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Abstract—Markets arise as an efficient way of organising
resources in Cloud Computing scenarios. In Cloud Comput-
ing Markets, Brokers that represent both Clients and Service
Providers meet in a Market and negotiate for the sales of
resources or services. This paper defends the idea that efficient
negotiations require of the usage of resource-level information
for increasing the accuracy of negotiated Service Level Agree-
ments and facilitating the achievement of both performance and
business goals. A negotiation model based on the maximisation
of nonadditive utility functions that considers multiple objectives
is defined, and its validity is demonstrated in the experiments.

I. INTRODUCTION

In the recent years, the big mainframes paradigm where

users own their computing resources is being progressively

transiting to a more utility-driven paradigm, where users do

not own their resources and pay for the usage of remote

resources [1]. Cloud Computing [2] is the most promising

current implementation of Utility Computing in the businesses.

With this new evolution, the classic Resource Management

mechanisms became inefficient because some reasons such as

the heterogeneity and dispersion of resources.
Market-based resource management [3] is proposed as a

paradigm to deal with the complexity because the possibility

of doing business will motivate Service Providers to offer

their resources in the system and give a Quality of Service

(QoS) according to their real capacity. In addition, Market

mechanisms obligate the users to adjust their reservations

of the system to their real space and time requirements.

Another advantage is that it is relatively easy to implement

in a decentralised architecture, where participants enter in the

Market looking for the satisfaction of their own necessities,

and they do not need to know about the global status of the

system to maximise their utility.
In Market-based Cloud computing, either client applications

or end users that want to use remote resources or services,

and providers that want to sell their services, contact with

economic agents (called Brokers) which will negotiate with

other Brokers to buy/sell the services in a Market. When

the Client Brokers find their requirements in the Market, a

negotiation process is started to establish the terms of the

contract. If both parts reach an agreement, the terms of the

contract are specified in a Service Level Agreement (SLA)

and the Client’s application can use the resource. During the

usage of the resources, the correct fulfilment of the terms of the

SLA is watched by a neutral entity, and penalises the buyers

or the sellers if they violate the SLA.
Since Brokers that negotiate for the sales of services are

autonomous, it is needed to provide them with some business

models and intelligent behaviour so they are able to take the

best decisions for Client applications or Service Providers, and

maximise their utility. Current proposals on utility function

models for Market-based Utility Computing negotiations [4],

[5], [6] are additive: they assume that all the factors of the

negotiation are independent from the others. This paper de-

fends the idea that in real negotiations, not all the terms under

negotiation are independent from each others, and proposes

the usage of non-additive utility functions, where the terms

can be interdependent (see section III-B).
This paper enhances existing business models for nego-

tiation and applies them to the sales of services between

computing agents: when a Provider Broker negotiates an SLA

with a Client Broker, it takes into account some economic

terms such as price, but also technical parameters such as

Quality Of Service (QoS) that have influence in the economic

terms: for a purely-economical Provider Broker, it is very

difficult to quantify the SLOs, since it has not enough technical

knowledge about the status and punctual capacities of the re-

sources. The components described in this paper use resource

information in negotiation time to, for example determine if

a task can be executed or not, or the minimum price to make

this task profitable for the Provider. According to this, the

main contributions of this work are:

1) Modelling and characterisation of the negotiations re-

quired to perform sophisticated sales in Market-Based

Cloud Computing in function of the desirable objectives,

by using nonadditive utility functions.

2) Evaluation of the proposed business models for the ne-

gotiation between Brokers. This includes the comparison

of several values for the parameters of the model and

the evaluation about its feasibility and influence in the

achievement of desired objectives.

3) Usage of low-level dynamic knowledge, provided by the

resource fabrics, for supporting economic negotiations.

The required knowledge is defined by the contributions

enumerated in point 1 and 2, and is acquired by the
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resource fabrics monitor in real time.

