
Using Rules and R2ML for Modeling Negotiation
Mechanisms in E-Commerce Agent Systems?

Costin Bădică1, Adrian Giurca2, and Gerd Wagner2

1 Software Engineering Department, University of Craiova,
Bvd.Decebal 107, Craiova, 200440, Romania
badica_costin@software.ucv.ro

2 Internet-Technology Department,
Brandenburg University of Technology at Cottbus,

Walther Pauer Str. 2, 03046 Cottbus, Germany
{Giurca, G.Wagner}@tu-cottbus.de

Abstract. With the spread of e-commerce on a global scale, the development
of truly open semantic descriptions of negotiation mechanisms for agent systems
generated a lot of interest in the research community. This paper proposes the
use of the REWERSE rule-markup language R2ML for semantic modeling of
negotiation mechanisms to enable agents to engage in more flexible and open
negotiations. Rules are developed on top of an ontology of negotiation concepts
and define a lingua franca for all software agents participating in negotiation.

1 Introduction

Global information networks are described as open collaborative environments host-
ing intelligent and autonomous services that are able to dynamically discover each
other and engage in business transactions, possibly involving automated negotiations.
E-commerce is seen as a key service of modern information society and therefore, the
ability of software agents to discover remote markets and engage in commercial transac-
tions governed by market mechanisms unknown in advance, is of primary importance.

We understand automated negotiations as a process by which a group of software
agents communicate with each other to reach a mutually acceptable agreement on some
matter [11]. In this paper we focus our attention on auctions – a particular form of
negotiation that spread during the last years with the advent of the Internet and the
Web. Auctions are negotiations where resource allocations and prices are determined
by bids exchanged between participants according to a given set of rules [15].

In automated negotiations (including auctions) it is important to distinguish between
negotiation protocols (or mechanisms) and negotiation strategies. The protocol com-
prises public ”rules of encounter” between negotiation participants by specifying the
requirements that enable them to interact and negotiate. The strategy defines the private
behavior of participants aiming at achieving their desired outcome. This behavior must
be consistent with the protocol and is chosen to optimize participant welfare ([26]).
? Work of A. Giurca and G. Wagner was partially funded by European Commission and by the

Swiss Federal Office for Education and Science within the 6th Framework Programme projects
REWERSE (IST-2004-506779) cf. http://www.rewerse.net.



A key aspect that generated a lot of interest in the research community is the de-
velopment of a truly open semantic description of negotiation mechanisms [2, 1, 17, 16,
19, 18]. As our literature overview indicates, we are still quite far from that vision of
software agents needing only little compiled knowledge to enable ”sensing” the nego-
tiation mechanism and ”tuning” the negotiation strategy accordingly. As an attempt to
narrow this gap, in this paper we propose the use of R2ML rule-markup language for
semantic modeling of negotiation mechanisms in agent systems. Our proposal builds
over existing works [27, 2, 1] on rule modeling of agent-based auctions and therefore it
is expected to cover at least the types of auctions discussed there.

Before proceeding let as note that the use of semantic markup languages for model-
ing negotiation mechanisms is not entirely new; several approaches have already been
proposed in the literature ([17, 16, 19, 18]).

The proposal for formalizing negotiations introduced in [18] goes beyond the generic
software framework of [2] and implemented in [1]. Its authors suggest the use of an
ontology for representing negotiation protocols. Whenever an agent is admitted to ne-
gotiation it also obtains a specification of the negotiation mechanism in terms of the
shared ontology. The ontology approach introduced in [18] is taken further in [19] by
investigating how the ontology can be used to tune the negotiation strategy of partici-
pant agents. Note that authors of [19] point out that the ontology approach is still far
from the vision where agents need only little hard-coded knowledge about the negoti-
ation mechanism and this is due to the limitations of ontology languages to capturing
explicitly the semantics of the rules that govern the negotiation. In this paper we address
this issue thus making our work different from existing related works [19, 18].

