
IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 7, SEPTEMBER 2010 1781

Using Reverberation to Improve Range and
Elevation Discrimination for Small Array

Sound Source Localization
Flavio Ribeiro, Student Member, IEEE, Cha Zhang, Senior Member, IEEE, Dinei A. Florêncio, Senior Member, IEEE,

and Demba Elimane Ba

Abstract—Sound source localization (SSL) is an essential task in
many applications involving speech capture and enhancement. As
such, speaker localization with microphone arrays has received
significant research attention. Nevertheless, existing SSL algo-
rithms for small arrays still have two significant limitations: lack
of range resolution, and accuracy degradation with increasing
reverberation. The latter is natural and expected, given that strong
reflections can have amplitudes similar to that of the direct signal,
but different directions of arrival. Therefore, correctly modeling
the room and compensating for the reflections should reduce
the degradation due to reverberation. In this paper, we show
a stronger result. If modeled correctly, early reflections can be
used to provide more information about the source location than
would have been available in an anechoic scenario. The modeling
not only compensates for the reverberation, but also significantly
increases resolution for range and elevation. Thus, we show that
under certain conditions and limitations, reverberation can be
used to improve SSL performance. Prior attempts to compensate
for reverberation tried to model the room impulse response (RIR).
However, RIRs change quickly with speaker position, and are
nearly impossible to track accurately. Instead, we build a 3-D
model of the room, which we use to predict early reflections, which
are then incorporated into the SSL estimation. Simulation results
with real and synthetic data show that even a simplistic room
model is sufficient to produce significant improvements in range
and elevation estimation, tasks which would be very difficult when
relying only on direct path signal components.

Index Terms—Array processing, circular microphone array,
distance discrimination, image method, range estimation, sound
source localization (SSL).

I. INTRODUCTION

A
major goal in speech research is the acquisition of

high-quality audio without constraining users with de-

vices such as close-talking microphones. Microphone arrays

can be used in this regard, and are progressively gaining pop-
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ularity in applications such as videoconferencing [1], smart

rooms [2]–[4], and human–computer interaction [5], [6]. Unlike

a single microphone, a microphone array can be electronically

steered to emphasize a signal coming from a direction of

interest and reject noise coming from other locations. Such

spatial filtering techniques require knowledge of the location of

the speaker, which must be known a priori or estimated.

A significant trend in human–computer interaction is the use

of joint audio and video sensor arrays to acquire the user’s en-

vironment. For example, a combination of video cameras can

be used to record a panoramic view of a scene, capturing more

detail than a single camera possibly could. Once again, it is typ-

ically necessary to identify regions of interest—for instance, the

location of individuals in a conference room. For videoconfer-

encing applications, speaker localization can be used to auto-

matically determine which sections of the acquired panoramic

frame should be transmitted to a remote location. Furthermore,

the knowledge of the range to the speaker can be used to identify

him, given a choice between two individuals located at approx-

imately the same direction of arrival, but at different distances

to the device. This information can then be used to zoom, focus,

and align individual cameras.

The general problem of sound source localization (SSL) has

been an active area of research for many years, and finds applica-

tions in most array processing algorithms. Several methods have

been proposed over the previous decades with varying degrees

of accuracy, noise robustness, and computational complexity.

Most algorithms can be classified into four categories: beam-

former steering [7], energy ratio estimation [8], subspace char-

acterization [9], [10], and time difference of arrival (TDOA) es-

timation [1], [11]–[15]. Common to these techniques is the fact

that performance decreases with increasing reverberation [16].

This can be readily explained, given that in typical indoor envi-

ronments, early reflections can have amplitudes similar to that

of the direct signal, but different directions of arrival. If not ac-

counted for explicitly, they will interfere with the estimation.

Another characteristic of these algorithms when applied to

small arrays is their emphasis on estimating only azimuth.

Indeed, a practical array designed for offices or conference

rooms can be expected to have a limited number of low cost

microphones (typically between 4 and 8), relatively small

dimensions (probably featuring an inter-element spacing of at

most 15 cm) and a simple circular or linear geometry. Under

these constraints, estimating elevation may be difficult, and es-

timating range with traditional methods is an almost impossible

task (see Fig. 1).

1558-7916/$26.00 © 2010 IEEE
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Fig. 1. Range discrimination problem for a six-element circular array. The
ranges to sources � and � can be discriminated only by implicitly or explic-
itly estimating ��, which corresponds to the difference between TDOAs. For
compact arrays,�� will be very small and its estimation will be very sensitive
to noise and reverberation.