The remainder of the paper is organised as follows: Section

III describes the models used for the negotiation; Section IV

describes the evaluation environment and the results of the

simulation; finally, Section V shows the conclusions of this

work and points to some future research lines.

II. RELATED WORK

This paper is based in the work performed within the

SORMA European project [7], concretely in the Economically

Enhanced Resource Manager (EERM) [8], [9] component.

EERM combines the purely economic knowledge (because

is in direct contact with the economic layers of SORMA

Marketplace) and the plain resources data (because it manages

directly the resource fabrics) to help Brokers to perform better

negotiations and enforce the resource management, not only

having into account performance but also economic goals.

Raiffa [6] established and compiled the mathematical basis

of the negotiation models. He classified the different negotia-

tion models in base to the characteristics of the environment

and the negotiated goods. It will be widely referenced in this

paper, as in the most of the other works about negotiation.

Faratin et al. [5] applied and extended some existing models

for service-oriented decision functions in bilateral negotiations

between autonomous agents. It concentrates in many-parties,

many-issues, single-encounter negotiations with an environ-

ment of limited resources. Since computing services are qual-

itative in nature rather than quantitative, Faratin extends this

model by adding qualitative values and associates fuzzy sets to

them in order to express better the quality in the negotiations.

Once the agents have determined the set of variables over

which they will negotiate, the negotiation process between

two agents consists of an alternate succession of offers and

counteroffers of values for the x, until an offer or counteroffer

is accepted or rejected by the other side or one of the parties

terminates the negotiation. Faratin et al. demonstrated what

this paper affirms: negotiation tactics must be responsive to

changes in the environment.

The work in this paper tries to extend the model of Faratin

by extending the information extracted from the resources

and used in the negotiation, and by having into account

other economic factors, such as reputation, risk management,

etc. Another difference is that Faratin’s work is limited to a

particular scenario: Client and Provider Brokers meet in an

isolated way to negotiate for a single type of resource. This

paper extends this scenario to consider a Market place where

the Brokers negotiate for a huge range of services.

Venugopal et al. [10] introduces a bilateral negotiation

protocol similar to the exposed in this paper, based in the

Alternate Offers mechanism. The main difference is that the

offers/counteroffers cycle of this paper is predefined finite, and

in the Alternate Offers it can continue indefinitely until one of

the parts decides to stop the negotiation. This paper discarded

this possibility mainly by efficiency questions.

III. CHARACTERISATION OF THE NEGOTIATION

A. Negotiation protocol

Before the negotiation starts, the EERM of the Service

Provider must register its offered services into the Market, by

providing some semantic information that allows identifying

what service is and its functionalities, and an extra meta-SLA

with some data about the SLOs that the Service Provider is

willing to negotiate.

When a Client Broker wants to acquire a service, it queries

the Market by providing some semantic information, and gets

a list of the Service Providers that match the requirements

(every Provider has its own EERM) and the meta-data about

the negotiable SLA terms. After that, it selects the suitable

Providers, and creates a proposal of agreement for each one;

using the meta-data it creates an uncompleted SLA with its

requirements, and leaves other SLOs blank. When the EERM

receives the SLA proposal, it evaluates if the proposed terms

can be accepted. If the Client Broker received from the EERM

an acceptance message or a counteroffer, it evaluates it and

finishes the negotiation by rejecting the SLA or by sending a

confirmation message to the EERM.

This work was performed within the SORMA project,

which provides interfaces and protocols for the registration

in the market and the negotiation of resources. However, our

proposal does not rely on any particular interface specification,

since the work is focused exclusively on the negotiation mod-

els and resource management. Although the model has been

designed to work within a Market framework, it is applicable

to the most of current commercial Cloud providers, even if

they do not implement market support. It is only necessary

to have some providers that want to sell their resources

freely on the Internet. In this scenario, the client brokers

only have to know the endpoint where the brokers of the

providers are, to start a negotiation without any intervention

of a market. The nonexistence of a market would decrease the

economic efficiency of the system, because the competence,

the discovery and the reputation mechanisms would be limited.