The open environment for automated negotiations specifically targeted to auctions
([16, 17]) comprises: i) the auction reference model – ARM and ii) the declarative auc-
tion specification language – DAL. Note that, while not explicitly using rules, a DAL
specification models in fact the auction flow using a rule-based approach. DAL uses the
following constructs: views, validations, transitions and agreement generators ([16]).
Views are analogous to visibility rules, validations are analogous to bidding rules, tran-
sitions are analogous to update rules and agreement generators are analogous to clear-
ing rules. Finally, DAL provides also an explicit, implementation-level separation of the
specification of auction flow from the auction data. For this purpose, a DAL specifica-
tion comprises a set of SQL queries that provide access to the market data. While SQL
has a declarative semantics and it is useful for the implementation side of DAL, we
believe that this feature is less significant as concerning the portability of the language,
as compared with the rule-based representation using R2ML.

2 Negotiation Model and Vocabulary

The starting point of our work is the rule-based framework for enforcing specific ne-
gotiation mechanisms proposed by [2]. Note that details of its implementation using
JADE [5] and JESS [8] including initial experimental results for English auctions were
reported in [1]. So, our work can be also seen as an attempt to provide a portable R2ML
representation of the auction mechanism that could be reused by that implementation.



Authors of [2] sketched a software framework for implementing agent negotiations
that comprises: (1) negotiation infrastructure, (2) generic negotiation protocol and (3)
taxonomy of declarative rules. The negotiation infrastructure defines roles of negotia-
tion participants (eg.buyer or seller in an auction) and of a negotiation host. Participants
exchange proposals within a negotiation locale managed by the host.

According to the generic negotiation protocol ([2]), negotiation is seen as the process
of exchanging proposals (or bids) via a common space or blackboard (also known as
market [16, 17]) that is governed by an authoritative entity – the negotiation host (or
market maker). Status information describing negotiation state and intermediary infor-
mation is automatically forwarded by the negotiation host to all entitled participants
according to the information revealing policy of that particular negotiation ([2, 1]).

Negotiation rules are used for enforcing the negotiation mechanism. Rules are orga-
nized into a taxonomy: rules for participants admission to negotiations, rules for check-
ing the validity of proposals, rules for protocol enforcement, rules for updating the
negotiation status and informing participants, rules for agreement formation and rules
for controlling the negotiation termination.

We model the basic negotiation vocabulary with the class diagram from Figure 1.

Participant

Good

Negotiation

timeReceived
price

Proposal

ActiveProposal

Seller Buyer{disjoint, complete}

1

1..*

transacts 11 registered

1

1

submits

ValidProposal

value
increment
participant
receivedTime

Bid

Fig. 1. An excerpt of the negotiation vocabulary

This vocabulary corresponds to an OWL [22] ontology that is used by agents in-
volved in negotiations. Participant, Seller, Buyer, Negotiation, Good, Proposal, Valid-
Proposal, ActiveProposal, and Bid are OWL classes. transacts is an OWL object prop-
erty corresponding to the many-to-many association between classes Participant and
Good, and registered is an OWL object property corresponding to the inverse func-
tional association between classes Participant and Negotiation. Note that this vocabu-
lary addresses the Platform-Independent Model1 of a business system and therefore it
is independent of the specific technological platform used to implement it.

1 The term platform-independent model (PIM) is most frequently used in the context of the
Model Driven Architecture (MDA) approach which corresponds the Object Management
Group (OMG) vision of Model Driven Engineering (MDE). The main idea is that it should be
possible to use a model transformation language (MTL) to transform a Platform-Independent
Model (PIM) into a Platform-Specific Model (PSM).



3 Rules in Agent Negotiation

The aim of this section is to discuss the main types of rules needed to parameterize a
negotiation mechanism with a focus on auctions. Our approach is exemplified with a
sample set of rules that we have devised for describing single-item English auctions.
We have chosen English auctions because they are a non-trivial and easy to understand
auction mechanism that became popular because of the establishment of many online
auction houses like eBay.

In order to make this presentation independent of a particular rule representation
formalism, we have chosen to express our rules in an informal pseudo-code notation.
The description is supplemented with a discussion of the intended semantics of the rules
that govern a typical single-item English auction.