Given the small array constraint and a reverberant environ-

ment, the choices for SSL algorithms are very limited. For in-

stance, many subspace methods were not developed for acoustic

environments, and perform poorly in the presence of correlated

signals resulting from reflections. SSL algorithms that rely on

sensing the difference in source energy among different micro-

phones cannot be applied reliably due to the close distance be-

tween microphones. Also, for any commercial device, it is not

cost-effective to use microphones with matched directivity pat-

terns, frequency responses and gains. Therefore, the algorithm

should estimate these quantities wherever possible, and should

be robust to estimation errors.

In this paper, we propose a novel approach to significantly

improve the resolution and accuracy of range and elevation es-

timation: we use a room model to help extract the indirect source

location information contained in the early reflections. We ex-

tend the TDOA method introduced in [15], [17] by explicitly

accounting for the attenuation and path of dominant early re-

flections, in a method that reduces gracefully to the original al-

gorithm in an anechoic scenario, and shows increased accuracy

and robustness in the presence of reverberation.

Previous research has tried to improve robustness to reverber-

ation by incorporating models to account for room reverberation

[14], [15], or directly trying to estimate room impulse responses

(RIRs) [18]–[20]. However, both approaches have limited ef-

fectiveness: generic reverberation models will only reduce the

interference caused by reverberation, and estimating RIRs is a

hard task. Furthermore, RIRs change rapidly and significantly

with the position and orientation of the source. We choose an

indirect approach: instead of trying to directly estimate RIRs,

we build a 3-D model of the room to help estimate the position

of the main reflectors (e.g., the closest walls and the ceiling).

Using this room model, we analytically compute the strongest

reflections and incorporate them into the SSL. Although more

complex 3-D models could be used, in our simulations we used a

simple model: four walls and a ceiling, with distances estimated

with the method proposed in [21]. As we show in Section IV,

this significantly improves range and elevation estimates, even

with imperfect estimation and modeling of the reflectors.

The remainder of this paper is organized as follows. Section II

gives an overview of room estimation methods and their require-

ments. Section III derives a maximum-likelihood SSL algorithm

that incorporates the room model’s early reflections. Section IV

shows experimental results on both real and synthetic data, and

Section V presents our conclusions.

II. ROOM ESTIMATION

The proposed SSL algorithm is based on using a room model

to estimate and predict early reflections. Thus, the first step is to

obtain such a model. The most obvious way would be to mea-

sure the size, distance, and reflection coefficient of every major

surface in the room. While cumbersome, this solution may be

practical for large auditoriums, amphitheaters, and other large,

instrumented rooms. These usually require a detailed and ex-

pensive setup, and adding a few measurements could be the

most effective approach. Indeed, this is the method we used for

one of the rooms reported in Section IV-C. Nevertheless, re-

quiring professional measurement during setup is not practical

for SSL in meeting rooms or homes, which are two of the im-

portant applications of the proposed technology. Thus, for many

applications, we need to automatically generate the room model.

Extensive research exists for obtaining 3-D models based

on video and images. Common passive methods include depth

from focus, depth from shading, and stereo edge matching. Ac-

tive methods include illuminating the scene with laser, or with

structured or patterned infrared light. Most of this research is

targeted at estimating 3-D objects, but could be readily applied

to obtain room models (see, for example [22]). These image

based methods may provide very precise spatial models, but

have the disadvantage of not estimating reflection coefficients.

However, as will be shown in Section IV, the estimation of

reflection coefficients is not strictly required.

To obtain estimates of reflection coefficients, acoustic mea-

surements have to be performed. Again, several algorithms

have been proposed for automatic acoustic room measure-

ments. O’Donovan [23] uses a 32-microphone spherical array

to visualize the location of sound reflections in concert halls.

Antonacci and Aprea [24], [25] use a single microphone and

either a moving source on a circular trajectory or multiple

sources to estimate the coordinates of reflectors. Moebus [26]

uses MVDR beamforming with a single ultrasound trans-

mitter/receiver pair mounted on a precision 2D positioning

system to perform ultrasound imaging in air, with which the

position and outline of obstacles can be determined. Similarly

to the video solutions, this is particularly intriguing, because

the use of ultrasound allows measurements to be performed

during operation.