B. On the usage of non-additive utility functions

First, we must define the analytic model for representing the

negotiations that will be performed by the EERM. This model

must take into account the negotiated SLOs and other terms,

such as Client classification or reservation slots plus the sale

price.

Usual negotiation models for Utility computing are based

in the models proposed by Raiffa [6] and Faratin [5]. This

model is pretty easy to manage and calculate the maximum

and minimum utilities. However, it is an additive model which

assumes that all the factors are independent from the others.

Let S be the SLA under negotiation, Equation 1 shows the

general form of the nonadditive utility function U used in this

paper from the Service Provider side.

U(S) =

m
∑

i=1

oiui(S) (1)
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Where m is the number of goals for the Provider, such as

revenue maximisation, reputation, performance maximisation,

high occupation of resources, or satisfaction of certain type

of users. ui is the sub-utility function that defines how much

will be the objective i satisfied, and oi is a number between 0

and 1 that defines the priority that the Provider assigns to the

particular objective. It must be considered that
∑m

i=1
oi = 1.

Although Equation 1 is similar to an additive function,

actually it is not. Instead of calculating each of the sub-

utility functions as a function of a single SLA term and finally

add them up, Equation 1 calculates all the sub-utilities as a

function of the whole SLA, because the different objectives

are not independent from the others and, for example, revenue

maximisation can affect negatively the Client satisfaction.

C. Negotiation terms and Utility functions

In this section, we define the set O of objectives, the set S
of SLA terms and the utility function U(S) that calculates

how beneficial the proposed SLA is for the objectives of

the Provider. Prior to this, some representative objectives for

typical Service Providers must be chosen. In this paper, four

objectives have been chosen: O ⊆ {orv, occ, oph, orp}.

• orv is the objective that defines the maximisation of the

revenue. The most common motivation of most of the

Providers that enter in the Market is to earn money by

selling its resources. So the higher is the global revenue,

the higher is urv .

• occ is an objective used for Client classification [11]. This

gives preference to the local users (or users from a near

organisation) over the non-related users.

• oph is the objective that gives preference to tasks or

services to be executed in off-peak hours, to prevent the

system overload during peak hours.

• orp is the objective used for maximising the reputation

of the Provider [12]. Reputation is an important issue,

because if a Provider violates a SLA it not only must pay

a penalty to the Client, but also will loss its reputation in

the Market. In consequence, future Clients will be reticent

to buy their resources.

Literature details revenue as the main objective in markets.

The other objectives where chosen as examples of suitable

goals in such a scenario according to the related work.

However, each provider must decide his own relevant goals.

This paper demonstrates how the behaviour of the Provider

can be modulated by changing the values of the compo-

nents of O that multiply their associated sub-utility functions

urv, ucc, uph, urp in negotiation time, as can be shown in the

utility function applied to the context of the chosen objectives

(Equation 2).

U(S) = orvurv + occucc + ophuph + orpurp (2)

The rest of this section describes and justifies the sub-utility

functions chosen in this paper, calculated in base to the SLA

S ⊆ {M, C, CP, Rev,∆t}, where M, C are the Memory and

CPUs amount to acquire, 0 ≤ CP ≤ 1 is the indicator of

Client Priority, ∆t is the time slot where the resources are

assigned and Rev is the revenue acquired by the sale. All the

sub-utilities are normalised to the same range [−1, 1] because

otherwise the influence of the weights O would be distorted

by the differences between the ranges of the sub-utilities.

1) Price maximisation: Before describing urv , ucc, uph and

urp, it is advisable to describe an utility function that it is

not used as a term of U(S), but some of the other sub-utility

functions depend on it: the price maximisation utility function.

When the Provider proposes a price, it must know the range

of prices where the agreement is possible. The reservation

price of the seller (RPs) is the minimum price that the seller

can accept without losing money. The reservation price of the

buyer (RPb) is the maximum price it can pay and still being

beneficial for its objectives. An agreement between buyer and

seller is only possible when RPs ≤ Price ≤ RPb.

