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Using Rich Social Media Information for Music
Recommendation via Hypergraph Model
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There are various kinds of social media information, including different types of objects and relations among these objects,
in music social communities such as Last.fm and Pandora. This information is valuable for music recommendation. However,
there are two main challenges to exploit this rich social media information: (a) There are many different types of objects and
relations in music social communities, which makes it difficult to develop a unified framework taking into account all objects
and relations. (b) In these communities, some relations are much more sophisticated than pairwise relation, and thus cannot be
simply modeled by a graph. We propose a novel music recommendation algorithm by using both multiple kinds of social media
information and music acoustic-based content. Instead of graph, we use hypergraph to model the various objects and relations,
and consider music recommendation as a ranking problem on this hypergraph. While an edge of an ordinary graph connects only
two objects, a hyperedge represents a set of objects. In this way, hypergraph can be naturally used to model high-order relations.
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1. INTRODUCTION

With the recent advances of social media communities (e.g., Last.fm1 Flickr2 and YouTube3), there is
an emerging presence of social media information, for example, user collective actions, implicit social
networking structure and relations among media objects. This information not only facilitates users

1http://www.last.fm.
2http://www.flickr.com.
3http://www.youtube.com.
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in communication and organizing online resources, but is also valuable in many research tasks, such
as social networks analysis and information retrieval. In particular, these kinds of social media infor-
mation are important sources of information for recommender systems [Konstas et al. 2009; Lin et al.
2009].

Among these kinds of social media information, explicit feedback (e.g., in terms of ratings or use fre-
quencies) from users is the most important for recommendation. Traditional recommender systems use
techniques such as Collaborative Filtering (CF) [Resnick et al. 1994; Harpale and Yang 2008; Liu and
Yang 2008], which only apply user-item explicit feedback matrix. As a kind of user collective action,
explicit feedback presents collective information among users. Based on explicit feedback, recommen-
dation can be done among similar users or items. Another type of collective action is social tagging, for
example, Last.fm allows users to tag artists, albums or music tracks and Del.icio.us4 allows users to
tag webpages. Social tags carry useful information not only about the tagged items, but also about the
preference of users who make the tags. Several algorithms have been proposed to exploit social tagging
information for recommender systems [Diederich and Iofciu 2006; Tso-Sutterr et al. 2008; Guan et al.
2010].

In social media communities, users can make friends with other users or join some interest groups.
These actions build a implicit social networking structure. This social networking structure is use-
ful for predicting users’ preferences, because the users’ interests may be affected by their friends or
neighbors in interest groups. There have been some papers already in utilizing friendship relations
for recommendation [Ma et al. 2009; Konstas et al. 2009]. But no previous works exploit membership
information about interest groups in recommendation.

Moreover, relations among media objects (e.g., inclusion relations among music tracks, albums and
artists in Last.fm, inclusion relations between collections and photos in Flickr) not only can be used
to organize resource items, but are also valuable in recommendation. We found that this information
greatly improves the recommendation performance (see Section 6.5). But to the best of our knowledge,
no emphasis has been placed on recommendation based on this kind of information.

Figure 1 shows an example of social media information in online music social community Last.fm.
This information includes friendships, memberships, listening histories, tagging relations, inclusion
relations among resources and similarities between music tracks which can be computed based on
music content.

1.1 Motivation

We focus on music recommendation here. For the task of music recommendation, the most common
approach is to directly analyze the audio signal. These methods are called acoustic-based music rec-
ommendation [Logan 2004; Cano et al. 2005; Cai et al. 2007; Rho et al. 2009]. Due to the semantic gap
between low level acoustic features and high level music concepts [Celma 2006], the results of acoustic-
based music recommendation are not satisfactory. It is necessary to consider more information in music
recommendation [Celma and Lamere 2008]. Some researchers try to utilize the user rating informa-
tion by applying collaborative filtering methods [Yoshii et al. 2006; Li et al. 2007; Tiemann and Pauws
2007; Yoshii and Goto 2009]. There are also works which exploit the information in the meta data (e.g.,
genre) associated with music tracks [Aucouturier and Pachet 2002; Ragno et al. 2005; Pauws et al.
2006]. However, all these approaches only utilize limited kinds of information, without considering
rich social media information.

The various social media information mentioned above is very useful for music recommendation.
However, there are several challenges to exploit all this information. First, it is difficult to take in

4http://delicious.com.
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Fig. 1. Various types of objects and relations in the music social community Last.fm. The relations include friendship relations,
membership relations, listening histories, tagging relations, inclusion relations among resources (e.g., tracks and albums) and
similarity relations between music tracks.

account all types of media objects and relations in a unified framework simultaneously. It is difficult
for traditional methods such as k-nearest neighbor (kNN) Collaborative Filtering and matrix or tensor
factorization (MF/TF) to expand and utilize more kinds of social information. Second, in social media
communities, some relations are beyond pairwise and are high-order relations. For example, multi-
ple items belong to the same sets, or a user use a tag to bookmark a resource. Traditional methods
that deal with pairwise relations can not properly model these high-order relations. Third, because
most social media communities do not allow for free access to all user profiles, such as friend lists
or interest group lists, there is not a concrete dataset yet that includes all social media information
mentioned above.

Recently, there has been considerable interest in making use of social media information to enhance
the recommendation performance [Tso-Sutterr et al. 2008; Symeonidis et al. 2008; Konstas et al. 2009;
Ma et al. 2009; Sen et al. 2009; Zhang et al. 2009]. For example, some previous works employed or-
dinary graphs to model tagging data for recommendation problems [Konstas et al. 2009; Zhang et al.
2009]. Figure 2(a) shows a simple example of using ordinary graph to model the tagging relations.
There are three tagging relations: u1 bookmarks resources r1 and r2 with tags t1 and t2, respectively,
and u2 bookmarks resource r1 with tag t2. Figure 2(b) shows our unified hypergraph approach for mod-
eling the tagging relations. In our unified hypergraph model, the high-order relations among the three
types of objects can be naturally represented as triples: (u1, t1, r1), (u1, t2, r2), and (u2, t2, r1). Clearly, the
ordinary graph model fails to capture the tagging relations precisely. For example, from Figure 2(a), it
is unclear whether u2 bookmarks r1, r2, or both.

1.2 Contributions

We use unified hypergraphs to model multi-type objects and relations in music social communities.
Similarities between music tracks based on acoustic signals are treated as one kind of relations. In
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Fig. 2. Tagging relations represented in two models: (a) ordinary graph model, and (b) our unified hypergraph model. This
hypergraph contains six vertices and three hyperedges, that is, (u1, t1, r1), (u1, t2, r2), and (u2, t2, r1).

this way, we combine acoustic-based and collaborative filtering recommendation in a unified frame-
work. A hypergraph is a generalization of the ordinary graph in which the edges, called hyperedges,
are arbitrary nonempty subsets of the vertex set [Agarwal et al. 2006]. Each vertex of the hypergraph
corresponds to an object of any type. The hyperedges are used to model high-order relations, as shown
in Figure 2(b). By using the unified hypergraph model, we can accurately capture the high-order re-
lations among various types of objects without loss of any information. We further consider music
recommendation as a ranking problem on this hypergraph to find the music tracks that each user
desires.