To avoid the need for physical measurements, as well as any

additional hardware or moving parts, a reasonable method is

the one we recently proposed in [21]. Instead of finding a full,

detailed 3-D model of the room, the estimation is restricted to

finding the location of the nearest major reflectors, which are

usually the walls and the ceiling. To obtain these estimates, a

test signal is reproduced through an existing single speaker in-

tegrated into a teleconferencing array, recorded by the array

microphones and processed to extract the room model. This

method does not require ultrasound hardware, moving parts, or

multiple speakers, and was used to estimate the parameters of

one of the real rooms, and of the synthetic room in Section IV.

The estimation method and simple model we used produce

reasonable results. Note, however, that the optimum solution

would be a more complex 3-D model, and a combination of
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acoustic and visual measurements. Acoustic measurements

could be performed during setup, estimating the general room

geometry and reflection coefficients. Visual information could

be used during a meeting to account for people moving, rotation

or movement of the physical device, etc.

III. ML SSL FRAMEWORK WITH ROOM MODELS

A. Signal Propagation Model

Consider an array of microphones in a reverberant envi-

ronment. Given a signal of interest with frequency repre-

sentation , a simplified model for the signal arriving at each

microphone is [14]

(1)

where is the microphone index, is the time

delay from the source to the th microphone, is a micro-

phone dependent gain factor, which is a product of the th mi-

crophone’s directivity, the source gain and directivity, and the

attenuation due to the distance to the source, is a re-

verberation term corresponding to the room’s impulse response

minus the direct path, convolved with the signal of interest, and

is the noise captured by the th microphone.

A more elaborate version of (1) can be obtained by explicitly

considering early reflections. In this case, only

models reflections which were not explicitly accounted for. The

microphone signals can then be represented by

(2)

where is a gain factor which is a product of the th mi-

crophone’s directivity in the direction of the th reflection, the

source gain and directivity in the direction of the th reflection,

the reflection coefficients for all walls involved in the th re-

flection, and the attenuation due to the distance to the source,

and is the time delay for the th reflection. We also define

and , which correspond to the direct

path signal.

When early reflections are modeled, traditional SSL algo-

rithms such as [15] cannot be applied any more. In the following,

we present a scheme that models early reflections as a whole,

which results in a maximum likelihood algorithm that is both

accurate and efficient.

Let , which is fur-

ther decomposed into gain and phase shift components

, where

(3)

(4)

We further approximate the phase shift components by mod-

eling each with only attenuations due to reflections and

path lengths, such that

(5)

where and are, respectively, the path lengths for the

direct path and th reflection, , and is the product

of the reflection coefficients for all walls involved in the th

reflection. Note that reflection coefficients are assumed to be

frequency independent. As will be shown later in this section,

can be estimated directly from the data, such that it need

not be inferred from the room model and thus does not require

a similar approximation.

Using , (2) can be rewritten as

(6)

Even if reflection coefficients are frequency dependent, they

can always be decomposed into constant and frequency-depen-

dent components, such that the frequency-dependent part which

represents a modeling error is absorbed into the

term. In general, all approximation errors involving

can be treated as unmodeled reflections, and thus absorbed into

. Even if there are modeling errors, if the reflection

modeling term is able to reduce the amount

of energy carried by , we should have an

improvement over using (1).

Rewriting (6) in vector form, we obtain

(7)

where

B. Noise Model

As in [15], we assume that the combined noise

(8)

follows a zero-mean, independent between frequencies, joint

Gaussian distribution with a covariance matrix given by

(9)

Making use of a voice activity detector, can

be directly estimated from audio frames which do not contain
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speech. To simplify matters, we assume that noise is uncorre-

lated between microphones, such that

(10)

We also assume that the second noise term is diagonal, such that

(11)

with

(12)

(13)

where is an empirical parameter which models

the amount of reverberation residue, under the assumption that

the energy of the unmodeled reverberation is a fraction of the

difference between the total received energy and the energy of

the background noise. This model has been used successfully

[1], [14] for cases where reflections were not explicitly mod-

eled [ in (5)], and good results have be achieved for a

wide variety of environments with . Even though

depends on the distance from the source to the array, previous

work has shown that even a constant produces better results

than neglecting the reverberation energy and using . Fur-

thermore, by modeling early reflections, the proposed method

becomes even less sensitive to .

In reality, neither nor

should be diagonal. In

particular, any noise component due to reverberation should

be correlated between microphones. However, estimating

would become significantly more expensive if not for

these simplifications, and the algorithm’s main loop would

become significantly more expensive as well, since it requires

computing . In addition, the above assumptions do

produce satisfactory results in practice.

Under the assumptions above

(14)

(15)

such that is easily invertible, and can be estimated with a

voice activity detector.