Equation 3 defines the utility for given revenue:

up(S) =
Price − RPs

RPb − RPs

(3)

That means that the utility of the price for the Provider is

higher (∼ 1) when the revenue of the Provider tends to be

RPb. However, this sub-utility function is not used directly as

a term in U(S), because in a competitive Market high prices

will enforce Clients to look for cheaper Providers.

The main issue of implementing this formula is to know the

reservation price of the buyer, which only can be speculated

in function of the Market history.

2) Total revenue maximisation: For maximising the total

revenue, it is needed to have into account the price of the

sale, but also the status of the competitive Market. Having

into account the Law of Supply and Demand [4], it is needed

to define urv to propose different prices in function of the

Market status, so they will tend to be higher in demand excess

scenarios and lower in offer excess scenario.

To check the Market status, an aggressiveness factor a(t)
has been defined: it is intended to limit the profit expectations

of the provider. In scenarios where many clients ask for scarce

resources, providers are in an opportunistic situation for asking

prices that are near to the buyers’ reservation price. In this

case, a(t) → 1. In the opposite scenario (offer excess) the

providers must limit their economic pretensions, so a(t) → 0.

Let t be the current time, H be the length of an historic

time period, Ctot(t) be a constant function whose value is the

number of CPUs of the Provider, and Cused(t) be a function

that describes the number of busy CPUs in the Provider over

time. Equation 4 is the ideal aggressiveness factor a′(t).

a′(t) =

∫ t

t−H
Cused(t) dt

∫ t

t−H
Ctot(t) dt

(4)

Let 0 ≤ δ ≤ 1 the aggressiveness adjustment rate which

shows how quick the actual aggressiveness will tend to the

ideal aggressiveness, Equation 5 shows how the aggressiveness

a(t) is adjusted in function of the ideal aggressiveness and the

previous actual aggressiveness:
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Figure 1. Firt attempts for defining urv(S)

a(t) = a′(t)δ + a(t − 1) (1 − δ) (5)

Once a(t) are defined up(S), there is enough data to define

an urv(S) to achieve the next goals:

• In an offer excess scenario, where a(t) is low, Clients will

choose Providers that offer lower prices (up(S) → 0) for

the same SLA. So urv(S) → 1 when up(S) → 0.

• In a demand excess scenario, where a(t) is high, Clients

will have to accept high prices (up(S) → 1), since they

have very few alternatives. So it is convenient for the

Provider to push up its prices for maximising its benefit.

First intuition says that the Law of Supply and Demand can

be accomplished by adjusting linearly the prices in function of

the demand, as shown in the maximum values (darkest colour)

of Figure 1(a). The equation that describes this behaviour

is urv(S) = sin
(

π
2

(up(S) + (1 − a(t)))
)

. However, the ex-

perimentation results shown that, even if a(t) is relatively

high, the Clients have chances to choose cheaper Providers,

so maximising urv(S) would lead to have less revenue.

Alternatively, one can divide a(t) in order to de-

crease the utility when prices are too high in high-

demand market scenarios. The new formula is urv(S) =
sin

(

π
2

(up(S) + (1 − a(t)/div))
)

, where div denotes the

slope of the crest of the function maximums, as can be seen

in Figure 1(b). That function is effective in normal Market

status, but not in those where the demand excess is extremely

high (a(t) ≃ 1), because it does not take profit from the good

position of the Provider in the negotiation.