Technically, English auctions are single-item, first-price, open-cry, ascending auc-
tions ([10],[26]). In an English auction there is a single item sold by a single seller and
many buyers bidding against one another for buying the item until the auction termi-
nates. Usually, there is a time limit for ending the auction, a seller reservation price that
must be met by the winning bid for the item to be sold and a minimum value of the
bid increment. A new bid must be higher than the currently highest bid plus the bid
increment in order to be accepted. All the bids are visible to all the auction participants,
while seller reservation price is private to the auction.

3.1 Categories of Negotiation Rules

Based on analysis performed in [2, 28, 27] and our own experience [1] we have con-
cluded that the following categories of rules are necessary for configuring a negotiation
mechanism (auction in particular): bidding rules, information rules and clearing rules
(terminology is borrowed from [28, 27]). Rules are activated when certain events occur
during the negotiation (eg.when a participant proposal is received by the host or when
a given time period without any bidding activity is observed).

Bidding rules. These rules are responsible for handling proposals submitted by
negotiation participants to determine if these proposals are correct according to the
syntactical and semantical requirements of the negotiation mechanism.

This is a two-step process. Firstly, it involves checking if a proposal is valid – i.e.
if the proposal is syntactically correct (for example if it specifies an amount to be paid
and a transacted product). This check is performed by rules for proposal validity.

Secondly, the process involves checking if the bid is in accordance with the seman-
tical requirements of the negotiation mechanism. This check is performed by rules for
protocol enforcement. For example: i) posting rules check the conditions when a partic-
ipant is allowed to submit a bid; ii) improvement rules check if a participant’s proposal
is an improvement over its own previous proposal or over the proposal that is currently
revealed by the negotiation; iii) withdrawal rules check if and when a proposal can be
withdrawn (for example a proposal can be active only a fixed amount of time or until it
is explicitly withdrawn by a participant).

Information Rules. The negotiation host is essentially a data processor. It is re-
sponsible with processing proposals submitted by participants, with updating the state
of the negotiation process and with informing participants according to the information



revealing policy of the negotiation. Information rules govern the policies for generating
all this intermediate information that is necessary for running the negotiation. Typically,
this information includes negotiation state information (eg.negotiation stage or round,
currently highest price, etc.) and information revealed to participants.

For example: i) update rules specify how negotiation data (including negotiation
parameters or negotiation stage) is updated in case certain events occurred; ii) visibility
rules specify what negotiation information is visible to which participants; iii) display
rules specify if and how a specific information about the negotiation should be notified
to (some of) the participants.

Clearing Rules. The negotiation goal is to produce one or more deals between the
negotiation participants. Clearing rules are responsible with detecting and computing
negotiation deals and controlling negotiation life-cycle.

For example: i) agreement formation rules determine when an agreement can be
reached and what is the corresponding set of deals made; ii) termination rules specify
when the negotiation terminates.

Rule Activation. Rule activation is triggered by the occurrence of certain events
during the negotiation. Usually, the activation of bidding rules is triggered when the
negotiation host receives a new proposal. However, information and clearing rules can
be triggered by other events, as well, including: lack of bidding activity for a given time,
timer events, admission of a new proposal, certain updates of the negotiation state (like
changing the round), etc. Note that by combining negotiation activities using associated
triggering events and conditions may result in a great variety of negotiations.

3.2 Intended Semantics of Negotiation Rules for English Auctions

In this section we describe a sample set of negotiation rules for single-item English
auctions. Rules are written using an intuitive pseudo-code notation, while their intended
interpretation is described in natural language.

Bidding Rules for English Auctions handle proposals submitted by negotiation
participants and check their correctness according to the English auction mechanism.

VALIDITY rule checks if a proposal is well formed, i.e. if it specifies transacted
good and amount to be paid and if it comes from a registered participant (seller or
buyer). In case of success the proposal is recorded as valid together with the time it was
received by the negotiation host – submission time.