C. Maximum-Likelihood Framework

The log-likelihood for receiving can be obtained as in

[15], and (neglecting an additive term which does not depend

on the hypothetical source location) is given by

(16)

The gain factor can be estimated by assuming

(17)

Fig. 2. Range discrimination problem with image sources. By considering
image sources, range discrimination can be recast as azimuth discrimination.

i.e., that the power received by the th microphone due to the

anechoic signal of interest and its dominant reflections can

be approximated by the difference between the total received

power and the combined power estimates for background noise

and residual reverberation. Inserting (15) into (17) and solving

for , we obtain

(18)

Substituting (18) into (16)

(19)

The proposed approach for SSL consists of evaluating (19) over

a grid of hypothetical source locations inside the room, and re-

turning the location for which it attains its maximum.

To evaluate (19), one must know which reflections to use in

(5), which is the only term that depends on the source location.

Given the location of the walls provided by the room modeling

step, we assume that the dominant reflections are the first- and

second-order reflections involving only the closest walls. Using

the image model [27], we analytically determine the path length

of each of the first- and second-order reflections, and thereby the

corresponding attenuation factors and time delays

in (5). Equation (19) is then evaluated using the thus obtained

value of .

Since only depends on the room geometry and on the

grid of hypothetical source locations, it can be precomputed.

By assuming that is constant, is independent of the hypo-

thetical source location, and has to be computed only once per

frame. As we show with experiments, considering reflections

from only the ceiling and one close wall is sufficient for accu-

rate SSL.

Fig. 2 provides intuition to why the proposed method is ef-

fective. Consider two sources and which have the same

azimuth and elevation angles with respect to the array. As seen

in Fig. 1, it is very difficult to discriminate between both sources

by using only the direct path TDOAs. However, consider image

sources and , which appear due to reflections off a wall.

The array has good resolution in azimuth, so it can easily distin-

guish between and . In reality, the array always acquires

the superposition of the direct path and several strong reflec-

tions, so it cannot isolate the contributions of and from

those due to and . Nevertheless, since signals emitted by
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and have nearly identical sets of phase shifts at the micro-

phones and because signals emitted by and have signif-

icantly different sets of phase shifts, their superposition results

in measurably different sets of phase shifts for sources 1 and

2. Thus, we have transformed a detection problem for which

the array had no resolution capability into another which it can

solve.

An equivalent interpretation of the image model provides fur-

ther insight into why this method is effective. Consider an image

model which has image microphones instead of image sources.

Under this model, the effective array manifold vector is written

as a weighed sum of the anechoic manifold vector and its im-

ages up to a certain order. By considering images with respect to

the ceiling and the walls, the resulting manifold vector no longer

corresponds to that of a planar array. Since the image arrays are

located outside the room, the effective manifold vector has con-

tributions from virtual elements which are very far apart. Thus,

even though the modeled array still has the same number of el-

ements, its weaknesses due to small size and simple geometry

are mitigated.

IV. EXPERIMENTAL RESULTS

Since the proposed algorithm makes use of a 3-D room

model, a natural question is how detailed and accurate the

model needs to be. Rooms are potentially complex environ-

ments, which may contain furniture, people, partial walls,

doors, windows, nonstandard corners, etc. Yet, in sampling a

few conference rooms in corporate environments, we find that

almost every room has four walls, a ceiling and a floor; the floor

is leveled and the ceiling parallel to the floor; walls are vertical,

straight, and extend from floor to ceiling and from adjoining

wall to adjoining wall. Carpet is common, and almost invariably

there is a conference table in the center of the room, about 80 cm

high. Furthermore, many objects that seem visually important

are small enough to be considered acoustically transparent for

most frequencies of interest. These small elements are difficult

to estimate, and are sometimes moving.

It would certainly be nearly impossible to accurately model a

real room. On the other hand, we need not model 100% of the

reverberation. Suppose, for example, that all we can reliably es-

timate is the ceiling. Even if we can account for only 10% of

the energy in the room added by reverberation, we would still

be better off than if we had no information. Based on these ob-

servations, we adopted a simple room model: one to four walls

and a ceiling. We assume the floor absorption coefficient is large

enough and that sound trapping under the table will absorb most

of the energy that goes below table level. To estimate the orien-

tation and distance of these walls and ceiling, we use the method

proposed in [21].

