A21). {]

Sketch of proof of comment at end of Section 1. We sketch the modifications
needed for proving (1.16) under the new conditions. All that is needed are revised
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estimates of >, d%, and };,4°. We illustrate that for }},d,>. Estimate sepa-
rately >, d® — X, . 7o’ and 33, , 7%.¢° The first of these terms has expectation
0 under F1’ and a variance involving only moments of the ¢, of order 4 or lower.
Moreover the coefficients appearing in the variance are just those appearing in
Var (3}, d) under F1, F2. Thus,

Zid? — Lawrinss’ = 0,(pY) -
On the other hand,
|, rhed] £ Bl Sowrhe = OGp) - 0
PrOOF oF PrRoPOSITION 2.1. Again take Ee” = 1.
PRrROOF OF (2.6). Write
St = utlin + 2 3 ndr, + X dlr
(A23) = D Tatla + 2 2itddies — 10) — Zitdd® — 14)]
+ Y.dle — X, dR.

The terms following the factor 2 are O, (p?) by the arguments used for (A11) and
(A12) while the last two terms are O ( pt) by (A16) and (A17). (2.6) follows.

PROOF OF (2.7).’
(A24) T Tulit = Dia TatiTS 4 O,((2: 1T 4 + 20 d) .
The remainder is O (pt + pr?).

Proor oF (2.8). By NLS5 and (2.6),
(A25) a(tyr = X, t*r, = O (n})

atyla(ty = X, 7 t’t = M'n 4 o,(n) .

The result follows. [

5C. Taylor expansion results needed for the proofs of Theorems 3.1 and 4.1. Let
(t;, -+, t,) be a set of fitted values as in Sections 3 and 4, i.e., any statistic

taking values in the column space of C.
Let a, b be real valued functions of a real variable. The statistics of Sections
1 and 4 are all based on expressions of the form

(A26) T2 = 2 Dia wisa(t)b(ry)
(A27) T = 3ir, i wia(t)a(ty)
(A28) T2 = 37, 25wy b(r)b(ry)

where ||w,;|| is a projection matrix (symmetric and idempotent) depending on
n. We shall use the conditions R specified in Section 3 and also

(A29) Powy, =0, j=1,.0,n,
(A30) Eb(e) =0.
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For this subsection assume without loss of generality that

(A31) C'C=1,,

and define ‘é = (B, ---, B,) by

(A32) B=crt.

Also let

(A33) d=1t—r1,, i=1,...

THEOREM A2.
(i) Suppose L1 and S hold. Then
(A34)  TU= Y, Biwa(e)a(e) + Oy(m[ T 42 + X,d7) .
(ii) (a) Suppose L1 and R3 hold. Then
(A35) T = 3 D5 wib(e)b(e;) + O ([ L, dP) + 1. d)
(b) If, in addition, (A29) or (A30) hold then

(A36) T = Var b(e;) Jroywy + O,(nt(1 + [ X, d2]H) + 2. 47 .
(iii) Suppose R3, S and either (A29) or (A30) hold. Then
(A37) T = Fi Ziawia(T)b(e;) — E(b'(e) Liey D31 wisa(t)d,
+ O {[2: a1 (pt + [ 2. &I (1 + max; 3 lw, )} -
PRrROOF:
ProOOF OF (A34). Similar to that of (A35) below and will not be given.
ProoF oF (A35). Write
T = 3, ;wi;b(e)b(e;) + 2 2a0.iWiib(e)(b(r;) — b(¢;))
+ 200 Wab(r:) — b(e))(b(r;) — b(e,)) -
By a standard inequality on projection matrices,
(A38) 200 wasb(e)(b(ry) — b(e;))| = [ 2. 0%(e)PLE, (B(r;) — b(ey))TE -
Similarly
(A39) [ 2005 wis(b(rs) — b(e))(b(r;) — be,))] £ X0 (b(ri) — b(ey)) -
By R3(i)
2:0%(er) = O,(n)
while by R3 (ii)
25 (b(ry) — b(ey)) = 0,(X,d7) .
The result follows.

PRrROOF oF (A36). If either (A29) or (A30) holds,
(A40) E 305 wi;0(e)b(e;) = Var b(ey) Ziwis -
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An elementary calculation using >}7_, wi; = w,, shows that the variance of
Dii; Wisb(e)b(e;) is O, (X wy) = O,(n). (A36) now follows from (A35) and
(A40). ¢
Proor or (A37). Write
T% = 30 Draawea(t)b(e;) + 2ima Ly wya(t)(b(r;) — b(ey))
(A4l) + 2 Do wib(eg)(a(t) — alz))
+ Lo Diaawela(t) — a(@))(b(r;) — b(s;)) -
The last term on the right in (A41) is
O,([Z: (a(t) — a(z)" L X (b(r) — b(=))']H)
since W is a projection and hence is 0,(]; ") by S and R3.

