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We have assessed the utility of RNA titration samples for evaluating microarray platform

performance and the impact of different normalization methods on the results obtained. As part of

the MicroArray Quality Control project, we investigated the performance of five commercial

microarray platforms using two independent RNA samples and two titration mixtures of these

samples. Focusing on 12,091 genes common across all platforms, we determined the ability of

each platform to detect the correct titration response across the samples. Global deviations from

the response predicted by the titration ratios were observed. These differences could be explained

by variations in relative amounts of messenger RNA as a fraction of total RNA between the two

independent samples. Overall, both the qualitative and quantitative correspondence across

platforms was high. In summary, titration samples may be regarded as a valuable tool, not only for

assessing microarray platform performance and different analysis methods, but also for

determining some underlying biological features of the samples.

Microarrays are widely used to simultaneously measure the levels of thousands of RNA

targets in a biological sample. Despite their widespread use, many in the community are

concerned with the comparability of the results obtained using different microarray

platforms and thus the biological relevance of the qualitative and quantitative results

obtained. Microarray platform performance has been evaluated before on the criteria of

sensitivity, specificity, dynamic range, precision and accuracy1–12. As part of the

MicroArray Quality Control (MAQC) project, similar assessments have also been

reported13,14. Other studies have used defined mixtures of RNA samples (titration samples)

for interplatform2,15 and interlaboratory15 comparisons. Here we have investigated an

alternative performance metric: the abilities of different microarray platforms to accurately

detect a signal trend produced by mixing samples (titration trend) and the effects of

normalization and other data analysis practices on this performance characteristic. Gene-

expression levels were measured for two pure samples and two mixtures using five different

commercial whole-genome platforms at three different test sites per platform. The five

commercially available whole-genome platforms tested were Applied Biosystems (ABI),

Affymetrix (AFX), Agilent Technologies (AG1), GE Healthcare (GEH) and Illumina (ILM).

The level of accurate titration response was quantified by determining the number of probes

for which the average signal response in the titration samples was consistent with the

response in the independent, reference RNA samples. We analyzed every platform at each

site, and here we present comparisons of the various platforms using various data processing

and normalization techniques.

To assess the titration response of as many genes as possible, an a priori expectation of

differential expression of many transcripts was necessary. On the basis of results from pilot

titration studies (data not shown), we elected to use two independent samples (A, Stratagene

Universal RNA, and B, Ambion Human Brain RNA) that showed large, statistically

significant differences in expression for a large number of transcripts to generate the two

titration samples (C and D, consisting of 3:1 and 1:3 ratios of A to B, respectively; see Fig.

1). We defined the series of mean signals generated by a gene on a microarray platform

across these samples as its titration response. For these analyses, we assumed that the

expression measurement of a transcript in a titration sample follows a linear titration

relationship: the signal of any given transcript in the two titration samples should be a linear

combination of the signals produced by the two independent samples. From the signal

intensities in the microarray titration experiments, we obtained the percentage of genes on

each platform that showed a monotonic titration response and analyzed that percentage as a

function of the magnitude of differential expression between A and B or as a function of the

signal intensity.
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Many normalization methods have been developed that are commonly used for different

microarray platforms16–24, including those methods that have been recommended by the

array manufacturers for the MAQC project13 (see Methods). Differences in these methods

significantly influence several aspects of microarray performance, including precision and

sensitivity9,16–20,23,24. However, no clear consensus exists in the microarray community as

to which method is best under a given set of circumstances. The optimal normalization or

scaling methods for a given dataset may depend both on the experiment and on many

attributes of that microarray dataset, including signal distribution and noise characteristics25.

The experimental design used here is valuable for assessing the influence of different data

processing techniques on the self-consistency of microarray data with regard to titration

response. In addition, the different data processing techniques were also analyzed with

respect to their impact on the statistical power of these platforms to distinguish between the

independent and titration samples. The titration analysis presented here was applied to all

commercial whole-genome microarray platforms tested in the MAQC project13, using

various data processing techniques, to evaluate the self-consistency and statistical power of

the resulting data.