The following points highlight the contributions of this work.

(1) Multisource information fusion. We integrate multisource media information, including multiple
kinds of social media information and music acoustic signals, in music recommendation to improve
the performance.

(2) We propose to model high-order relations in social media information by hypergraphs instead of
traditional graphs. In this way, there is no information loss in representing various types of rela-
tions.

(3) We empirically explore the contributions of different types of social media information to recom-
mendation performance. Our results are helpful for practical music recommender systems.

This work is an extended and improved follow-up to our earlier paper [Bu et al. 2010]. In compari-
son, we add a substantially theoretical analysis about the background of ranking on graph data. The
computational complexity of our algorithm is discussed and some speed up strategies are introduced
additionally. We also extend the experiments here, such as exploring the parameter α setting and
representing recommendation examples.

2. RELATED WORK

2.1 Hybrid Music Recommendation

There are several hybrid approaches combining acoustic-based and collaborative filtering music rec-
ommendation to improve the overall accuracy of predictions [Yoshii et al. 2006; Li et al. 2007; Tiemann
and Pauws 2007; Donaldson 2007; Yoshii and Goto 2009]. Yoshii et al. [2006] and Yoshii and Goto
[2009] integrate both rating and music content information by using probabilistic models. Unobserv-
able user preferences are directly represented by introducing latent variables. Li et al. [2007] pro-
pose an item-based probabilistic model utilizing audio features to capture accurate similarities among
items (i.e., music). Tiemann et al. [2007] investigate ensemble learning methods for hybrid music rec-
ommendation. They apply ensemble learning methods to combine outputs of item-based collaborative
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filtering and acoustic-based recommendation. Donaldson [2007] exploits music co-occurring informa-
tion in playlists and acoustic signals for a hybrid music recommender system by unifying spectral
graph and acoustic feature vectors. All of these works use conventional collaborative filtering meth-
ods and only utilize limited kinds of information, without considering more sophisticated social media
information.

2.2 Recommendation Using Social Media Information

It has been shown that social media information, such as tagging relations and friendship relations, is
valuable for recommendation. Tso-Sutter et al. [2008] reduce three types of objects in tagging relations
(users, resources and tags) to two types by treating tags as either users or resources, and then ap-
ply traditional item-based or user-based collaborative filtering algorithms [Adomavicius and Tuzhilin
2005], respectively. Diederich et al. [2006] introduce TF-IDF tag profiles for the users
and use these profile vectors to measure user-user similarities in the use-based CF algorithm. Zhang
et al. [2009] propose a recommendation algorithm by integrating diffusion on user-tag-item tripar-
tite graphs. Ma et al. [2009] propose a probabilistic factor analysis framework which naturally fuses
the users’ preferences and their trusted friends’ favors together. To utilize both friendship and tag-
ging relations, Konstas et al. [2009] create a collaborative recommender system that constructs a
social graph over users, tags and resources. Sen et al. [2009] address resource recommendation by
inferring users’ tag preferences firstly and then compute resource item preferences based on tag
preferences. They propose some heuristic methods to make use of various social media information,
such as clickthrough and search information, in the step of tag preferences generation. Knees et al.
[2006] utilize web-based musical artist similarity information to reduce the number of necessary
acoustic-based music similarity calculations and then use music similarity in the task of music playlist
generation.

Although these approaches have achieved great success in resource recommendation applications,
they fail to make full use of the high-order relations in the social media communities. We propose
to use hypergraph, rather than the ordinary graph, to precisely capture the high-order relations and
hence enhance the recommendation performance.

2.3 Graph-Based Ranking and Hypergraph

Our work is also related to graph-based ranking and hypergraph learning [Zhou et al. 2003b, 2006;
Agarwal 2006; Agarwal et al. 2006; Chen et al. 2007; Sun et al. 2008; Bulò and Pelillo 2009].

Zhou et al. [2003b] propose a manifold ranking algorithm which ranks data objects with respect
to the intrinsic geometrical structure in the data. They first construct a weighted graph and set the
query point, then let all data points spread their ranking scores to their nearby neighbors via the
weighted graph. The spread process is repeated until a global stable state is achieved. Agarwal [2006]
proposes to model the data objects as a weighted graph, and incorporate this graph structure into
the ranking function as a regularizer. In this way, the obtained ranking function varies smoothly over
the graph. To generate personalized tag recommendation, Guan et al. [2009] propose a graph-based
ranking algorithm for interrelated multi-type objects.

Recently, there has been a lot of interest in learning with hypergraph [Agarwal et al. 2006; Zhou
et al. 2006; Chen et al. 2007; Sun et al. 2008; Bulò and Pelillo 2009]. Bulò and Pelillo [2009] introduce
a hypergraph clustering algorithm to extract maximally coherent groups from a set of objects using
high-order (rather than pairwise) similarities. Zhou et al. [2006] develop a general framework which is
applicable to classification, clustering and embedding on hypergraph data. These studies only focus on
classification, clustering and embedding on hypergraphs. However, by modeling the multiple types of
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social media objects and their relations as a unified hypergraph, we consider music recommendation
as a ranking problem on unified hypergraph.

3. BACKGROUND OF RANKING ON GRAPH DATA

Let G(V, E, w) denote an ordinary graph where V = {v1, . . . , v|V |} is the set of vertices, E is the set of
the pairwise edges, and w is a weight function defined as w : E → R, high weight indicates that two
vertices are near. The weighted adjacency matrix of the ordinary graph is the matrix W = (wi j)i, j=1,...,|V |.
The degree of a vertex vi ∈ V is defined as

di =
|V |
∑

j=1

wi j . (1)

The vertex degree matrix D of the ordinary graph is defined as the diagonal matrix with the degrees
d1, . . . , d|V | on the diagonal.

The problem of ranking on graph data is addressed in a “query and ranking” manner as follows.
Given some query vertices from V , rank the other vertices on the graph according to their relevance
to the queries. Let y = [y1, y2, . . . , y|V |]

T denote the query vector and yi denotes the initial score of the
ith vertex. Similarly, let f = [ f1, f2, . . . , f|V |]

T denote the ranking results.