VALIDITY
IF

S is a participant registered with negotiation AND
S transacts good A AND
A new proposal Pr was submitted by S AND
S has role R ∈ {buyer, seller} AND
Proposal Pr contains amount to be paid P

THEN
Proposal Pr is valid AND
Submission time T is recorded with proposal Pr

Posting rules check if a valid proposal can be posted depending on the type of
proposals that were previously posted by the other participants. POSTING-BUYER



rule specifies that a buyer participant can post a proposal whenever there is a matching
offer already posted by a seller participant. POSTING-SELLER rule specifies that the
seller must be the first participant that posts a proposal. Therefore the seller is called
market initiator. Every negotiation mechanism usually specifies a market initiator that
is responsible with the initiation of a negotiation process. Posting rules collectively
specify that in an English auction the participant with role seller must be the first to
submit a proposal (with the intention to sell) and only then participants with role buyer
will submit their proposals (usually called bids, with the intention to buy).

POSTING-BUYER
IF

There is a valid proposal Pr of a participant with role buyer on good A AND
There is an active proposal of a participant with role seller on good A

THEN
Proposal Pr is posted

POSTING-SELLER
IF

There is a valid proposal Pr of the participant with role seller on good A AND
There are no active proposals on good A

THEN
Proposal Pr is posted

Improvement rules check if a valid proposal can be posted depending on the con-
tent of proposals that were previously posted. IMPROVEMENT-BUYER enforces a
new valid proposal to specify a price higher than the currently highest bid plus a give
increment. ACTIVATE-SELLER just activates a valid bid posted by the seller (note that
this rule was added to preserve the symmetry of treating buyer and seller proposals).

IMPROVEMENT-BUYER
IF

Negotiation is on good A AND
Bid increment is Inc AND
Currently highest bid is B AND
Proposal Pr on good A with amount to be paid P was posted by this buyer AND
P ≥ B + Inc

THEN
Proposal Pr is active

ACTIVATE-SELLER
IF

Proposal Pr was posted by this seller
THEN

Proposal Pr is active

Note that posting and improvement rules actually check dynamic constraints of the
negotiation mechanism, i.e. what sequences of proposals are allowed. Also note that a
proposal that passed the validity tests is called valid, a proposal that passed the posting
tests is called posted and a proposal that passed the improvement tests is called active.



Information Rules for English Auctions specify the processing applied to an ac-
tive proposal. This usually results in updates of the negotiation state and notifications
sent by negotiation host to negotiation participants.

Update rules specify the necessary updates of the negotiation state when a new
active proposal is posted. UPDATE-BUYER rule performs the update of the currently
highest bid after a new active proposal was posted by a buyer participant (note that
rule IMPROVEMENT-BUYER only checks the buyer proposal, but does not update
the negotiation state). UPDATE-SELLER rule initializes the negotiation state when an
active proposal with an offer was posted by a seller participant.

UPDATE-BUYER
IF

There is an active proposal Pr posted by participant S with role buyer AND
Proposal Pr has price P and was received at time T AND
Currently highest bid is B

THEN
Currently highest bid becomes P and was submitted by S at time T

UPDATE-SELLER
IF

There is an active proposal Pr posted by participant with role seller AND
Proposal Pr has price P and refers to good A AND

THEN
Negotiated good are set to A AND
Seller reservation price is initialized to P AND
Currently highest bid is initialized to a default value (0) AND
Termination time window is initialized to a default value

INFORM rule specifies that whenever the currently highest bid is updated, all the
negotiation participants must be notified accordingly. Usually this notification contains
the value of the highest bid, the identity of the submitter and the time when it was
submitted (actually received by the negotiation host).

INFORM
IF

Currently highest bid has been updated
THEN

Notify accordingly all the negotiation participants

Visibility rules specify what negotiation information is disclosed to which partici-
pants, and what negotiation information is private to the negotiation.

VISIBILITY-SELLER-PROPOSAL rule specifies that good, submission time and
participant name of an active proposal submitted by a seller are public to all buyer
participants, while the price is private to the unique seller participant.

VISIBILITY-SELLER-PROPOSAL
IF

There is an active proposal submitted by participant S with role seller AND
This proposal is on good A and was recorded at time T

THEN
S , A and T are visible to all participants



VISIBILITY-BUYER-PROPOSAL rule specifies that all the parameters of an active
proposal submitted by a buyer (i.e. participant name, price, good and submission time)
are public to al negotiation participants.