When assessing accuracy in experimental systems, the goal is to compare observed results to

the expected ‘true’ values of the system. For most experiments measuring gene expression,

the ‘true’ values are either unknown or difficult to measure independently. However, the

titration response results presented here can provide some quantitative information about the

relative accuracy of measurements of differential gene expression. Monotonicity in the

titration response indicates a self-consistent relationship among the expression

measurements from the four samples. Because many inferences drawn from microarray

experiments depend as much or more on the direction of expression changes as on their

magnitudes, the consistency with which microarray assays determine direction of change is

an important performance characteristic. The main advantages of our method are that

titration responses can be assessed on a large scale, independent of a designated reference

platform, and that it does not require substantial assumptions to be made about the data2,25.

RESULTS

The experimental design of the main MAQC study is described in detail elsewhere13.

Briefly, two independent RNA samples were chosen for study and used to generate two

titration samples. The gene-expression profiles of these samples, all split from a single pool,

were measured on ten gene-expression measurement platforms. For each of the five whole-

genome microarray platforms examined in this study, the samples were analyzed at three

different test sites, each with ≤5 replicate assays per sample, for a total of 293 microarray

hybridizations at 15 different sites. Data from all platforms were then processed using the

recommended method from each array manufacturer, as represented in the main MAQC

paper13, as well as one or more alternative normalization methods.

Using probe sequence information, we identified 12,091 genes that were uniquely targeted

by at least one probe for all five commercial whole-genome microarray platforms. For each

platform, only the probe closest to the 3′ end of the gene was considered13. We chose to

exclude genes that were not detected across all samples and focused on genes whose signals

were above the noise level and therefore more reliable10. Each manufacturer provided

quantitative detection calls characterizing the probability that a gene was detected in a given

replicate13. For most analyses, only genes detected in at least three replicates for a given

sample and site were considered. This detection-call protocol is the same as described in the

main MAQC paper13.
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Measuring titration response as a function of fold change

The chief advantage of an experiment that evaluates gene expression in a series of known

mixtures of two samples is that the rank order of measured expression levels of any given

gene across the series can be predicted from the relative expression levels in the two original

samples. For the series described in this paper, if the true expression level (Ai) of any gene i

in sample A is greater than the true expression level (Bi) of the same gene i in sample B,

then Ai > Ci > Di > Bi, where Ci and Di are the true expression levels of gene i in samples C

and D. If Bi > Ai, then Bi > Di > Ci > Ai. In our case, if we postulate Ai > Bi on the basis of

the observed sample mean of  being significantly larger (P < 0.001) than the observed

sample mean of , then we expect . Finally, if Ai ≈ Bi, then the order of

observed means will be nearly random.

In Figure 2, the percentage of genes in a 100-gene moving window that produce the

expected titration response for each site and platform is plotted as a function of the average

 ratio of those 100 genes, when  (left side of graph), or of the  ratio, when

 (right side of graph). The x-axis origin of these graphs is at , the ratio

at which the titration response changes direction. The overall shapes of all of the curves are

similar: as expected from theory, they rise from a value near zero at  to an

asymptote of 100% at larger values of  or . Figure 2 also illustrates how

alternative normalization methods (for AFX, alternative data reduction methods of the

individual features) affect the quantitative outcome. For example, the data from the different

test sites for AG1 show distinct behaviors under the standard normalization, but exhibit

much more similar titration behaviors when normalized using the alternative method. In

addition, for the AFX data, GCRMA processing26 (a modified version of robust multichip

analysis (RMA) processing that models intensity of probe level data as a function of GC

content) results in titration curves with a broader spread than those produced by probe

logarithmic intensity error (PLIER)21 or RMA18. It should be noted that the different data

processing techniques also yield different numbers of genes showing significant deviations

in expression values between samples A and B (Fig. 2 and Table 1), which can also

influence titration performance. The most striking differences resulting from normalization

techniques are seen with the ILM data, where the alternative method, invariant scaling,

resulted in many fewer significant genes on the left side of the panel as well as lower

percentages of genes that titrate at lower-fold changes.

The quantitative differences between the various curves shown in Figure 2 are listed in

Table 1, which presents the ratios at which 50%, 75% or 90% of the detected genes show a

monotonic titration response. The performances observed for different sites and platforms

were similar but not identical (Table 1). Many different platforms and sites identified the

correct ordering of the titration samples for more than 90% of genes with twofold difference

between A and B (Table 1, rows 14 and 17), which suggests that the DNA microarrays can

reliably distinguish very small-fold differences in the mixture samples. The differences

resulting from alternative normalization techniques are also apparent in the results presented

in Figure 2 and Table 1.