3.1 Regularization Framework for Ranking on Graph

The cost function of the regularization framework for ranking on graph data is as follows [Zhou et al.
2003b; Guan et al. 2009]

Q(f ) =
1

2

|V |
∑

i, j=1

Wi j

∥

∥

∥

∥

∥

fi√
Dii

−
f j

√

Dj j

∥

∥

∥

∥

∥

2

+ μ

|V |
∑

i=1

‖ fi − yi‖2, (2)

where μ > 0 is the regularization parameter. The optimal ranking result f ∗ is achieved when Q(f ) is
minimized:

f ∗ = arg min
f

Q(f ). (3)

The first term of the right-hand side in Eq. (2) is the smoothness constraint, which means that
vertices should have similar ranking scores if they are near. The second term measures the differ-
ence between the obtained ranking scores and the pre-given labels which needs to be minimized. The
parameter μ controls the relative importance of these two terms.

We define a matrix

S = D−1/2WD−1/2
. (4)

Then, we can rewrite the cost function (2) in the matrix-vector form:

Q(f ) = f T (I − S)f + μ(f − y)T (f − y).

Requiring that the gradient of Q(f ) vanish gives the following equation:

∂Q

∂f

∣

∣

f=f ∗ = (I − S)f ∗ + μ(f ∗ − y) = 0.
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Following some simple algebraic steps, we have

f ∗ =
μ

1 + μ

(

I −
1

1 + μ
S

)−1
y. (5)

We define α = 1/(1 +μ). Noticing that μ/(1 +μ) is a positive constant and does not change the ranking
results, we can rewrite f ∗ as follows:

f ∗ = (I − αS)−1y. (6)

3.2 Random Walks with Restarts Model

In the view of random walks with restarts theory [Lovász 1993; Konstas et al. 2009], we can model
ranking on graph as follows. Starting from a particular vertex in the starting vertex set V ∗, the model
is performed by following a edge to another vertex or restarting from one vertex in V ∗ at each step.
In every step there is a probability α to walk to neighbors of the current vertex and a probability
1 − α to restart from the starting vertex set V ∗. If the current vertex is vi and the model walks to the
neighbors, there is a probability pi j = wi j/Dii to the vertex v j . Let p(t) be a column vector where p(t)

i

denotes the probability that the random walk at step t is at node vi. q is a column vector of zeros with 1s
corresponding to vertices in the starting vertex set (i.e., qi = 1, if vi ∈ V ∗). The transition probability
matrix of the graph is T = D−1W. The stationary probabilities for each vertex can be obtained by
recursively applying Eq. (7) until convergence,

p(t+1) = αTp(t) + (1 − α)q (7)

The stationary probabilities present the long term visit rate of each vertex given a bias towards the
starting vertex set V ∗. Therefore, each stationary probability corresponding to a vertex vi can be con-
sidered as a measure of relatedness between vi and the starting vertex set.

To find pc, where c is the state after convergence, we set p(t+1) = p(t) = pc. Then, we can get this
equation:

pc = (1 − α)(I − αT)−1q. (8)

Since 1 − α does not change the ranking results, we can rewrite pc as follows:

pc = (I − αT)−1q. (9)

We find that this expression is similar to the ranking result deduced by the regularization framework.

4. RANKING ON UNIFIED HYPERGRAPH

In this section, we discuss how to model various types of objects and their relations in a unified hyper-
graph model and how to perform ranking on unified hypergraph. We begin with the description of the
problem and the notations.

4.1 Notation and Problem Definition

Let G(V, Eh, w) denote a hypergraph where E h is the set of hyperedges. Different from ordinary graphs,
each hyperedge e ∈ Eh is a subset of V . The degree of a hyperedge e is defined by δ(e) = |e|, that is, the
cardinality of e. If every hyperedge has a degree of 2, the hypergraph reduces to an ordinary graph.
The degree d(v) of a vertex v is d(v) =

∑

e∈Eh|v∈e w(e). We say that there is a hyperpath between vertices
v1 and vk if there is an alternative sequence of distinct vertices and hyperedges v1, e1, v2, e2, . . . , ek−1, vk,
such that {vi, vi+1} ⊆ ei for 1 ≤ i ≤ k − 1. A hypergraph is connected if there is a hyperpath for every
pair of vertices [Zhou et al. 2006]. We define a vertex-hyperedge incidence matrix H ∈ R

|V |×|Eh| whose
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entry h(v, e) is 1 if v ∈ e and 0 otherwise. Then, we have:

d(v) =
∑

e∈Eh

w(e)h(v, e), (10)

δ(e) =
∑

v∈V

h(v, e). (11)

Let De and Dv be two diagonal matrices consisting of hyperedge and vertex degrees, respectively. Let
Wh be a |Eh| × |Eh| diagonal matrix containing hyperedge weights.

In the following, we define unified hypergraph that will be used to model the high-order relations
among different types of objects. A unified hypergraph is a hypergraph that has multitype vertices
and hyperedges. Suppose a unified hypergraph has R types of vertices and S types of hyperedges.
The vertex set of the rth type is denoted by V (r) and the hyperedge set of the sth type is denoted
by E(s)

h . We define V =
⋃R

r=1 V (r) and Eh =
⋃S

s=1 E(s)
h . In social music communities, different kinds of

objects, such as users, tags, resources and groups, can be viewed as different types of vertices in a
unified hypergraph, and different types of relations among objects can be viewed as different types of
hyperedges. A hyperedge in unified hypergraph can be a set of vertices with either the same type or
different types. The former kind of hyperedge captures the relations among the same type of objects,
while the latter one captures the relations across different types of objects.

The problem of ranking on unified hypergraphs is similar to ranking on ordinary graphs. Given some
query vertices from V , rank the other vertices on the unified hypergraph according to their relevance
to the queries. Let y = [y1, y2, . . . , y|V |]

T denote the query vector and yi, i = 1, . . . , |V |, denote the initial
score of the ith vertex. We will discuss how to set the query vector in detail in Section 5.4. Similarly,
let f = [ f1, f2, . . . , f|V |]

T be the vector of ranking scores.

4.2 Regularization Framework for Ranking on Unified Hypergraph

There are many existing algorithms for learning on hypergraph [Agarwal et al. 2006; Zhou et al. 2006;
Chen et al. 2007; Sun et al. 2008; Bulò and Pelillo 2009]. However, most of them focus on classification,
clustering, and Euclidean embedding. In this section, we discuss how to perform ranking on unified
hypergraph by using an idea similar to [Zhou et al. 2006].