VISIBILITY-BUYER-PROPOSAL
IF

The currently highest bid is B and is on good A AND
The currently highest bid was submitted by a participant S at time T

THEN
S , A, T and B are visible to all participants

Clearing Rules for English Auctions determine negotiation outputs and control
negotiation termination.

AGREEMENT-FORMATION rule specifies that whenever agreement formation is
triggered, if the currently highest bid is greater than the seller reservation price, an
agreement is formed between the submitter of the highest bid and the seller.

AGREEMENT-FORMATION
IF

The currently highest bid is B and was submitted by buyer S 1 AND
There is an active proposal of seller S 2 with price P AND
Negotiation is on good A AND
B ≥ P

THEN
An agreement of S 1 with S 2 to transact good A at price P1 is formed

TERMINATION rule dictates auction termination whenever a given period of bid-
ding inactivity is observed.

TERMINATION
IF

Termination time window is W AND
Active proposal that generated currently highest bid was recorded at time Ta AND
Current time is Tc AND
Tc > Ta +W

THEN
Negotiation is declared terminated AND
Negotiation participants are notified accordingly

4 Representing Negotiation Rules in R2ML

Representing negotiation rules in a global information network (eg. an agent environ-
ment) requires a commonly agreed rule interchange format. This format must be able
to support different rule languages within a single representation framework shared by
all parties.

General purpose rule interchange formats, such as RuleML [21] and R2ML [20],
address the Platform-Independent Model level (PIM) of a software or business system.
One of their goals is to support a PSM2 to PSM rule interchange via the PIM level.

2 PSM stands for Platform-Specific Model i.e. a business system level that is dependent of the
specific technological platform used to implement it.



Expressing negotiation rules at PIM level is a significant advantage since the business
system does not require any conceptual changes when it is implemented in different
specific technological platforms.

RuleML Initiative [21] aims at providing such a general purpose format. The SWRL
[3] rule language tries to combine the rule concept from RuleML with the knowledge
representation support of OWL [22]. However, both languages have limitations regard-
ing the representation of well known concepts from software engineering: data types,
operation calls, etc that are usually needed in real applications. Moreover, none of them
supports Event-Condition-Action (ECA) rules that are basic kind of rules in agent ne-
gotiations (as seen in the previous section of this paper). The first ideas of a general rule
language that will support not only the power of logic programming concepts, but also
the widely used object oriented programming paradigm come from 2003 (see [23]).
Following this work, proposal of R2ML rule markup language was recently launched
[20]. R2ML supports ECA rules and provides markup for rules written in various rule
languages including: Prolog, F-Logic [9], SQL, OCL [12], Jena [7], Jess [8], ILR [4],
RuleML [21], SWRL [3].

Let us note that our negotiation rules are reaction rules (ECA rules) that follow the
event-condition-action model. Therefore, we start with a brief description of the R2ML
model of ECA rules and then we provide details of our proposed mapping.

4.1 R2ML ECA-Rules

A R2ML reaction rule is a statement of programming logic that specifies the execution
of one or more actions in the case of a triggering event occurrence and if its conditions
are satisfied. Post-conditions may be optionally required to be satisfied after the action
execution. Reaction rules therefore have an operational semantics (formalizing state
changes, e.g., on the basis of a state transition system formalism). The execution effect
of reaction rules may depend on the rules order (note that the order is defined by the
rule execution mechanism or by the rules representation).

The R2ML Events Metamodel specifies the core concepts required for dynamic
behavior of rules and provides the infrastructure for more detailed definition of this
behavior. Basic properties of an R2ML event expression are: startDateTime, duration
(defines a value specification of the temporal distance between two time expressions
that specify time instants) and occurDateTime (a derived property given by the addition
of duration to the existent start date time).

For the purpose of encoding the agent negotiation rules we utilize only message
event expressions. A message event expression is an atomic event described by two
properties: i) sender which is the same with the actor (inherited from ActionEventExpr)
and ii) receiver, an URI reference describing the receiver of the event. See [20] for more
details on the R2ML event model.

4.2 Mapping Examples

This section is devoted to the description of the mapping of agent negotiation rules
presented in Section 3 to R2ML. Because of space limitation, the mapping is illustrated



by means of few examples involving R2ML representations of vocabulary, rules, events,
conditions and actions.