Measuring titration response as a function of signal intensity

To further explore the impact of different normalization techniques, we assessed titration

response as a function of signal intensity. In Figure 3, we plot the fraction of genes that

titrate relative to the total number of genes in the given intensity range, as a function of the

lowest signal in the monotonic titration trend. That is, for the monotonic trend

, we plotted this fraction against the signal intensity  (solid lines), whereas

for the opposite trend , we used the intensity  (dashed lines). We observed
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that, in general, the fraction of genes that titrate is inversely proportional to the signal

intensity. The signal plotted on the x-axis is the lowest signal in the series; therefore, when

this signal is low, the probes are more likely to show the expected titration response, as the

fold differences will tend to be larger. When the magnitude of this lowest signal increases,

the possible fold difference between A and B will decrease.

Differences in distribution among platforms and normalization methods are evident. For

ABI, the fraction of genes that titrate follows the same trend as for the other platforms when

A > B (Fig. 3, solid lines), but when B > A (dotted lines), these data show a sudden increase

in that fraction at high intensity. This effect, although still present, is much less distinct for

the scaled than for the quantile-normalized data. We saw improved reproducibility among

sites and concordance between the two titration trends in the AG1 75th percentile scaling

relative to the median scaling. For the AFX-PLIER data, the signal range across which a

titration response is elicited is smaller than for the other platforms and normalization

methods, possibly owing to the variance stabilization used in the PLIER method. In all

cases, the AFX data show lower percentages for site 1, as in Figure 2. For the GEH data,

median normalization results in a very clear distinction between the two different titration

patterns; this distinction is moderated by quantile normalization. The data for the ILM rank

invariant scaling indicate a larger number of genes showing the titration response

 than showing the opposite trend, a result not seen for any other platform or

normalization method. Unlike in Figure 2, the percentage of titrating genes never reaches

100% because, at all signal ranges, some genes show only very small differences in

expression across the samples and are more likely to yield a near-random ordering in their

titration responses.

Analysis of titration mixtures

An underlying assumption for this study was that the proportions of each mRNA in the

mixture samples (C and D) from each of the original samples (A and B) are equivalent to the

mixing proportions of the total RNA. For this assumption to be true, the fractions of each

mRNA in the total RNA samples A and B had to be the same and had to be processed by the

various biochemical systems with equal efficiencies. Using mathematical modeling, we

investigated whether we could derive the relative mRNA contents of the two independent

samples using the microarray data from the independent and titration samples (see

Methods). Such modeling defines the true fractions of mRNA derived from sample A in

titration samples C and D as αC and αD, and the true fractions of mRNA derived from

sample B in titration samples C and D as βC and βD (see Box 1 and Supplementary Fig. 5).

Figure 4 shows the results of this modeling for all the platforms and normalization methods,

with the y-axes representing the estimates of βC (bottom) and βD (top). The lower charts

show median values of βC centered on 0.18 but usually larger for  (left) than for 

(right), and the upper charts show median values of βD centered on 0.67. These deviations

from the expected values of 0.25 and 0.75 based on the 3:1 mixtures of total RNA suggest

that the mRNA concentrations of the A and B samples were not identical. From these

results, we estimate the mRNA concentration in the B sample to be approximately two-

thirds of the concentration in the A sample (see Box 1). An empirical evaluation of mRNA

content in samples A and B is consistent with our estimates of 3% and 2%, respectively (see

Methods).

The values calculated from the different platforms and normalization methods are generally

similar, with two clear exceptions. For ILM, invariant scaling results in much lower

estimates for βC and βD than the other platforms and normalization methods when A > B

(left side) but not when B > A. This difference is consistent with the results noted for the

titration response (Figs. 2 and 3). For ABI, the estimates of βC and βD are consistent with the
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other platforms when A > B but lower than the other platforms when B > A. This result was

seen with both normalization methods, although to different extents, and may be related to

the differences noted in Figure 3. The deviations for βC and βD are particularly noteworthy

because of the relatively small errors of the ABI data in this analysis.

The individual microarray measurements for the titration coefficients shown in Figure 4

indicate that normalization and data-processing differences are not the primary cause for the

deviations from the theoretical values. Differences in mRNA abundance contribute to these

deviations and may not be circumvented with normalization alone. Additionally, further

analysis of microarray measurements from these titration mixtures may provide greater-

resolution observations of the global tendency (Fig. 4) of estimates of βC and βD to be larger

for A > B than for B > A (see Supplementary Fig. 1 online).