The cost function of f is defined as follows:

Q(f ) =
1

2

|V |
∑

i, j=1

∑

e∈Eh

w(e)h(vi, e)h(v j, e)

δ(e)

∥

∥

∥

∥

∥

fi
√

d(vi)
−

f j
√

d(v j)

∥

∥

∥

∥

∥

2

+ μ

|V |
∑

i=1

‖ fi − yi‖2, (12)

where μ > 0 is the regularization parameter. This function is similar to Eq. (2). The optimal ranking
result is achieved when Q(f ) is minimized:

f ∗ = arg min
f

Q(f ). (13)

The first term of the right-hand side in Eq. (12) is a smoothness constraint too. Minimizing it means
that vertices should have similar ranking scores if they are contained in many common hyperedges.
For instance, if two music tracks are listened by many common users, they will probably have similar
ranking scores. Another example is the ranking of the users. If two users join in many common interest
groups (or if they listen to many common music tracks, etc.), they will probably have similar ranking
scores. Note that each hyperedge is normalized by its degree δ(e), that is, the number of vertices con-
tained in this hyperedge. In this way, the hyperedges with different sizes will be equally treated. The
second term and the parameter μ play the same roles as in Eq. (2).
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The first term of the right-hand side in the cost function (12) can be rewritten as follows:

1

2

|V |
∑

i, j=1

∑

e∈Eh

w(e)h(vi, e)h(v j, e)

δ(e)

∥

∥

∥

∥

∥

fi
√

d(vi)
−

f j
√

d(v j)

∥

∥

∥

∥

∥

2

=
|V |
∑

i, j=1

∑

e∈Eh

w(e)h(vi, e)h(v j, e)

δ(e)

(

f 2
i

d(vi)
−

fi f j
√

d(vi)d(v j)

)

=
|V |
∑

i=1

f 2
i

∑

e∈Eh

w(e)h(vi, e)

d(vi)

|V |
∑

j=1

h(v j, e)

δ(e)

−
|V |
∑

i, j=1

∑

e∈Eh

fiw(e)h(vi, e)h(v j, e) f j
√

d(vi)d(v j)δ(e)

=
|V |
∑

i=1

f 2
i −

|V |
∑

i, j=1

∑

e∈Eh

fiw(e)h(vi, e)h(v j, e) f j
√

d(vi)d(v j)δ(e)

= f T f − f T D−1/2
v HWhD−1

e HT D−1/2
v f. (14)

We define a matrix

A = D−1/2
v HWhD−1

e HT D−1/2
v . (15)

Then we can rewrite the cost function (12) in the matrix-vector form:

Q(f ) = f T (I − A)f + μ(f − y)T (f − y).

The following formal deductions are the same as the ways in Section 3.1 and we can get the ranking
result as follows.

f ∗ = (I − αA)−1y. (16)

There is a variant of the results: f ∗ = (I − αA)−1y and A = D−1
v HWhD−1

e HT , which corresponds to
Random Walks with Restarts model. We will compare this variant with our algorithm in experiments.

5. MUSIC RECOMMENDATION VIA HYPERGRAPH

In this section, we introduce our approach for Music Recommendation via Hypergraph (MRH).

5.1 Data Collection

To evaluate our algorithm, we have collected data from Last.fm in December 2009. First, we collected
the top 340 most popular artists, as well as the users who are interested in those artists. Adding all
these users’ friends, we obtained the candidate set of the users. Then, we reduced the candidate set of
users by restricting that each user has at least one friend within the set. The final user set is denoted
by U . We collected other objects and relations based on this user set. We downloaded all the groups
in which these users join, and reduced the set of groups by ensuring that each group has at least five
members in the final user set. The final group set is denoted by G. For resource objects and relations,
we crawled each user’s top 500 frequently played music tracks to form the candidate set of tracks.
In order to get the inclusion relations among resources, we downloaded all corresponding artists and
albums of all tracks in the candidate track set, and removed those albums that contain less than five
tracks in the candidate track set. After that, we obtained the final sets of resources, that is, track set,
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Table I. Objects in Our Data Set
Objects Notations Count

Users U 2596
Groups G 1124
Tags Ta 3255
Tracks Tr 16055
Albums Al 4694
Artists Ar 371

Table II. Relations in Our Data Set
Relations Notations Count

Friendship relations R1 4503
Membership relations R2 1124
Listening relations R3 304860
Tagging relations on tracks R4 10936
Tagging relations on albums R5 730
Tagging relations on artists R6 36812
Track-album inclusion relations R7 4694
Album-artist inclusion relations R8 371
Similarities between tracks R9 –

album set and artist set, denoted by Tr, Al, and Ar, respectively. We collected the tagging relations
which are essentially triples, that is, (user, tag, music track), (user, tag, music album) or (user, tag,
artist). For each user, we downloaded all his/her tagging relations. We only kept those relations in
which the resource is in Tr, Al or Ar obtained previously. The final set of tags is denoted by Ta. Finally,
we downloaded the music files (in mp3 or wma formats) from the Web. The objects and relations used
in our experiments are summarized in Table I and Table II, respectively. Similarities between music
tracks are computed based on music content.

5.2 Acoustic-Based Music Similarity

Acoustic measures of music similarity have been extensively studied in recent years [Logan and
Salomon 2001; Tao et al. 2004; Berenzweig et al. 2004; McKay and Fujinaga 2008]. These algorithms
mainly focus on several central problems: (1) what representative features to extract; (2) how to model
the feature distributions of music; (3) how to measure the similarity between distribution models.

To compactly represent the music content, we derive features from Mel-frequency cepstral coeffi-
cients (MFCCs) Berenzweig et al. [2004]. MFCCs are prevalent in audio classification. A given music
track is segmented into short frames and the MFCC is computed for each frame. Similar to Logan and
Salomon [2001], we use K-means to group all the frames of each track into several clusters. For all
the clusters, the means, covariances, and weights are computed as the signature of the music track. To
compare the signatures for two different tracks, we employ the Earth-Mover’s Distance (EMD) [Rubner
et al. 2000].

5.3 Unified Hypergraph Construction

We take into account six types of objects and nine types of relations in the data set previously men-
tioned. The objects include users, groups, tags and three types of resources (i.e., tracks, albums and
artists). The relations are divided into four categories, social relations, actions on resources, inclu-
sion relations among resources, and acoustic-based music similarity relations. Social relations include
friendship relations and membership relations (e.g., an interest group), denoted by R1 and R2, respec-
tively. Actions on resources involve four types of relations, that is, listening relations (R3), and tagging
relations on tracks, albums and artists (R4, R5 and R6). Inclusion relations among resources are the
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inclusion relations between tracks and albums, albums and artists (R7 and R8). Acoustic-based music
similarity relations are denoted by R9.

The six types of objects form the vertex set of the unified hypergraph. So V = U
⋃

G
⋃

Ta
⋃

Tr
⋃

Al
⋃

Ar. And there are nine types of hyperedges in the unified hypergraph, each corresponding to a

certain type of relations, as listed in Table II. We denote the hyperedge sets as E(s)
h corresponding to

Rs, s = 1, . . . , 9. The construction of the nine types of hyperedges is listed as follows.

—E(1)
h . We build a hyperedge corresponding to each pairwise friendship and set the hyperedge weight

to be 1.

—E(2)
h . For each group, we build a hyperedge that contains vertices corresponding to all the users in

this group, as well as the group itself. Note that, group itself is also an object. We set the hyperedge
weight to be 1.