As R2ML is a rule-based language (other examples are Jess [8], JBoss Rules [6],
Oracle Business Rules [14]), it provides the concepts of ruleset. Recall that our nego-
tiation rules are based on the vocabulary described in Section 2. Vocabularies can be
referred in R2ML rule sets and, moreover, for simplicity of implementations, R2ML
provides its own markup for vocabularies. At the ruleset level a specific vocabulary for
the entire set of rules can be encoded.

For example, the Bid class from our vocabulary can be represented as:

<r2mlv:Class r2mlv:ID="v:Bid">
<r2mlv:Attribute r2mlv:ID="v:value">
<r2mlv:range>
<r2mlv:Datatype r2mlv:ID="xs:positiveInteger"/>
</r2mlv:range>
</r2mlv:Attribute>
<r2mlv:Attribute r2mlv:ID="v:increment">
<r2mlv:range>
<r2mlv:Datatype r2mlv:ID="xs:decimal"/>
</r2mlv:range>
</r2mlv:Attribute>
<r2mlv:Attribute r2mlv:ID="v:receivedTime">
<r2mlv:range>
<r2mlv:Datatype r2mlv:ID="xs:time"/>
</r2mlv:range>
</r2mlv:Attribute>
<r2mlv:ReferenceProperty r2mlv:ID="v:participant">
<r2mlv:range>
<r2mlv:Class r2mlv:ID="v:Participant"/>
</r2mlv:range>
</r2mlv:ReferenceProperty>
</r2mlv:Class>

The registered association is represented as:

<r2mlv:ReferenceProperty r2mlv:ID="v:registered">
<r2mlv:domain>
<r2mlv:Class r2mlv:ID="v:Participant"/>
</r2mlv:domain>
<r2mlv:range>
<r2mlv:Class r2mlv:ID="v:Negotiation"/>
</r2mlv:range>
</r2mlv:ReferenceProperty>

Notice that r2mlv is the standard namespace notation for R2ML vocabulary3 and v
is a user-defined notation for his specific namespace of concepts4.

3 The R2ML vocabulary schema URL is http://oxygen.informatik.tu-cottbus.de/
R2ML/0.4/Vocabulary/r2mlv.xsd

4 For illustration purposes the vocabulary can be found at http://www.example.org/
ecommerce/agents/negotiation/vocabulary.



We detail the mapping of the VALIDITY rule as example. The reader may consult
Appendix 5 for the complete R2ML markup of another example rule.

The triggering event of this rule is the submission of a new proposal by a registered
participant. We consider this event to be atomic i.e with no duration. This is represented
in R2ML by an MessageEventExpression:

01 <r2ml:triggeringEvent>
02 <r2ml:MessageEventExpression r2ml:sender="http://www.example.org/eshop"
03 r2ml:startTime="2006-04-21T09:00:00"
04 r2ml:duration="P0Y0M0DT0H0M0S"
05 r2ml:eventType="e:submitProposal">
06 <r2ml:arguments>
07 <r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>
08 <r2ml:ObjectVariable r2ml:name="S" r2ml:classID="v:Participant"/>
09 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>
10 </r2ml:arguments>
11 </r2ml:MessageEventExpression>
12 </r2ml:triggeringEvent>

Note that object variables S and Pr are instantiated by matching with the content of
the incoming event and they are bound when rule conditions are evaluated.

The conditions part of the rule is a conjunction of three atoms and it can be ex-
pressed in R2ML as follows:

13 <r2ml:conditions>
14 <r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:registered">
15 <r2ml:subject>
16 <r2ml:ObjectVariable r2ml:name="S"/>
17 </r2ml:subject>
18 <r2ml:object>
19 <r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>
20 </r2ml:object>
21 </r2ml:ReferencePropertyAtom>
22 <r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:transacts">
23 <r2ml:subject>
24 <r2ml:ObjectVariable r2ml:name="S"/>
25 </r2ml:subject>
26 <r2ml:object>
27 <r2ml:ObjectVariable r2ml:name="A" r2ml:classID="v:Good"/>
28 </r2ml:object>
29 </r2ml:ReferencePropertyAtom>
30 <r2ml:AttributionAtom r2ml:attributeID="v:price">
31 <r2ml:subject>
32 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>
33 </r2ml:subject>
34 <r2ml:dataValue>
35 <r2ml:DataVariable r2ml:name="P" r2ml:datatypeID="xs:positiveInteger"/>
36 </r2ml:dataValue>
37 </r2ml:AttributionAtom>
38 </r2ml:conditions>



First atom (lines 14–21) is a R2ML reference property atom that models the condi-
tion "S is a participant registered with negotiation N". This atom is true if participant
denoted by variable S is registered with the current negotiation denoted by variable N.