Note that this room estimation step detects only one point of

reflection on each wall, indicated by the black segments in each

of the four walls in Fig. 3. However, the locations of interest for

the walls are in fact the ones indicated by the red segments. The

underlying assumption is that the walls extend linearly and with

similar acoustic characteristics.

As we will show in this section, the proposed algorithm per-

forms well even with one wall and the ceiling, and is quite robust

to estimation errors in the room parameters.

Fig. 3. Simple room model featuring reflections.

Fig. 4. Synthetic room simulated with the image model.

A. Results on Synthetic Data

Using an image model simulation [27], we generated syn-

thetic signals to approximate what would be received by an

ideal uniform circular array with a radius of 13.5 cm and six di-

rectional microphones. A three-dimensional cardioid-like gain

pattern was used for each microphone.

The frequency responses for each microphone were assumed

to be flat, and the sampling frequency was set to 16 kHz. A

virtual room with dimensions m was created, with

noise sources simulating a ceiling fan and a desktop computer

(which were recorded from a real fan and computer), as shown

in Fig. 4. The coordinates for the ceiling fan, desktop computer,

and array were simulated at m, m

and m, respectively. The speaker was always at

a distance of 1.3 m from the array, at an elevation of 25 and

at azimuth . Unless otherwise noted,

the room was set to have a reverberation time ms.

The simulation does not model a conference room table, which

was present in both rooms where we performed real measure-

ments (see Section IV-C). Therefore, the dominant reflector for

the synthetic scenarios is the floor (which is usually the closest

surface).

The first set of synthetic data is used for modeling the room,

and contains sweeps played from the loudspeaker located in the

center of the device. We use this data as described in [21]. With

the exception of the most distant wall (which was not detected),

all walls and the ceiling were estimated within 1 cm of their
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TABLE I
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms

TABLE II
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms

true position, and reflection coefficients within 0.12 of their true

value, which was 0.77 for all surfaces. If the algorithm was set

to only find the three closest walls, reflection coefficients were

found to be exactly 0.77.

The second set of synthetic data is used to evaluate SSL per-

formance, and simulates a male speaker standing at 1.3 m from

the array. The SSL algorithm samples (19) in azimuth from 0

to 359 in 4 increments, in elevation from 0 to 60 in 1 in-

crements, and in range from 0.5 to 5.0 m in 0.05-m increments,

and only considers grid points which are inside the room. The

reported results are the average for ten speaker locations dis-

tributed uniformly in azimuth around the array, all located at a

distance of 1.3 m and at an elevation of 25 . At each location the

speech utterance lasted 30 s, and was preceded by 2 s of back-

ground noise. The reported signal-to-noise ratio (SNR) values

are for the best microphone (i.e., the one closest to the source).

The MCLT [28] was used as the frequency domain transform,

and the analysis frame of the SSL was set to 160 ms, overlap-

ping by 80 ms. Only frequency taps from 200 Hz to 4 kHz were

considered.

A simple energy thresholding voice activity detector (VAD)

was used to estimate noise and signal powers, and to decide

which frames to run the SSL algorithm on. If the VAD detected

speech, first the azimuth would be estimated with the algorithm

from [15], which is reasonably sensitive to elevation and com-

pletely insensitive to range. Even though the proposed algorithm

produces more robust and more precise estimates for azimuth, it

would require an expensive three-dimensional grid search over

azimuth, range, and elevation to jointly estimate all three coordi-

nates simultaneously. For reasonably high SNR values it would

suffice to estimate azimuth by guessing a range and elevation

and running a one-dimensional search, but doing so would not

produce better results than completely disregarding reflections

and falling back to [15]. After estimating azimuth, the proposed

algorithm jointly estimated range and elevation, this time mod-

eling first and second-order reflections.

In order to show that the proposed algorithm is robust to

modeling errors, the cardioid model was not used in the SSL

code, and an omnidirectional model was used instead for all

microphones. Experiments show that when the microphones are

known to have a nonuniform spatial pattern, it is useful to under-

estimate reflection coefficients. This can be justified by referring

to (5), where we implicitly neglected the source and microphone

directivities and assumed . However, if the

microphone is known to be directive, then .

By using an intentionally underestimated , we can indirectly

account for this attenuation. Underestimating reflection coeffi-

cients is also prudent in practical scenarios, where due to mov-

able obstacles such as chairs and people, the reflection from the

walls might not be as strong as estimated from the calibration

step.