—E(3)
h . For each user-track listening relation, we build a hyperedge containing the user and the music

track. The weight w(e(3)
i j ) (e(3)

i j ∈ E(3)
h ) is set to be the frequency that the user ui listens to the track tr j

w
(

e(3)
i j

)

= |{(ui, tr j)|ui ∈ U and tr j ∈ Tr}|,

where |Q| denotes the number of elements contained in set Q. To eliminate the bias, we normalize
the weight as

w
(

e(3)
i j

)′ =
w

(

e(3)
i j

)

√

∑|Tr|
k=1 w(e(3)

ik )
√

∑|U |
l=1 w

(

e(3)
lj

)

. (17)

Moreover, in order to treat different types of relations (except similarity relations between tracks)
equally, the weight is further normalized as follows:

w
(

e(3)
i j

)∗ =
w

(

e(3)
i j

)′

ave
(

w
(

e(3)
i.

)′) , (18)

where ave(w(e(3)
i. )′) is the average of normalized weights for user ui.

—E(4)
h /E(5)

h /E(6)
h : For tagging relations, there are two choices to build hyperedges: (1) Each hyperedge

contains three vertices (corresponding to a user, a tag and a resource). (2) Each hyperedge contains
vertices corresponding to a user, a resource and all tags used by the user for the resource. Custom-
arily, the tagging relations are treated as triples, so we choose the first approach in this article. The
weight is set to be 1.

—E(7)
h /E(8)

h : We build a hyperedge for each album which contains all the tracks in this album and the
album itself. Similarly, the hyperedge for an artist contains all the albums belonging to the artist
and the artist oneself. The weights of the hyperedges corresponding to albums and artists are set to
be 1.

—E(9)
h : We build a k nearest neighbor (knn) graph based on acoustic-based music similarities and build

hyperedges for our unified hypergraph corresponding to the edges of the knn graph. The weight
w(e(9)

i j ) is the similarity of tracks tri and tr j computed in Section 4.2. To eliminate the bias, we nor-
malize the weight as

w
(

e(9)
i j

)′ =
w

(

e(9)
i j

)

max(w(e(9)))
. (19)
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Table III. The Incidence Matrix H of the Unified Hypergraph and the Submatrices

E(1)
h E(2)

h E(3)
h E(4)

h E(5)
h E(6)

h E(7)
h E(8)

h E(9)
h

U UE(1)
h UE(2)

h UE(3)
h UE(4)

h UE(5)
h UE(6)

h 0 0 0

G 0 GE(2)
h 0 0 0 0 0 0 0

Ta 0 0 0 TaE(4)
h TaE(5)

h TaE(6)
h 0 0 0

Tr 0 0 TrE(3)
h TrE(4)

h 0 0 TrE(7)
h 0 TrE(9)

h

Al 0 0 0 0 AlE(5)
h 0 AlE(7)

h AlE(8)
h 0

Ar 0 0 0 0 0 ArE(6)
h 0 ArE(8)

h 0

where max(w(e(9))) is the maximum of all music similarities. We introduce a parameter c to control
the relative importance between acoustic content of music tracks and other social media information.
Finally, the weight is

w
(

e(9)
i j

)∗ = c ∗ w
(

e(9)
i j

)′
. (20)

Finally, we get the vertex-hyperedge incidence matrix H, as shown in Table III, and the weight ma-
trix Wh.

5.4 Methodology

Our music recommendation algorithm MRH contains two phases, offline training and online recom-
mendation. In the offline training phase, we first construct the unified hypergraph as previously de-
scribed and get the vertex-hyperedge incidence matrix H and the weight matrix Wh. Then, the vertex
degree matrix Dv and the hyperedge degree matrix De are computed based on H and Wh. Finally, we
calculate (I − αD−1/2

v HWhD−1
e HT D−1/2

v )−1, denoted as (I − αA)−1, with α properly set. In the online
recommendation phase, we need to build the query vector y first. Then, the ranking results f ∗ can be
computed.

Our approach can also be applied to other applications by choosing different vertices as queries and
considering the ranking results of different vertex types. For example, if we choose a user as the query,
the ranking results of music tracks can be used for music track recommendation (i.e., the primary
focus of this work), the ranking results of the users can be used for friend recommendation, and the
ranking results of groups can be used for interest group recommendation. For the tag recommendation
problem [Song et al. 2008; Guan et al. 2009], we should set the target user and the target resource as
queries and consider the ranking results of tags.

There are three methods to set the query vector y for music track recommendation: (1) Set the
entry of y corresponding to the target user u to be 1 and all others to be 0. (2) Set the entries of y

corresponding to the target user u, as well as all the other objects connected to u by some hyperedge,
to be 1. (3) Set the entry of y corresponding to the target user u to be 1. Also, if u is connected to
an object v, then set the entry of y corresponding to v to be Au,v. Note that, Au,v is a measure of the
relatedness between u and v. The first method fails to consider the closely related objects which may
also reflect the user’s interest. The second method may not be a good choice, since intuitively different
objects reflect the user’s interest with different degrees. Therefore, in our experiments, we adopt the
third method. After setting the query vector, the ranking results f ∗ can be computed. For the music
track recommendation problem, we only consider the ranking results of music tracks as mentioned
previously. Finally, we can recommend to the user the top-ranked tracks that he/she has not listened
to before.
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5.5 Computational Complexity Analysis and Speed Up Strategy

In this section, we analyze the computational cost of MRH. Let m denote the number of vertices and
n denote the number of hyperedges in the unified hypergraph. Let p be the density of the matrix H,
that is, the probability of nonzero entries. To calculate matrix A, it requires O(p2nm2) operations and
(1 − (1 − p2)n)m2 memory, where 1 − (1 − p2)n is the density of matrix A. If p is very small (e.g., p is
7.3∗10−5 in our data), A and I−αA are highly sparse. Computing the inverse of matrix I−αA requires
O(m3) operations and m2 memory. Since I − αA is sparse, the computation of matrix inversion will be
efficient [Svizhenko et al. 2009].

In real-world social media communities, the size of matrix (I−αA), despite its sparsity, may be poten-
tially huge. By analyzing the MRH recommendation method, we can find the most time is consumed
on computing the inverse of matrix (I − αA). If the size of this matrix is very large, it is time consum-
ing. Moreover, for real recommender systems, the update of matrix A is performed periodically. For
example, a user accesses a resource recently or new resources are added. So there is a great amount of
computation. Fortunately, some approximation approaches can be used to speed up the algorithm. We
describe them in the following part.

Similar to the Random Walks with Restarts model represented in the background part, we can
formulate an iterative approach for our model as follows:

f (t+1) = αAf (t) + (1 − α)y, (21)

where t is the iteration step index. Obviously, it requires O(m2) operations for one iteration step. Since
A is highly sparse, it is very fast for one iteration. Generally, we need to repeat the iteration until
convergence. For example, the stop condition can be defined as ‖f (t+1) − f (t)‖ < ε, where ε is a very
small threshold. However, we find that in the first several steps, f changes rapidly, while in the rest
steps before stop, f is comparatively very stable. That means, we don’t have to find the convergence
state. In experiments, we find that using only 20 iterations achieves a good performance. By such a
strategy, the computation can be speeded up a lot, besides it saves memory since we need not to store
a dense matrix in m2 size.