Effects of outlier data

During execution and analysis of the MAQC study, the consortium identified one outlier site

and multiple outlier arrays on the basis of objective criteria of data quality13. In some cases,

we evaluated the effects of not censoring such data from the analysis. The results (data not

shown) were as expected: inclusion of low-quality data degraded both intra- and

intermethod reproducibility. This result, although predictable, is nonetheless noteworthy

because microarray experiments are expensive and are sometimes used to analyze samples

that are available in very limited quantities. Low-quality microarray data are discarded with

great pain. It is therefore important that the community develop shared standards of

microarray data quality to allow use and interpretation of less-than-perfect data while

preventing overinterpretation. The well-characterized RNA samples and all of the data

(including outliers) produced by the MAQC study are a good start on the road to such data-

quality standards. In particular, the titration experimental design used in this work may

prove to be an important tool for developing such standards, as the experiments can be

interpreted using a small number of plausible assumptions.

DISCUSSION

The MAQC titration study was conceived as an experiment that could be implemented

across several platforms, with a minimum of assumptions. One of the initial goals of the

titration study was to assess relative accuracy by comparing observed expression in the

titration samples with the expression expected on the basis of the known mixing ratios of the

two independent samples. This analysis proved to be more complex than originally

anticipated, largely owing to the effects of different mRNA fractions in the two independent

samples. However, the qualitative expectation of a particular signal ordering is still valid and

provides a sensitive tool for differentiating microarray platform performance and

normalization methods. As the measurement of titration response illustrates, different

platforms and data analysis methods have slightly different performance optima: design and

processing choices that increase the number of detected genes also tend to increase noise in

the titration series. In addition to differences in the number of genes analyzed, the variations

seen in Figure 2 and Table 1 can also result from differences in expression-ratio

compression (leading to different ratios observed for any given gene) as well as levels of

noise in each measurement. In general, the behaviors of various sites and platforms are quite

similar.

The analysis of the titration mixtures reveals some interesting observations about the data.

These results show asymmetry in the titration responses (Figs. 2 and 3) and the estimates of

the true fractions of mRNA in the titration samples (Fig. 4). This asymmetry may be caused

in part by additional differences in the normalization of the A and B samples

(Supplementary Fig. 1), may relate to more difficulty in distinguishing A and C at low signal
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or may be a consequence of nonlinearity in the signal response relative to the concentration

amounts (Supplementary Fig. 2 online). In addition, the results presented here demonstrate

that the mRNA content of the two independent samples is not equal. This conclusion is

supported by additional lines of evidence. First, an apparent power analysis27–30

(Supplementary Figs. 3 and 4 online) is asymmetric between the sample pairings (A, C) and

(B, D). This asymmetry is probably the result of the A sample being more similar to C than

B is to D. Second, the slopes of the linear trends for the titration sample/independent sample

ratios (Supplementary Fig. 1) suggest that the ratio of sample A to B in sample C differs

from the expected value from the total RNA ratios. Third, external spike-in RNA controls

were included for several platforms; these controls were amplified and labeled along with

the sample RNA and indicate that the A sample contains a higher percentage of mRNA

relative to the B sample31. Finally, a preliminary empirical analysis of mRNA content in the

A and B samples (see Methods) confirmed that the mRNA content differs between the

samples.

The discovery of a difference in the mRNA content of samples A and B has important

implications for the future use of these commercially available samples in method

calibration, proficiency testing and other activities requiring well-characterized, complex

RNA. As a result of the MAQC study, these samples are probably the best-characterized

complex RNA preparations available. The RNA-measurement community should complete

the characterization of these samples by more accurately measuring the fraction of mRNA in

each preparation, so that the scientific community can make better use of this resource.

The utility of the titration samples for assessing normalization and data preprocessing

methods can be seen throughout the analyses presented here. Notably, for all platforms

except AFX and ILM, the performance of the MAQC ‘standard’ normalization or data

preprocessing method was slightly inferior to that of the secondary method, especially in the

apparent power analysis (Supplementary Fig. 3). This result highlights the observation noted

throughout this study that data processing methods determined to be optimal under one set

of circumstances may not always prove appropriate under all conditions, particularly if

primary assumptions underlying those data processing methods are violated.