The second atom (lines 22–29) is also a reference property atom describing the
condition "S transacts good A".

The third atom (lines 30–37) is a R2ML attribution atom implementing the condi-
tion "Proposal Pr has price P". The execution model consists in computing the value
of the attribute price in the context of the object variable Pr (the proposal).

The reader may notice that the condition ”S has role R ∈ {buyer, seller}” is al-
ready implemented at the vocabulary level (classes Seller and Buyer are a complete
partition of Participant).

Since the action part of the rule (”Submission time T is recorded with proposal
Pr”) denotes an update that invokes a ”recording operation”, it will go into an R2ML
invoke action expression. The action receives as argument a R2ML attribute function
term that evaluates to the value of the attribute v:timeReceived of proposal Pr.
Note that this corresponds to an UML-like operation call recordSubmissionTime(
Pr.timeReceived). The resulting R2ML markup of the action is:

39 <r2ml:producedAction>
40 <r2ml:InvokeActionExpression r2ml:operationID="a:recordSubmissionTime">
41 <r2ml:arguments>
42 <r2ml:AttributeFunctionTerm r2ml:attributeID="v:timeReceived">
43 <r2ml:contextArgument>
44 <r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>
45 </r2ml:contextArgument>
46 </r2ml:AttributeFunctionTerm>
47 </r2ml:arguments>
48 </r2ml:InvokeActionExpression>
49 </r2ml:producedAction>

The VALIDITY rule has also a postcondition – ”Proposal Pr is valid”. This post-
condition corresponds to a R2ML object classification atom:

50 <r2ml:postcondition>
51 <r2ml:ObjectClassificationAtom r2ml:classID="v:ValidProposal">
52 <r2ml:ObjectVariable r2ml:name="Pr"/>
53 </r2ml:ObjectClassificationAtom>
54 </r2ml:postcondition>

4.3 General Mapping Criteria

Business rules (including those presented in Section 3) are not usually captured using
a formal representation. Instead, they are natural language descriptions based on core
ontological concepts (eg. variable and class) and have the usual meaning of IF ... THEN
programming constructs. It is the role of the rule engineer to map them onto a formal
representation. Below we describe the general mapping criteria of such a formalization
using R2ML:

1. Rule variables are mapped onto object variables or data variables according to their
values types:



– Object variables, if they instantiate classes;
– Data variables, if they instantiate datatypes;

2. UML properties are mapped onto different kinds of atoms according to their ranges:
– Attributes i.e. UML properties that have data as values are mapped onto at-

tribution atoms or attribute function terms depending of the context of usage.
For example the UML expression Pr.price=P is mapped onto the attribution
atom from lines 29–36. See also the attribute function term from lines 41–45
in the example.

– Object properties i.e. UML properties that have objects as values are mapped
onto R2ML reference property atoms or reference property function terms de-
pending of the context of usage. For example, the reference property atom from
lines 21–28 encodes the UML expression S.transacts=A;

3. Actions are mapped onto one of:
– InvokeActionExpression, corresponding to an operation call;
– AssignActionExpression, corresponding to assignment of values to different

UML attributes;
– CreateActionExpression, corresponding to a constructor-call;
– DeleteActionExpression, corresponding to a destructor-call;

4. Because the negotiation box rules are triggered by instantaneous events (like re-
quest/response of a message), events are mapped onto the subclass of R2ML mes-
sage events that represents atomic events (events without duration).

In Appendix 5 we present another complete example expressed in R2ML for the
IMPROVEMENT-BUYER rule.