If we expand the third term around d, = --- = d, = 0, we obtain
i Wiibles)(a(t) — a(zy)
(A42) = X Wi @'(T:)d;b(e;)

+ Q[ wea"(ms + Ad)eb(e;))(1 — 2)dA.
Now, by (A32), '
(A43) P D Wi, @ (2)dib(e,) = Tha (B — BIW
where

W, = 210 b)) (Niowia'(Ti)eq) -
But, by (A29) or (A30), E(W,) = 0 for all k. Thus
EW2) = v (00f, wya'(T)ey) Var b(e)

(A44) < Xl ()P

< M*Var b(¢)
by (A31). By (A31) and (A44)

(A45) Tl (B = BIWe = Oy(PLE1- (B — B
= 0, (p 2. d’]) -
For the second term on the right of (A42) we use S and R3 to obtain a bound
(A46) M*(max; 35, [w,,|) 2, d.* .

Combining (A45) and (A46) we find that
(A47) Ditar Dioawiib(ey)(a(t) — a(ry))
= 0,{pi[ 2.4’} + (max, ¥, |w;]) 204’}
Finally expand the second term in (A41) around d, = ... =d, = 0.
1 25e wiga(T)(b(r;) — b(¢;))
= — X D wia(t)d; Eb'(s)
(A48) — Xia D diwia(z)(b'(e;) — Eb'(e)))
+ §5 2o Wia(t)d; 0" (e, — Ad)(1 — 4) da
= —Eb(s) X0y 27= Wi a(ri)d;
+ O0,{pH X 4]t + (max; I5; [wyl) 2.4’}
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by an argument similar to that used for (A42). If we combine our remark
following (A41), (A47) and (A48), the result follows. []

5D. Sketch proofs of Theorem 3.2 and (3.17).
ProoF or THEOREM 3.2. Note

(i) R3" = |b(x) — b(y)| < M|x — y|, for all x, y.
(ii) Define b(f) = Eb(e, + ). GR3 and GR2 imply b is well defined.
(iii) GF3 implies that {=_|f’(x)] dx < co. From GR3 we find that b is twice
continuously differentiable
b(1) = Eb'(e, + 1)
bty = —§=. 6/(x) f'(x — 1) dx
and hence
(A49) o' = M for all t
|o"(n <M forall r.
To establish the theorem we need to prove analogues of (A34)—(A36). Clearly

(A34) continues to hold and so does (A35) since its proof only requires a Lipschitz
condition on b. The analogue of (A36) is

n=t 3. wipa(t)b(r))
(AS0) =17t 3 wia(t)ble;) — Eb(ey) 25 wia(ei)d;
+ 0,(nt + p(1 4 max; 3, [w,))) -
If we examine the proof of (A36) it is easy to see that in view of (A49), (A50)
will follow if we can prove

(ASI) 2o wi(a(t) — a(r))b(e;) = o,(p(1 + max; 35, {wy,]))
and
(A52) Do Wi a(m)(b(r;) — ble;) — b(r;) + b(e;)) = o,(nt).

Assertion (A51) can be established by Taylor expanding as in (A41) but re-
placing the argument in (A46) by use of the form of the least squares estimates
and L, estimates as in the proof of Proposition 1.1.

Assertion (A52) is essentially Lemma 4.1 of [6] with 4 replacing ¢ and thec,
replaced by 37, w;;a(z;). It is not hard to check that in that lemma the only
properties of ¢, used are max;|c,| = o(n}) and Y, ¢’ = O(n) and that the
>3 w;;a(r;) have these properties. Moreover, condition GL2 is just G of [6]
while R3’ implies C1 of [6]. The theorem follows. [

ProorF oF (3.17). Under the assumptions of Theorem 3.1 we can parallel the
arguments of Proposition 2.1 without difficulty as long as we operate with b;.
In the end, to prove the theorem we need to establish assertions such as

(A53) 2ii, Wiga(t)b (%—) = 204, Wi; a(T:)b <%> + 0,(n?)
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for suitable ||w,;||. Taylor expansion to two termsaround o will establish (A47)
in view of (3.15).

Under the assumptions of Theorem 3.2 we need to prove (A51) and (A52)
with b replaced by b;, b replaced by b;. (AS52) follows by an appeal to Lemma
4.2 of [6]. As for (A51), we estimate

(AS54) X, wyla(r) — a(z))b <;>

= T, v fal) — alz))b (5 ) + O,( % )

using the Lipschitz conditions on 4 and @ and (3.15). The rest of the argument
is straightforward. [] .
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