A great strength of the design presented here is that, despite the added complexities of

varying mRNA content, the qualitative expectation of a particular signal ordering is still

valid, provided that the different data sets are properly scaled relative to one another.

Therefore, this design is very valuable for assessing microarray performance. Specifically,

as we have shown here, the titration response can be used to distinguish between

normalization methods that are sensitive to changes in mRNA fraction and methods that are

robust despite such changes. One observation of this study is that the robustness of a

normalization method depends in part on the subset of data used to determine the scaling

constant or function. Our results indicate a path toward objective optimization of this

normalization set. The differences in gene expression among samples may be greater and the

variability across replicates may be smaller in this study than in typical biological

experiments; nonetheless, the lessons learned regarding the use of titration mixtures to

evaluate the performance and normalization of large-scale gene-expression measurements

may have widespread application in more realistic settings. In addition, the wide range of

gene expression in these samples probably served to amplify data processing–derived

differences that would have been more difficult to detect in analyses of more closely

matched samples.

Finally, it should be noted that the majority of genes considered here yielded very similar

behavior across all platforms, in spite of the complications noted in this manuscript.

Therefore, these results should be considered a testament to the underlying strength of all of
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the methods examined. Improvement of mRNA quantification methods remains an

important objective, and the MAQC study has produced samples and data that will aid the

community in making such improvements. The concordance of data presented here

demonstrate that the methods used are sound and, when properly implemented and

interpreted, can be used to measure expression levels of thousands of RNA targets

simultaneously.

METHODS

Preparation of the RNA sample titrations

RNA samples are described in detail in the main MAQC paper13. Briefly, two commercially

available total RNA solutions and 3:1 and 1:3 mixtures were chosen at the outset by the

members of the MAQC project. For simplicity, these samples were designated as A, B, C

and D. A and B are independent total RNA samples. A is derived from a collection of ten

human cell lines and B from human brain tissue. Sample A is sold commercially under the

name Universal Human Reference RNA (Catalog number 740000, Stratagene). Sample B is

sold commercially under the name FirstChoice Human Brain Reference RNA (Catalog

number 6050, Ambion).

RNA titration samples were generated once for all MAQC experiments (Fig. 1), with

samples A and B at equal concentrations as measured by A260. Sample C was made by

mixing sample A with sample B at a volumetric ratio of 75:25, and sample D was made by

mixing sample A with sample B at a volumetric ratio of 25:75.

Normalization methods used in this study

For ABI, we used quantile normalization17 independently for each test site and 90% trim

mean scaling. For trim mean scaling, the signals for highest 5% and lowest 5% are removed,

and the remaining 90% of signals are used to calculate the mean. The mean of each array is

scaled to the same level, and the scaling factor for each array is used to scale the signals.

The trim mean scaling was calculated independently for each test site.

For AG1, the data were transformed so that signal values below 5 were set to 5. After this

transformation, each measurement was divided by the median of all detected measurements

in that sample (for median scaling) or by the 75th percentile of all measurements in that

sample (for 75th percentile scaling).

For AFX data, we used PLIER21, MAS 5.0, RMA18 and GCRMA27 for data preprocessing

and normalization. The PLIER method produces a summary value for a probe set by

accounting for experimentally observed patterns in feature behavior and handling error

appropriately at low and high abundance. PLIER accounts for the systematic differences

between features by means of parameters termed feature responses, using one such

parameter per feature (or pair of features, when using mismatch (MM) probes to estimate

cross-hybridization signal intensities for background). Feature responses represent the

relative differences in intensity between features hybridizing to a common target. PLIER

produces a probe-set signal by using these feature responses to interpret intensity data,

applying dynamic weighting by empirical feature performance and handling error

appropriately across low and high abundances. Feature responses are calculated using

experimental data across multiple arrays. PLIER also uses an error model that assumes error

is proportional to the observed intensity rather than to the background-subtracted intensity.

This ensures that the error model can adjust appropriately for relatively low and high

abundances of target nucleic acids. Here, PLIER was run with the default options (quantile

normalization and PM-MM) with the addition of a 16 offset to each expression value13.
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The AFX MAS 5.0 algorithm is a method for calculating probe-set signal values. The MAS

5.0 algorithm is implemented on a chip-by-chip basis and is not applied across an entire set

of chips. The signal value is calculated from the background-adjusted PM and MM values of

the probes in the set using a robust biweight estimator. Here, MAS 5.0 is implemented with

default options, and global scaling (96% trim mean) is used for normalization.