First attempt (Figure 1(a)) is precise when a(t) is low, but

not when a(t) is high. However, the results of second attempt

(Figure 1(b)) are opposite to the first one. To try to combine

both, instead of dividing a(t), in the third attempt a(t) has

been powered to curv (see Equation 6), that describes the

intensity of the curve of the crest of Figure 2. In this way,

the prices will be low in almost all the scenarios, excepting

in the very excess of demand, when a(t) → 1 and the prices

can be high. In addition, up(S) is multiplied by an attractor

called G that will make utilities lower when combinations

of (up(S), a(t)) are far from the crest of the function. That

will force even more providers to look for combinations

(up(S), a(t)) near to the maximum of the utility.

urv(S) = sin
(π

2
(G · up(S) + (1 − a(t)cur))

)

(6)

Figure 2. Colour map that represents the value of urv(S) in function of
up(S) and a(t)

Since the range of utilities in Equation 6 is [−1, 1], the

whole equation is divided by 2 and added 0.5 to normalize

the range of utilities to [0 : 1]. The resulting formula is the

Equation 7.

urv(S) = 0.5 +
sin

(

π
2

(G · up(S) + (1 − a(t)cur))
)

2
(7)

After several tests and experiments in competing market

simulations, the combinations of values for G and cur con-

stants that provide the best results are G = 2 and cur = 15,

which are used in the experiments performed in the paper.

The colour map in Figure 2 helps to understand better the

function in Equation 7. The dark zones show these combina-

tions of up(S) and a(t) that gives higher values for urv .

3) Client classification: Client classification is performed

through price discrimination [11]. The parameter CP is the

Client Priority, which tends to 1 when the Client is much

related to the organisation of the Provider, and tends to 0

when there is absolutely no relation between the Client and

the Provider. It is calculated as the Euclidean distance between

Client and Provider in a multi-dimensional space.

Equation 8 is used to define the utility for Client classifi-

cation. Given urv and CP , if the Client priority is high, the

utility will be higher when urv is low (the Provider must not

be expensive for related Clients). If the Client priority is low,

the utility will be higher when urv is high.

ucc(S) =

{

CP + up(S) if up < 1 − CP
2 − CP − up(S) otherwise

(8)

4) Prioritisation of off-peak hours: Let ∆t = tf − ti be

the interval of time where the task is executed, Ctot(t) be a

constant function whose value is the number of CPUs of the

Provider, C(t) be a constant function whose value the number

of CPUs requested to the task under negotiation, and Cused(t)
be a function that describes the number of busy CPUs in the

Provider over time. Equation 9 is the utility function that is

higher when more resources are free, and near 0 when the

Provider resources are near its maximum occupation.
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uph(S) = 1 −

∫ tf

ti
Cused(t) + C(t) dt
∫ tf

ti
Ctot(t) dt

(9)

In the experiments, both CPU and Memory are negotiated.

But since CPU is the bottleneck, it is used as the resource for

calculating the peak hours.

5) Utility for reputation: Let R0 be the reputation of the

Provider in negotiation time, Rv be the future reputation of the

Provider in case of SLA violation, Rf the future reputation

in case of correct SLA fulfilment, and P the probability of

violating an SLA (calculated from historical data); Equation

10 shows the utility of keeping the reputation of the Provider:

urp(S) =
P Rv + (1 − P )Rf

R0

− 1 (10)

Rv and Rf are calculated as described in [12].

D. Maximising the utility function

When the Provider receives an offer, it must specify a price

and a range of time (if the requested time is not fixed) to

maximise the utility function.

Maximising nonlinear utility functions can be pretty com-

plex, especially when multiple variables exist. Choquet In-

tegrals [13] have been used for multi-criteria decision with

nonadditive functions where some of their values are fuzzy.

However, they do not help to maximise the function, but only

to choose the best alternative from a set.

The framework used in this paper uses discrete values

of time and price, and does not need fuzzy logic because

the data used in the utility functions is well known by the

Provider (excepting the Reservation Price of the Client, which

is speculated). Then U(S), which is theoretically continuum,

is divided into a finite set of values in function of discretised

price and time. Choosing the best price and time slot is

choosing the pair of price and time whose U(S) is greater

to the U(S) values for all the other pairs.