We name the proposed algorithm R-ML-SSL, and compare it

to ML-SSL [15]. Table I presents simulation results for ML-SSL

and R-ML-SSL in terms of frames with azimuth error

, elevation error , and range error m

for a reverberation time ms. Table II presents the

corresponding simulations for ms. Both algorithms

use [see (13)] to model reverberation energy. It can

be seen that range estimation has been dramatically improved

when compared to ML-SSL. Elevation estimates have also been

significantly improved. Since ML-SSL is used for azimuth es-

timation in both algorithms, whenever the azimuth estimate is

wrong, the elevation and range joint estimation typically also

produces incorrect results.

One can significantly improve the accuracy of ML-SSL and

R-ML-SSL by rejecting frames without a clearly identifiable

peak in the log likelihood surface. By doing so, the error rates

can be made arbitrarily close to 0%, as long as the SNR values

are not exceedingly small (lower than 0 dB, for example), other-

wise all frames would be rejected. We describe below a version

of this technique that can be applied to ML-SSL and R-ML-SSL,

and delivers good results.

As mentioned previously, ML-SSL and R-ML-SSL were im-

plemented with a simple energy thresholding VAD. In order

to add a degree of noise robustness, we used a simple crite-

rion to reject frames which had noisy log likelihood curves for
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TABLE III
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms AND AZIMUTH LOG LIKELIHOOD THRESHOLDING

TABLE IV
ERROR RATES FOR SYNTHETIC DATA, USING � � ��� ms AND AZIMUTH LOG LIKELIHOOD THRESHOLDING

Fig. 5. ML-SSL mean error rates for varying reverberation times.

azimuth. If the ratio of the log likelihood’s peak to its mean

value was smaller than a threshold (set to 3.0 for all simula-

tions, but which in a practical application would depend on the

hardware), the frame was ignored as if the VAD had never clas-

sified it as speech. Otherwise, the algorithm would proceed as

usual by computing the joint log likelihood for range and ele-

vation. Thus, by analyzing the log likelihood for azimuth alone

it is possible to reliably identify whether a frame has a suffi-

cient amount of speech content to allow accurate three-dimen-

sional SSL. If it does not, the frame can be immediately rejected,

saving the effort of computing the joint log likelihood for range

and elevation. Results are shown in Tables III and IV, and com-

pare very favorably to the data from Tables I and II, especially

for R-ML-SSL. We note that this technique was not used in any

other simulation.

Figs. 5 and 6 illustrate the performance of ML-SSL and

R-ML-SSL, respectively, for varying from 0 to 1000

ms, which correspond to reflection coefficients varying from

Fig. 6. R-ML-SSL mean error rates for varying reverberation times.

to . Like all previous simulations, this graph

considers mean SSL errors for a speaker distributed at ten

locations equally spaced in azimuth, at an elevation of 25 and

at a range of 1.3 m from the array. Data points are not present

for 0-dB SNR and ms because the voice activity

detector could not identify a significant number of speech

frames from at least one of the azimuth locations.

Since ML-SSL is always used for azimuth estimation,

the top plot is identical for both figures. It is clear from

both graphs that R-ML-SSL outperforms ML-SSL for

all data points. R-ML-SSL behaves extremely well for

ms ms because the walls are reflective

enough to provide extra localization information, but not so

reflective that the reverberation tail compromises the estimates.

For range estimation, R-ML-SSL is always better in the pres-

ence of reverberation (at least for ms).

To better understand how using walls helps to estimate range

and elevation, we first show on Fig. 7 the joint log likelihood for
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Fig. 7. ML-SSL log likelihood for range and elevation.

Fig. 8. R-ML-SSL log likelihood for range and elevation, considering only the
ceiling.

range and elevation when not modeling reflections. This surface

was obtained by processing a 25-dB SNR speech frame gener-

ated in the synthetic room, for a speaker located at a distance of

1.3 m and at an elevation of 25 . It has a maximum at the correct

azimuth and elevation, but at an incorrect range of 0.8 m. This

joint likelihood function is always very smooth, but since com-

pact circular arrays have very poor range resolution, the max-

imum for range is extremely sensitive to noise and generally

not a reliable estimate of the ground truth.

Now compare Fig. 7 with Fig. 8, where we introduce the mod-

eling for the ceiling. There is now a strong ridge, which crosses

the correct range-elevation value. This is introduced by the re-

flection of the sound source with the ceiling. Note that there is

still ambiguity, as a different elevation coupled with a different

range could produce similar results at the array. Compare these

two figures with Fig. 9, where we introduce a single wall. Note

that it also produces a ridge (similar to the one produced by in-

troducing the ceiling), and the ridge has a different orientation.