RMA18 fits a robust linear model to the probe-level data and conducts a multichip analysis.

The algorithm includes a model-based background correction, quantile normalization and an

iterative median polishing procedure to generate a single expression value for each probe

set. GCRMA substantially refines the RMA algorithm by replacing the model for

background correction with a more sophisticated computation that uses each probe’s

sequence information to adjust the measured intensity for the effects of nonspecific binding,

according to the different bond strengths of the two types of base pairs. It also takes into

account the optical noise present in data acquisition. Both RMA and GCRMA were

implemented using the ArrayAssist Lite package with default settings (Affymetrix;

http://www.affymetrix.com/products/software/specific/arrayassist_lite.affx).

For GEH data, we compared median scaling and quantile normalization. For the median-

scaling approach, each measurement was divided by the median of all measurements within

each array. Therefore, the median signal is scaled to 1 for each array. The quantile

normalization approach16 was applied to log2-transformed expression values across all

samples and replicates within each site.

For ILM data, we compared quantile normalization16 with the addition of 15 counts of offset

to each probe signal13 and normalization by a robust least-squares fit of rank-invariant

genes. For the latter normalization method, array data corresponding to sample A were

averaged and used as a reference on each site independently. Signals from each array in the

experiment were compared to the reference, and probes with relative rank changes of less

than 5% (only probes ranked between the 50th and 90th percentiles were included) were

considered to be rank invariant. Normalization coefficients were computed with iteratively

reweighted linear least squares using the Tukey bisquare weight function. Background

signal, estimated as the mean signal of negative controls, was subtracted before

normalization. Each ILM array contains approximately 1,600 negative control probes, which

are thermodynamically equivalent to regular probes but do not have specific targets in the

transcriptome. Gene signals were ranked relative to signals of negative controls, and the

detection flag was set to present if gene signal exceeded 99% of signals of negative controls.

Purification of mRNA to empirically determine abundance in samples A and B

In a follow-up experiment, mRNA was isolated from 100 μg of samples A and B total RNA

in duplicate using the Absolutely mRNA purification kit (Stratagene) according to the

manufacturer’s protocol. Briefly, 50 μl of mRNA oligo (dT) magnetic particles were

combined with 100 μl of total RNA and washed four times, and mRNA was eluted with 100

μl elution buffer. mRNA quantity and quality were evaluated by ND-1000 NanoDrop

spectrophotometer (NanoDrop Technologies) and Agilent 2100 Bioanalyzer with RNA 6000

Nano LabChip Kit (Agilent Technologies). This empirical evaluation of mRNA content in

each 100 ng of total RNA produced an average yield of 2.870 ± 0.095 ng for sample A and

2.003 ± 0.124 ng for sample B (mean ± s.d.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Modeling of titration mixtures

Ideally, the mRNA expression levels of each gene in samples C and D may be

mathematically expressed as

where A and B are the measured mRNA abundances of the gene in samples A and B,

respectively, and αC, βC, αD and βD are the mixture coefficients. If we impose the

requirement that

and

then elementary algebra can be used to derive simple formulas for βC and βD:

and

If the mRNA fractions in samples A and B are identical and the normalization of samples

A, B, C and D exactly the same, then the measured fraction should be centered on the

ideal mixture fractions of βC = 0.25 and βD = 0.75 (implying αC = 0.75 and αD = 0.25).

However, different mRNA concentrations in the A and B samples and differences in the

normalization of the four samples for different platforms, sites and normalization

methods can lead to deviations from these expected values (Fig. 4). For example, if the

mRNA fractions for the A and B samples (termed a and b, respectively) are unequal (a ≠
b), then

and

We can express the true ratios of the B to A mRNA fractions,
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(see Supplementary Fig. 5). Using the empirical measurements of βC and βD, we can then

estimate these true mRNA fractions. For example, if the B fraction of sample C is βC ≈
0.18, as indicated by microarray median values in Figure 4 (bottom), then we can deduce

that the true ratio of mRNA fractions b/a is approximately 2:3. Moreover, these results

predict that

which is consistent with the empirical microarray results in Figure 4 (top).
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Figure 1.