E. Why is the resource information needed?

When calculating up(S) for price maximisation, it is impor-

tant to know the status of the resources and how an incoming

SLA can affect into this status, in order to quantify them

economically and calculate the Reservation Price of the Seller.

up(S) and the a(t) have a decisive role when calculating the

utility for maximising the global revenue urv(S). Section III-C

shown how a(t) is calculated as a function of the historical

monitoring data from the resources. The same historical data

is also used to calculate uph(S), that gives more importance

to the jobs which are located in off-peak hours.

The resource information is also really important when

calculating urp(S), because the probability P of breaking an

incoming SLA is calculated in function to statistical monitor-

ing data of past executions and the current monitoring status.

Even an utility function such as ucc(S) used to perform

Client Classification, has relation with the resource informa-

tion, since it is calculated as a function of up(S).

IV. EVALUATION

A. Simulation environment

A simple Market has been simulated to test the validity

of the negotiation model. Client Brokers that represent either

a Web or Grid Client enters in the Market to ask for web

workload or for plain resources. The workload for Grid has

a random distribution and the workload for Web Services has

distribution taken from a real Web application, with variable

workload in function of the hour of the day [14].

Grid Clients send an SLA proposal where is specified the

plain resources (CPU and Memory) to buy, the duration of the

job, and a time interval where the job can be executed (bigger

than the duration, to let the EERM schedule the best execution

time). Web Service Clients send a required workload for a

service, and a fixed time interval to use the services (there is

no arbitrary schedule of the reservation, since Web users want

the services for the same moment).

Both Client types also must specify what QoS class they

want: Gold, Silver, or Bronze. Gold Clients will pay the triple

than Bronze Clients, and Silver Clients the double than Bronze

ones. The average failure rates for Gold, Silver, and Bronze

services are, respectively, 0.5%, 1%, and 2%.

A Client looks for potential Providers in the Market and

sends SLA Proposals to all of them. After that, the Providers

accept/deny the proposals and return to it a time allocation and

a price, based on the maximisation of their utility function.

Finally, the Client chooses the Provider with a best price and

time schedule for its interests and sends it a confirmation.

The Provider can violate the SLA due to an internal error,

or because it receives a proposal from another Client that can

not be allocated but is interesting to accept it and cancel

the other (it is decided by the utility function having into

account objectives such as Client classification or Revenue

maximisation) [9], [8]. This violation will affect to the rep-

utation of the Provider, which is taken into account by the

Client in negotiation time: when choosing the best SLA, the

price proposed by the Provider is divided by its reputation,

so the Client will consider the price of a Provider with low

reputation higher than the same price from a Provider with

high reputation.

B. Checking statistically the effectiveness of the sub-utility

functions

In this test, repeated simulations are performed in a com-

petitive Market with 100 Providers, whose different objective

weights for U(S) are generated randomly to provide some

statistically valuable data. Simulations are repeated with a

number of Clients that vary from 50 (offer excess) to 1000

(demand excess). Each Provider is selling 20 CPUs and 6GB

of RAM memory.

This section shows the results of the simulation in terms

of the four objectives described in Section III-C. For each

simulation, the next data is collected from the Provider side:

• Revenue: total revenue of the Provider.

• AvgPrice: average price of Resource/Hour sold.
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Figure 3. Correlation between orv and some output parameters

• AvgAffinity: average affinity of Clients that use the system

(value CP of section III-C3).

• AvgReputation: average reputation of the Provider during

the whole execution.

• AvgOfferPrice: the price of Resource/Hour that the

Provider offers to the Client. The difference with Avg-

Price is that it includes only the prices of the agreed

negotiations, and AvgOfferPrice includes the offer prices

for both the agreed and non-agreed negotiations.

To show the effectiveness of the utility functions proposed

in this paper, the Pearson Correlation Coefficient (PCC) [15]

between the collected data and the objectives orv , occ, oph and

orp is calculated.

1) Revenue maximisation: Figure 3 shows how orv has a

slightly influence in the total revenue of the Provider (around

0.2). Obviously the correlation coefficient cannot be 1 because

there are many other factors that have influence in the revenue.