Thus, each wall, floor or ceiling produces a ridge, each with

a different orientation. The correct estimate is, as one would

expect, at the intersection of these ridges, as it can be seen in

Fig. 10.

Fig. 9. R-ML-SSL log likelihood for range and elevation, considering only the
closest wall.

Fig. 10. R-ML-SSL log likelihood for range and elevation, considering the
whole room.

B. Parameter Sensitivity

We now investigate how sensitive the algorithm is to errors

in the room model. First, let us look at the sensitivity to the

reflection coefficient estimates. This is particularly important,

since as we mentioned in Section II, many 3-D modeling tools

are based on imaging or ultrasound, and may provide little or no

information about reflection coefficients.

The effect of varying reflection coefficients on the error rates

is shown on Fig. 11, for all values from 0.0 to 1.0 in increments

of 0.1 (the ground truth being 0.77). It is clear that the proposed

algorithm is relatively insensitive to the choice of reflection co-

efficient, as long as it is not too small (which is equivalent to

disregarding reflections) or too large (which leads to a noisy log

likelihood function).

As mentioned previously, the proposed algorithm does not re-

quire knowledge of all walls for good performance. As shown

in the discussion associated with Figs. 7–10, for a given source

location, the position of the ceiling and a dominant wall will

suffice for unambiguous SSL. However, the dominant wall may

not be the same for all source locations. Using a non-dominant

wall will still provide SSL capability, but the method may not
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Fig. 11. Error rates for the proposed method, against increasing reflection co-
efficients, considering all walls, floor, and ceiling.

Fig. 12. Error rates for the proposed method, against increasing reflection co-
efficients, considering only the floor, ceiling, and closest wall.

perform as accurately as with a dominant wall. Fig. 12 presents

error rates considering only the floor, ceiling and closest wall.

One can see that SSL performance degrades very slightly in

comparison with using the full model (plotted in Fig. 11). In

other words, the 3-D room model may be as simplistic as three

reflecting surfaces, with little reduction in performance. This

can look intriguing at first, but remember that we are not in-

terested in predicting the reverberation, but simply in capturing

the extra information embedded in some of the early reflections.

Finally, since the proposed method relies on estimates of wall

positions, incorrect estimates will certainly cause performance

degradation. We now evaluate sensitivity to errors in wall posi-

tion estimates. Performance degradation occurs in two ways: 1)

the peak of the likelihood function becomes less pronounced,

compromising its detection even in the absence of noise and

2) the estimates become biased. In order to perform this anal-

ysis, we consider (19) under a high SNR assumption, i.e., when

Fig. 13. Mean absolute estimation errors against wall distance perturbations,
applied to one wall at a time. Top: azimuth errors, middle: elevation errors,
bottom: range errors. All graphs determined using (20), with � � ���.

Fig. 14. Log likelihood maxima against wall distance perturbations, applied to
one wall at a time, determined using (20), with � � ���.

. In this case, after neglecting multiplicative

constants, (19) reduces to

(20)

which has the form of SRP-PHAT [29], [30], but with

in place of the direct path phase shift .

Simulations show that as a wall estimate deviates from the

ground truth, its corresponding log-likelihood ridge moves and

decreases in height. Thus, for small wall positioning errors (on

the order of a few cm), the increased error rates are mostly due

to bias, since the log likelihood features remain clear, but the

peak is shifted to neighboring coordinates. This effect can be

observed in Fig. 13, which shows how the estimated source lo-

cation shifts due to room modeling errors.

Note, additionally, that even if the initial estimates of wall po-

sitions are not perfect, the received signal can be used to refine

these estimates. More specifically, the peak of the log likelihood

appears due to constructive interference from the contribution of

multiple walls. Thus, as shown in Fig. 14, it increases as the wall
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TABLE V
ERROR RATES FOR REAL-WORLD UTTERANCES RECORDED IN ROOM 1

TABLE VI
ERROR RATES FOR REAL-WORLD UTTERANCES RECORDED IN ROOM 2

Fig. 15. Real conference rooms: room 1 (left), room 2 (right).

estimates improve. By testing wall estimates in a given neigh-

borhood, one can select the wall coordinates which produce the

largest log likelihood value.

C. Results on Real Conference Rooms

In addition to the simulated data, speech was recorded in two

real, fully furnished conference rooms, which we denote Room

1 and Room 2. Room 1 measured m, and the

microphone array was placed on top of a large conference table

at coordinates m. Room 2 measured

m, and the array was again placed on top of a large

conference table, this time at coordinates m.