Another approach is the approximation of matrix decomposition. If A can be approximately written
as A = HGHT , where H ∈ R

m×k, G ∈ R
k×k and k ≪ m, then the well-known Woodbury formula can

be used to accelerate the inverse computation. That is, (I − αHGHT )−1 = (I − H(HT H − 1
α
G−1)−1HT ).

With this equation, the inverse cost is reduced to O(k3). But it requires O(m3) computations to decom-
pose A, such as the SVD decomposition (A = U�UT , since A is symmetric). So we need some fast
decomposition strategies. We can arrange A to be

A =
(

W AT
21

A21 A22

)

and C =
(

W

A21

)

.

Two sampling-based methods can be used to approximate the SVD decomposition of A. The Nyström
method [Williams and Williams 2001] uses a l × l submatrix W in A, and the approximate singular

values and singular vectors of A are: �i = ( m
l
)�w and Ui =

√

l
m

CUw�−1
w . When k singular vectors are

used, the run cost of the Nyström method is O(l3 + mlk). Another alternative method is the Column-
sampling method [Frieze et al. 2004]. It approximates the spectral decomposition of A by using the SVD
decomposition on C directly: �c;i =

√

m
l
�c and Uc;i = Uc. Then, the run cost of the Column-sampling

method is O(ml2).
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6. EXPERIMENTS

6.1 Compared Algorithms

We compare our MRH algorithm with other four recommendation algorithms. The first one is a user-
based Collaborative Filtering (CF) method [Resnick et al. 1994; Konstas et al. 2009] that only uses
listening relations. We choose user-based CF algorithm because our data set has much more music
tracks than users. Given a target user ui, let rui ,trp

be a predicted ranking score of user ui for music
track trp, which is given by Konstas et al. [2009]

rui ,trp
= w

(

e(3)
i.

)∗ +
∑k

j=1

(

w
(

e(3)
jp

)∗ − w
(

e(3)
j.

)∗)
sui ,uj

∑k
j=1 sui ,uj

, (22)

where

w
(

e(3)
i.

)∗ =
∑|Tr|

p=1 w
(

e(3)
ip

)∗

∣

∣

{

trp|trp ∈ Tr and w
(

e(3)
ip

)∗ �= 0
}
∣

∣

(23)

and sui ,uj
is the similarity weight between users ui and uj . k is the number of nearest neighbors of

user ui. We employ the cosine-based approach [Breese et al. 1998; Sarwar et al. 2001] to compute the
similarities between users:

sui ,uj
=

∑|Tr|
p=1 w

(

e(3)
ip

)∗
w(e(3)

jp )∗
√

∑|Tr|
p=1

(

w
(

e(3)
ip

)∗)2
√

∑|Tr|
p=1

(

w
(

e(3)
jp

)∗)2
. (24)

Based on the obtained similarities, we use the significance weighting method proposed in Herlocker
et al. [1999] to improve the recommendation performance. Specifically, if the number of co-listened
music tracks between two users, denoted by n, is less than a threshold number N, then we multiply
their similarity by n/N. In our experiment, we empirically set the value of N to be 20, and the number
of nearest neighbors k to be 5, to achieve the best performance.

The second compared algorithm is a acoustic-based music recommendation method [Tiemann and
Pauws 2007], which uses listening relations and music similarity relations. It is denoted by AB.

The third compared algorithm uses all the information in our downloaded data set. Unlike MRH, we
use the ordinary graph to model social media information. Specifically, we model the tagging relations
by graph structure as shown in Figure 2(a), and model the membership and inclusion relations by
tree structure as shown in Figure 3. The graph ranking algorithm described in Zhou et al. [2003b]
is applied to compute the optimal ranking scores. We call this algorithm Recommendation on Unified

Graph (RUG).
The fourth compared algorithm is the variant of our proposed MRH method mentioned in Section 4.2,

which is named as MRH-variant.
We also compare the performances of our proposed method on different subsets of information. The

first one is our MRH method but only using listening relations and music similarity relations (i.e., R3

and R9). This method is denoted by MRH-hybrid. The second one is our MRH method but not using
music similarity relations. It uses all the other eight types of relations. This method is denoted by
MRH-social.

6.2 Evaluation

To evaluate the performance of our MRH algorithm and the other compared algorithms, for each user,
we randomly select 20% listening relations as test data for evaluation purpose. If the user has access
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Fig. 3. Inclusion relations represented in two models: (a) our unified hypergraph model, and (b) ordinary graph model.

to a certain track tr in the test set, we require that he/she has no access to tr in the training set.
To achieve this, we remove all the corresponding tagging relations, leaving us with the final training
set.

For evaluation metrics, we use Precision, Recall, F1, Mean Average Precision (MAP) and Normal-
ized Discount Cumulative Gain (NDCG) to measure the performance of different recommendation
algorithms. Precision is defined as the number of correctly recommended items divided by the total
number of recommended items. Recall is defined as the number of correctly recommended items di-
vided by the total number of items which should be recommended (i.e., those actually listened by the
target user). F1 is the harmonic mean of Precision and Recall. Average Precision (AP) is the aver-
age of precisions computed at the point of each correctly recommended item in the recommendation
list:

AP =
∑N

i Precision@i ∗ corri

Number of correctly recommended items
, (25)

where Precision@i is the precision at ranking position i, N is the number of recommended items, and
corri = 1 if the item at position i is correctly recommended, otherwise corri = 0. MAP is the mean of
average precision scores over all users. NDCG at position n is defined as:

NDCG@n =
1

IDCG
×

n
∑

i=1

2ri − 1

log2(i + 1)
, (26)

where ri is the relevance rating of item at rank i. In our case, ri is 1 if the user has listened to this
recommended music and 0 otherwise. IDCG is chosen so that the perfect ranking has a NDCG value
of 1.

6.3 Performance Comparison

We use all evaluation metrics mentioned in Section 6.2 to measure the performance of each recom-
mendation algorithm. Figure 4 shows the recall-precision curves for all the methods. We report the
performance of all algorithms in terms of MAP, F1 and NDCG in Table IV (MAP and F1) and Table V
(NDCG). It is evident that our proposed algorithm significantly outperforms other recommendation al-
gorithms in most cases, especially at lower ranks. Note that, our proposed MRH algorithm models the
high-order relations by hyperedges, whereas RUG uses the ordinary graph to approximate these high-
order relations. The superiority of MRH over RUG indicates that the hypergraph is indeed a better
choice for modeling complex relations in social media communities. Acoustic-based (AB) method works
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Fig. 4. Recall-Precision curves for all the methods.