However, there is a big negative linear relationship between

orv and the price that the Provider proposes for the sale of the

resource in negotiation time (AvgOfferPrice): Providers that

want to sell more must decrease their prices. However it can

be observed that orv has a positive influence on the prices of

the sold resources (AvgPrice). It is because the maximisation

of U(S) will lead to ask the optimum prices in function of

the Market status (speculated by a(t)).

In a extreme demand excess scenario (900-1000 Clients),

where the Provider can be more aggressive in its negotiations,

it can be observed a positive correlation between orv , AvgOf-

ferPrice and AvgPrice. However the correlation with the total

revenue is more or less the same. That does not mean that the

utility function is less efficient, it means that all the Providers

increase their revenues because the Market status, and the

influence of orv in the total revenue is less in percentage.

2) Client classification: Figure 4 shows the effectiveness

of the inclusion of occucc(S) in the general utility function:

the higher is occ, the higher is the affinity (around 0.6 in all

the Market scenarios).

As described in Section III-C3, ucc is strongly related with

up. Figure 4 reflects this relation as a negative correlation

between the occ, the global revenue, and the average price.

Since the Provider will try to sell to affine customers, it will
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Figure 4. Correlation between occ and some output parameters

Figure 5. Allocation in time of workloads divided by Web Services or Grid

offer them its resources at lower prices, and there are more

possibilities that Clients choose affine Providers.

3) Priorisation of off-peak hours: Web Services must be

executed in fixed intervals, and Grid jobs have a random

distribution, but since they are not real-time applications, they

can be scheduled to be executed in the future. Figure 5 shows

how the inclusion of ophuph(S) in U(S) allows the Providers

offering better prices to the Clients in off-peak hours and, in

consequence, the Grid jobs are automatically executed when

the Web Services workload is low.

4) Reputation: Figure 6 shows that, unlike we expected be-

fore running the simulations, orp does not have any influence

on the average reputation of the Provider. However, the results

are interesting because urp acts as a risk manager. The figure

show how the average price of the sold resources is increased

or decreased in function to the reputation. This means that the

Provider will charge a small amount of money to compensate

possible losses as consequence of the loss of reputation.

Previous work [12] shows clearly the importance of keeping

a high reputation. In the experiments, the revenue increases

almost linearly with the reputation. At equal prices, a Client

will choose the Provider with higher reputation. The alternative

to Providers with low reputation is to decrease their prices.

C. Comparison with fixed-pricing Providers

In this experiment, 10 different Providers have been com-

pared: four Providers that implement negotiation as proposed
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in this paper and six Providers that implement fixed pricing.

Each one of the Providers that use nonadditive utility functions

for negotiation has a main objective whose o weight value is

0.55 and the other secondary objectives have a weight of 0.15.

So there is a Provider that prioritises revenue maximisation,

other that prioritises Client classification, one that prioritises

off-peak hours, and other that prioritises reputation maximi-

sation. On the side of Providers with fixed pricing, since it

is difficult to know beforehand what is the best fixed price,

six Providers with different prices have been added into the

testbed. Each Provider proposes always a fixed percentage

between the RPS and the RPb, by having respectively fixed

values of α = {0.04, 0.06, 0.08, 0.10, 0.12, 0.14} in the next

pricing formula:

Price = RPs + α (RPb − RPs)

Since in a competing Market fixed-pricing Providers do not

have influence in the peak minimisation nor the reputation

maximisation decisions of their competitors, only Providers

that maximise revenue and perform the Client classification

have been compared with the fixed-pricing ones. Furthermore,

the influence of not implementing peaks minimisation in them

is shown. However, the influence of policies for reputation

maximisation cannot be shown because the data set in this

experiment is too small to establish correlations and the influ-

ence of orpurp(S) cannot be compared in terms of achieved

reputation with the other Providers.