For both rooms, ms. Diagrams of the rooms are

shown on Fig. 15. For both cases, the SSL algorithm assumed

omnidirectional models for the microphones. The utterances for

Room 1 have approximately a 20-dB SNR, and the utterances

for Room 2 have approximately a 16-dB SNR.

To record all the experiments we used a RoundTable device.

The RoundTable features a six-element uniform circular array

of directional microphones, with a speaker rigidly mounted in its

center and with microphones located 13.5 cm from the center. It

samples audio at a rate of 16 kHz with 16-bit resolution, which

allows the room modeling method detailed in [21] to estimate

wall distances with better than 2-cm accuracy.

For Room 1, distances to the walls were estimated as pre-

scribed in Section II by playing a 3-s linear sine sweep from

30 to 8 kHz through the RoundTable’s internal speaker, and

recorded simultaneously by all six microphones. Particularities

of the device design (which was not originally designed for

this purpose) produce an extremely accurate estimate of the

ceiling, but less reliable estimates of walls, particularly distant

walls. Fortunately, to unambiguously determine range and ele-

vation, two strong reflectors suffice. Since the best reflector pair

can change between source locations, we always used the three

closest reflectors: the ceiling, the wall at 90 and the wall at 0 .

For Room 2, distances to the walls were estimated using an

ultrasonic range finder with a resolution of 1 cm. Reflection co-

efficients were underestimated and set to 0.3 in order to account

for the directivity of the microphones. For all source locations,

the room model considered the ceiling, the wall at 90 and the

wall at 0 .

The algorithm sampled (19) in azimuth from 0 to 359 in

4 increments, in elevation from 0 to 60 in 1 increments,

and in range from 0.5 to 5.0 m in 0.05-m increments, and only

considered grid points which were inside the room. All other

parameters match those of the simulations (error criteria, frame

size, frequency transform and ). Tables V and VI show the

error rates for Room 1 and Room 2, respectively. It is clear that

R-ML-SSL shows much better range estimation than ML-SSL.

It also typically outperforms ML-SSL for elevation estimation,

especially for more difficult estimation problems (for example,

where the source was at 4.00 m from the array, in Room 2).

Note that since the elevation and range estimates depend on

a correct estimation of azimuth, the error percentages for eleva-

tion and range are in practice bounded below by the error per-

centages for azimuth. Furthermore, utterances with a large frac-

tion of anomalous estimates correspond to speaker positions that

are either very close to or very far from the array. Preliminary
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studies in an anechoic chamber showed that the microphones

of the RoundTable device have a very non-smooth directivity

pattern, which can be attributed to the capsule directionality, as-

sembly, and housing. This characteristic affects the performance

of azimuth estimation of close sources using ML-SSL, which in

turn impacts range and elevation estimation using R-ML-SSL.

Distant sources are naturally more difficult to localize due to the

attenuation of the direct path and of the reflections.

V. CONCLUSION

We have proposed R-ML-SSL, an algorithm for sound source

localization which uses strong reflections to estimate elevation

and range in reverberant environments with small arrays, tasks

considered very difficult with previous approaches. It uses a

simple model of the room which requires only knowledge of the

position and reflection coefficients for the walls closest to the

array. The algorithm performs well for a large range of SNRs

and reverberation times and is also robust to device modeling

errors. It can be easily extended to refine previous wall esti-

mates during the SSL step, making it more robust to room mod-

eling errors. We have also shown with simulations that the pro-

posed method is quite insensitive to the modeled reflection co-

efficients, which simplifies the room estimation step.

One of the significant contributions of this work is the incor-

poration of a model for reverberation that requires only knowl-

edge of the room geometry, instead of estimates of the impulse

responses from the speaker to the array. Since this room model

can be obtained offline and the room geometry is assumed to

be invariant, the proposed method does not require blind esti-

mation and tracking of impulse responses, which is typically a

computationally intensive and ill conditioned problem.

The use of a room model makes R-ML-SSL significantly

more robust to reverberation over a large range of scenarios.

Its accuracy is especially noteworthy, because the model of

early reflections provides localization information which would

have not been available in an anechoic environment. Since

R-ML-SSL only models the strongest early reflections and does

not explicitly model the reverberation tail, it is not completely

immune to the effects of increasing reverberation times. Nev-

ertheless, for many localization applications (in particular, for

range discrimination under realistic reverberation times) the

benefits of having strong reflections outweigh the deterioration

due to the reverberation tail.
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