Table IV. Comparison of Recommendation Algorithms in Terms of MAP and F1
MAP F1@5 F1@10 F1@20 F1@30 F1@50 F1@70 F1@100 F1@200

CF 0.1632 0.0557 0.0929 0.1243 0.1329 0.1294 0.1197 0.1064 0.0765
AB 0.0762 0.0226 0.0303 0.0377 0.0403 0.0421 0.0415 0.0401 0.0334
RUG 0.2626 0.1729 0.2323 0.2587 0.2516 0.2237 0.1988 0.1701 0.1169
MRH-variant 0.2380 0.1442 0.1973 0.2285 0.2275 0.2079 0.1864 0.1599 0.1093

MRH-hybrid 0.2470 0.1653 0.2224 0.2451 0.2377 0.2099 0.1855 0.1581 0.1076
MRH-social 0.2755 0.1705 0.2311 0.2654 0.2660 0.2440 0.2202 0.1906 0.1318*
MRH 0.2948* 0.1855* 0.2510* 0.2839* 0.2799* 0.2509* 0.2227 0.1892 0.1270

Bold typeface indicates the best performance. * indicates statistical significance at p < 0.001 compared to the second best.

Table V. Comparison of Recommendation Algorithms in Terms of NDCG
NDCG@5 NDCG@10 NDCG@30 NDCG@50 NDCG@100 NDCG@200

CF 0.1522 0.1713 0.2519 0.2987 0.3579 0.4120
AB 0.0733 0.0820 0.1241 0.1532 0.2027 0.2556
RUG 0.4849 0.4318 0.3826 0.4109 0.4587 0.5037
MRH-variant 0.3970 0.3626 0.3482 0.3820 0.4297 0.4715

MRH-hybrid 0.4587 0.4091 0.3640 0.3911 0.4346 0.4753
MRH-social 0.4759 0.4268 0.3866 0.4197 0.4763 0.5264
MRH 0.5192* 0.4650* 0.4174* 0.4484* 0.4987* 0.5419*

Bold typeface indicates the best performance. * indicates statistical significance at p < 0.001 compared to the second best.

the worst. This is because acoustic-based method incurs the semantic gap and similarities based on
acoustic content are not always consistent with human knowledge [Celma 2006]. CF algorithm does
not work well either. This is probably because the user-track matrix in our data set is highly sparse,
with only about 0.6% nonzero entries. MRH-hybrid only uses similarity relations among music tracks
and listening relations, but it works much better than AB and CF.

Comparing to MRH-social, MRH uses similarity relations among music tracks additionally. We find
that using this acoustic-based information can improve the recommendation result, especially when
recall is small. This is because acoustic-based information can alleviate some well-known problems
associated with data sparseness in collaborative recommender systems, for example, user bias, nonas-
sociation and cold-start problems [Li et al. 2007].
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Fig. 5. The parameter settings of k and c for music similarity relations. First, we fix c at 0.1 empirically and let k vary. (a) shows
the performance measured by MAP. Then, we fix k at 60 and let c vary. (b) shows the performance measured by MAP.

The superiority of MRH over MRH-variant indicates the normalized form of MRH is better, which is
consistent with previous findings [Zhou et al. 2003a].

6.4 Exploring Parameter Settings

There are three parameters in our algorithm, that is, the number of nearest neighbors k mentioned in
Section 5.3, c in Eq. (20) and α in Eq. (16).

To explore the influence of the parameters k and c, we use MAP as the evaluation metric and fix
α to be 0.98. Figure 5 shows the results. First, we fix c at 0.1 empirically and let k vary. Figure 5(a)
shows the performance measured as a function of k. The best result is obtained when k is around 60.
Then, we fix k at 60 and let c vary. Figure 5(b) shows the performance measured as a function of c.
The best result is obtained when c = 0.1. As can be seen, our algorithm consistently outperforms the
other two compared algorithms in a wide range of parameter variation. In our experiments, we set
k to be 60 and c to be 0.1 for MRH, MRH-hybrid and RUG. α is a common parameter shared by our
MRH algorithm and RUG [Zhou et al. 2003b]. In our performance comparision experiments, we just
set α to be 0.98 for MRH, MRH-hybrid, MRH-social, MRH-variant and RUG empirically. We explore
the optimal value of α here. Figure 6 shows the results by MAP. The MRH algorithm obtains the best
performance when α is close to 0.97 and RUG obtains best performance when α is close to 0.96. It
also can be seen, MRH outperforms RUG and CF algorithms in a wide range of parameter variation.
When α > 0.98, the performance drop dramatically. And when α = 0.999 (i.e., the restart probability
is close to 0), the performance becomes very bad. This is because the larger the value of α, the smaller
the effect of the query. Restart probability 0 means that there is no relationship between the ranking
results and the query.

6.5 Social Information Contribution

To explore the contributions of different types of social media information to the recommendation
performance, we investigate the performances of MRH on four different subsets of social media in-
formation. The first subset only contains listening relations (i.e., R3), which is considered as the base
relations. The second subset contains listening relations and social relations (i.e., R1, R2). The third
subset contains listening relations and tagging relations on tracks (i.e., R4). The fourth subset contains
listening relations and inclusion relations (i.e., R7, R8). From Table VI, we can see that inclusion re-
lations significantly improve the recommendation performance. By using inclusion relations among
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Fig. 6. Exploring the influence of the parameter α setting for MRH and RUG algorithms. We use MAP evaluation metric here.

Table VI. Comparison of MRH on Different Subsets of Social Information in Terms of MAP and F1
MAP F1@5 F1@10 F1@30 F1@40 F1@70 F1@100 F1@200

MRH on R3 0.2303 0.1430 0.1996 0.2332 0.2143 0.1772 0.1695 0.1184
MRH on R1, R2, R3 0.2308 0.1444 0.1998 0.2337 0.2146 0.1772 0.1695 0.1181
MRH on R3, R4 0.2303 0.1432 0.1997 0.2332 0.2143 0.1773 0.1695 0.1184
MRH on R3, R7, R8 0.2757* 0.1748* 0.2339* 0.2642* 0.2413* 0.1970* 0.1878* 0.1299*

Bold typeface indicates that the performance is better than that of using the listening relations (R3) alone. *indicates statistical

significance at p < 0.001 compared to the algorithm by using listening relations alone.

resources, we can recommend music tracks in the same or similar albums, as well as the tracks
performed by the same or similar artists. As can be seen, there is slight improvement at low recall
region by using social relations. Intuitively, the users’ preferences may be inferred from friendship
and membership relations. Tagging relations do not improve the performance. That is because peo-
ple usually bookmark music tracks they have already listened to. Therefore, there is strong corre-
lation between listening relations and tagging relations, and thus the usage of tagging relations is
limited.