1) Revenue maximisation: Figure 7 shows that adaptive

pricing by maximisation of nonadditive utility functions is the

best choice in almost all the scenarios. In the high excess of

offer scenarios (20 Clients), fixed-pricing Providers that sell

their resources at low price (Fix 4% and Fix 6%) have more

revenue than adaptive pricing Providers (RV). This is because

the biggest part of the demand is shared across Providers with

low prices, and since these Providers sell their resources at

higher prices than RV, they earn more money.

Also in the highest demand scenarios (8 to 10 Clients per

each Provider), the fixed-pricing Providers with highest prices

earn more money than the adaptive pricing one. In this case,

Clients do not have enough alternatives for choosing and they

Figure 7. Comparison of revenue between a Provider that tries to maximise
the revenue (RV) with fixed-pricing Providers

Figure 8. Comparison of Client affinity between a Provider that performs
Client classification (CC) with fixed-pricing Providers

must accept almost any offer. Providers with highest prices

can take advantage of this situation.

2) Client classification: Figure 8 shows in a graphical way

how efficient is Client classification compared to Providers

that do not perform it (the fixed-pricing ones).

It can be seen how average affinity of Clients decreases

when the Clients number increases. It is because the Provider

with Client classification can accept almost all the affine users

when its resources are idle, but when it is overloaded, most

of the Clients cannot use its resources and must look for less

affine ones. A way of keeping high affinity in all the scenarios

could be by implementing job cancellation for low-affinity

users. But this solution will entail other important problems,

such as economic losses due to the pay of penalties and the

loss of reputation.

3) Peak-hours minimisation: Figure 9 shows clearly the

influence of not having policies for the minimisation of off-

peak hours. Since the Providers that use nonadditive utility

functions maximisation can allocate the workloads in off-peak

hours at better prices, (as shown in figure 5), Providers that do

not implement peak minimisation policies do not execute Grid
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Figure 9. Sample distribution of workload types in a Provider without
peak-hours minimisation policies. It can be observed that there are no Grid
workloads

workloads. In the experiments performed, only the Provider

that offered the lowest fixed prices (4% over RPs) in demand

excess scenario executed 3 Grid jobs. The allocations for all

the other fixed-pricing Providers do not include any Grid job.

V. CONCLUSIONS AND FUTURE WORK

The first aim of this paper is to show the benefits of applying

knowledge about resources to Market negotiations. In Cloud

Computing Markets, this will lead to the Market Broker to

perform better business decisions. This paper demonstrated

how the figure of an EERM can benefit Providers by providing

resource data to the Brokers and by considering economic

policies in resource management.

The other contribution of this paper is the intention of

being a step forward in the modelling and evaluation of utility

functions for negotiations in Cloud Computing Markets. The

simulations show how a Provider can perform complex actions

by only maximising a multi-dimensional utility function. The

contribution of these experiments is based in the usage of

nonadditive utility functions, more difficult to treat, but needed

when assuming that the terms under negotiation are not

independent between them. In the model defined in Section

III-C, the utilities for Client classification ucc(S) and revenue

maximisation urv(S) were related by the price: maximising

the price would lead to maximise urv(S), but to minimise

ucc(S) for affine Clients.

The proposed nonadditive utility function considers the

possibility of having multiple objectives in a same entity, such

as revenue maximisation, Client classification, reputation or

load-balancing in time. In order to keep the efficiency both

in business and performance terms, most of the parameters

that compose the utility function are collected dynamically

from the resource-level information. This paper has shown

the high importance of having this information available in

negotiation time. The simulations performed demonstrate how

the objectives can be partially achieved by balancing correctly

their weights in the utility function.

This paper leaves some open lines for future research, such

as improving utility functions for more efficient negotiations

and extending their terms to include other economic or perfor-

mance goals, finding methods for the maximisation of complex

nonadditive utility functions that include fuzzy values for

nondeterministic data, and evaluating the validity of the model

in a real Cloud Computing Market, taking real data from the

resource fabrics and compare it with other existing models.
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