RNA samples. We used expression measurements from two independent total RNA

samples, A and B, and mixtures of these two samples at defined ratios of 3:1 (C) and 1:3

(D). The titration mixtures were generated once for all experiments, with samples A and B at

equal total RNA concentrations as determined by A260.
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Figure 2.

Percentage of genes showing the monotonic titration responses  and

 plotted against the linear  and  ratios, respectively, for each

commercial whole-genome microarray platform, using various normalization methods. All

graphs were generated from the set of 12,091 genes common across whole-genome

platforms, with outlier arrays excluded per manufacturer’s recommendations13. Genes

detected across all four samples per site that were also significantly differentially expressed

(P < 0.001) in independent samples A and B were used in the calculations (Table 1, rows 4

and 5). A two-sample t-test, with equal variance, was performed within each site on log2

expression values. For each platform, a 100-probe moving window, based on sorted 

ratios (left side of plot) or  ratios (right side of plot), was used to calculate the

percentage of self-consistent monotonic titration response genes (y-axis) as a function of the

corresponding moving average of  or  ratios (x-axis) within each site. Graphs are

plotted with a scale break between −1 and 1, with reassignment of the x-axis for clarity.

Each graph contains six series of data points (three sites in two monotonic directions), which

were smoothed using a distance-weighted least-squares method. Blue, site 1; red, site 2;

gray, site 3. Total number of genes showing the monotonic trend for each site are indicated

in each graph, for both directions (  for  ratios >1 and  for

 ratios >1), and are also listed in Table 1 (rows 4 and 5). The normalization methods

highlighted in yellow for each platform represent the manufacturer’s recommended method

used in the MAQC main paper13.
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Figure 3.

Impact of normalization on the distributions of titrating genes as a function of signal

intensity. Fractions of genes showing the monotonic titration responses  and

 are plotted against  (solid line) and  (dashed line), respectively.

Histograms in each panel represent data from a different platform and normalization

technique, separated by site and direction. Normalization methods highlighted in yellow for

each platform are the manufacturer’s recommended method used in the MAQC study. Blue,

site 1; red, site 2; gray, site 3. The data for these graphs were generated from the set of

12,091 genes common across the platforms that were significantly differentially expressed

(P < 0.001) in samples A and B and detected in all four samples (Table 1, rows 4 and 5). All

data are plotted on the same scale: the x-axis is normalized signal in log2 units and the y-axis

shows the fraction of titrating probes relative to the total number of probes in the given

intensity range. Bin centers are 0.5 apart on the log2 scale. To avoid spurious oscillations in

the lowest and highest signal intensities, we plotted only bins with more than ten genes.

Differences between normalization techniques are demonstrated by the differing signal

ranges within a platform for the monotonic titration response. The normalization methods

highlighted in yellow for each platform represent the manufacturer’s recommended method

used in the MAQC main paper13.
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Figure 4.

Titration-response concordance for each commercial whole-genome microarray platform,

using different normalization methods, with data from each platform separated by site and

fold-change direction. Data shown are from the 12,091 genes common across whole-genome

platforms. Box plots were generated in cases where a gene was detected across all samples

per site and had a statistically significant (P < 0.001) A/B ratio >2 in the direction indicated.

A two-sample t-test, with equal variance, was performed within each site on log2 expression

values. Data for each site were split by direction of fold change: left, genes where A/B > 2;

right, genes where B/A > 2 (all differences significant, P < 0.001, for both directions).

Number of genes used for each box plot is indicated by individual site counts in Table 1

(rows 20 and 21). Each box represents the interquartile range, with median marked by a

horizontal black line and 10th and 90th percentiles marked by the outer whiskers. Blue, site

1; red, site 2; gray, site 3. The horizontal dashed black lines represent expected values

assuming 3% and 2% mRNA abundance levels for samples A and B, respectively. In other

words, when the mRNA/total RNA fraction in A is equal to 3% and in B is equal to 2%,

then βC = (C − A)/(B − A) = 0.18 (bottom two charts) and βD = (D − A)/(B − A) = 0.67 (top

two charts). Refer to Box 1 for further details. Normalization methods highlighted in yellow

for each platform represent the manufacturer’s recommended method used in the MAQC

main paper13.
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