6.6 Recommendation Examples

Table VII shows some recommendation examples for a few users. For each user, we list top 5 rec-
ommended music tracks by MRH, RUG and CF. As can be seen, the precision of MRH is higher
than RUG and CF, but the top 5 recommended tracks of MRH and RUG are only from one or two
artists centrally. That may be because of the contribution of inclusion relations. In practical applica-
tions, the diversity of recommended results should be considered. To solve this problem, the results
of MRH should be re-treated. For example, choosing N tracks from different artists in top-ranked
results for recommendation or suggesting users top N artists who has more tracks in top ranked
results.

Table VIII shows that recommendations vary in different social groups. For each group, we list top
10 recommended music tracks by MRH. These are statistical results based on recommendations for
all users in a particular group. As shown, for some special interest groups, top recommended results
meet the users’ tastes. For example, Lupe Fiasco, 2Pac, Wu-Tang Clan et al. are all hip hop groups
and Iron Maiden, Slayer, Judas Priest et al. are heavy metal or thrash metal bands. But for some
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Table VII. Top 5 Recommended Tracks by MRH, RUG and CF, for Three Users
UserID MRH RUG CF

136 (1)Lady GaGa-Poker Face (1)Lady GaGa-Poker Face (0)Lady GaGa-LoveGame
(0)Miley Cyrus-Fly on the Wall (1)Lady GaGa-Bad Romance (0)Bon Jovi-Thank You For Loving Me
(1)Lady GaGa-Bad Romance (0)Miley Cyrus-Fly on the Wall (1)Lady GaGa-Poker Face
(1)Miley Cyrus-When I Look At You (1)Miley Cyrus-When I Look At You (0)Britney Spears-I Run Away
(1)Lady GaGa-I Like It Rough (0)Britney Spears-Womanizer (1)Lady GaGa-Bad Romance

698 (1)3 Doors Down-It’s Not Me (1)Miley Cyrus-7 Things (0)Bon Jovi-Born To Be My Baby
(1)Simple Plan-Me Against the World (1)Simple Plan-Me Against the World (0)blink-182-Another Girl Another Planet
(1)Simple Plan-Untitled (0)Lady GaGa-Paparazzi (1)Simple Plan-You Don’t Mean Anything
(1)Simple Plan-No Love (1)3 Doors Down-It’s Not Me (1)Simple Plan-No Love
(1)Miley Cyrus-7 Things (0)Lady GaGa-Poker Face (1)Simple Plan-Save You

1401 (1)In Flames-Only for the Weak (1)In Flames-Only for the Weak (0)Breaking Benjamin-Crawl
(1)In Flames-Evil in a Closet (1)In Flames-Evil in a Closet (0)Slipknot-Vermilion Pt. 2
(1)Seether-Pride (1)In Flames-My Sweet Shadow (0)Dropkick Murphys-Caps and Bottles
(1)In Flames-My Sweet Shadow (0)In Flames-The Mirror’s Truth (1)In Flames-My Sweet Shadow
(1)In Flames-Like You Better Dead (1)In Flames-Like You Better Dead (0)Dropkick Murphys-(F)lannigan’s Ball

1 indicates the track is in the test data (i.e., the user has listened to the track actually) and 0 otherwise.

Table VIII. Top 10 Recommended Music Tracks for a Few Social Groups by MRH
Group Name Top 10 Recommended Music

90’s Hip-Hop Lupe Fiasco-I Gotcha 2Pac-Tattoo Tears Nas-It Ain’t Hard to Tell
Wu-Tang Clan-Method Man Snoop Dogg-Gin And Juice Wu-Tang Clan-Ain’t Nuthing . . .
2Pac-How Do You Want It 2Pac-Never Had a Friend Like Me 2Pac-Panther Power
2Pac-Toss It Up

Thrash and Iron Maiden-Sanctuary Iron Maiden-Man on the Edge Iron Maiden-Bring Your Daughter. . .
Speed Metal Iron Maiden-Run To The Hills Iron Maiden-2 Minutes to Midnight Slayer-Divine Intervention

Iron Maiden-Flight of Icarus Lady GaGa-Poker Face Judas Priest-Hell Bent for Leather
Dire Straits-News

1993-Born Lady GaGa-Paparazz Lady GaGa-Poker Face Britney Spears-Womanizer
Britney Spears-Gimme More Cascada-Ready Or Not Black Eyed Peas-Like That
Slipknot-Pulse of the Maggots Nas-Life’s a Bitch Slipknot-Three Nil
The Prodigy-Mindfields

social groups not based on special interests, such as 1993-Born, the top recommended tracks are those
general popular, such as tracks from Lady GaGa and Britney Spears.

7. CONCLUSIONS AND FUTURE WORK

We address the music recommendation problem in music social communities, and focus on combining
various types of social media information and music acoustic signals. We model the recommendation
problem as a ranking problem on a unified hypergraph and propose a novel algorithm for music recom-
mendation via hypergraph (MRH). MRH constructs a hypergraph to model the multitype objects in a
music social community as vertices, and the relations among these objects as hyperedges. Similarities
among music tracks based on acoustic signals are treated as one kind of relations. In this way, the high-
order relations in social information can be naturally captured. In addition, collaborative filtering and
acoustic-based music recommendation is combined in a unified framework. Based on the constructed
hypergraph, we then use a regularization framework to derive the ranking results for query vertices.
We treat a user as the query and recommend the top-ranked music tracks to the user. The experiments
on a data set collected from the music social community Last.fm have demonstrated that our proposed
algorithm significantly outperforms traditional recommendation algorithms and the rich social media
information is very useful for music recommendation.
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MRH can also be used for recommender systems in other kinds of social media communities, such
as movies and pictures. In this work, we treat all types of social relations (except music similarity
relations) equally. However, in practical applications, different types of relations may have different
importance. For example, in some pure social networks such as Facebook5 and LinkedIn,6 the prefer-
ences of the users can be affected by their friends significantly. In this case, we should assign relatively
higher weights to social relations such as friendship and membership relations. On the other hand, for
special interest social media communities (e.g., Last.fm and YouTube), the unified hypergraph model
should put more emphasis on the users’ actions on resources (e.g., rating and tagging) and the relations
among resources (e.g., inclusion relations).

Moreover, as mentioned in Section 5.4, our approach is not limited to music track recommenda-
tion. We can exploit it in different applications, such as friend recommendation and personalized tag
recommendation. These problems are left for our future work.
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CELMA, Ò. 2006. Foafing the music: Bridging the semantic gap in music recommendation. In Proceedings of the 5th International

Semantic Web Conference.
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ZHOU, D., HUANG, J., AND SCHÖLKOPF, B. 2006. Learning with hypergraphs: Clustering, classification, and embedding. In Adv.

Neural Inf. Proc. Syst. 19.

ZHOU, D., WESTON, J., GRETTON, A., BOUSQUET, O., AND SCHÖLKOPF, B. 2003b. Ranking on data manifolds. In Adv. Neural Inf. Proc.

Syst. 16.

Received January 2011; revised May 2011; accepted August 2011

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 7S, No. 1, Article 22, Publication date: October 2011.