5 Conclusions and Future Work

This paper proposes the use of R2ML rule-markup language for expressing rule-based
representations of agent negotiation mechanisms. Our proposal is demonstrated with an
example comprising an R2ML rule model of single item English auctions.

As future work we plan to: (i) analyze how the R2ML representation of negotiation
mechanisms can be implemented using a rule engine in a system for agent negotiation;
(ii) asses the generality of this proposal by applying it to other price negotiations.

Appendix A

R2ML markup for IMPROVEMENT-BUYER rule:

<r2ml:ReactionRule r2ml:id="IR-BUYER001">
<r2ml:triggeringEvent>
<r2ml:MessageEventExpression r2ml:sender="www.example.org/eshop"

r2ml:startTime="2006-04-21T09:00:00"
r2ml:duration="P0Y0M0DT0H0M0S" r2ml:eventType="s:submitProposal">

<r2ml:arguments>
<r2ml:ObjectVariable r2ml:name="S" r2ml:classID="v:Buyer"/>
<r2ml:ObjectVariable r2ml:name="Pr" r2ml:classID="v:Proposal"/>
</r2ml:arguments>
</r2ml:MessageEventExpression>
</r2ml:triggeringEvent>



<r2ml:conditions>
<r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:registered">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="S"/>
</r2ml:subject>
<r2ml:object>
<r2ml:ObjectVariable r2ml:name="N" r2ml:classID="v:Negotiation"/>
</r2ml:object>
</r2ml:ReferencePropertyAtom>
<r2ml:ReferencePropertyAtom r2ml:referencePropertyID="v:transacts">
<r2ml:subject>
<r2ml:ObjectVariable r2ml:name="S"/>
</r2ml:subject>
<r2ml:object>
<r2ml:ObjectVariable r2ml:name="A" r2ml:classID="v:Good"/>
</r2ml:object>
</r2ml:ReferencePropertyAtom>
<r2ml:DatatypePredicateAtom r2ml:datatypePredicateID="swrlb:greaterThan">
<r2ml:dataArguments>
<r2ml:AttributeFunctionTerm r2ml:attributeID="v:price">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="Pr"/>
</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
<r2ml:DataOperationTerm r2ml:operationID="op:numeric-add">
<r2ml:arguments>
<r2ml:AttributeFunctionTerm r2ml:attributeID="v:value">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="B" r2ml:classID="v:Bid"/>
</r2ml:contextArgument>
</r2ml:AttributeFunctionTerm>
<r2ml:AttributeFunctionTerm r2ml:attributeID="v:increment">
<r2ml:contextArgument>
<r2ml:ObjectVariable r2ml:name="B" r2ml:classID="v:Bid"/>
</r2ml:contextArgument>

</r2ml:AttributeFunctionTerm>
</r2ml:arguments>
</r2ml:DataOperationTerm>
</r2ml:dataArguments>
</r2ml:DatatypePredicateAtom>
</r2ml:conditions>
<r2ml:producedAction>
<r2ml:InvokeActionExpression r2ml:operationID="a:assert">
<r2ml:arguments>
<r2ml:ObjectVariable r2ml:name="Pr"/>
</r2ml:arguments>
</r2ml:InvokeActionExpression>
</r2ml:producedAction>
<r2ml:postcondition>
<r2ml:ObjectClassificationAtom r2ml:classID="v:ActiveProposal">
<r2ml:ObjectVariable r2ml:name="Pr"/>

</r2ml:ObjectClassificationAtom>
</r2ml:postcondition>
</r2ml:ReactionRule>

References

1. Bădică, C., Bădiţă, A., Ganzha, M., Iordache, A., Paprzycki, M.: Rule-Based Framework for
Automated Negotiation: Initial Implementation. In: A. Adi, S. Stoutenburg, S. Tabet (eds.):
Proc. RuleML’2005, Galway, Ireland. LNCS 3791, Springer Verlag 2005, 193–198.

2. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proc. SELMAS’2004, LNCS 3390, Springer Verlag 2005, 213–235.



3. Horrocks I., Patel-Schneider P. F., Boley H., Tabet S., Grosof B., Dean M.: SWRL: A Seman-
tic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May
2004, http://www.w3.org/Submission/SWRL/

4. The ILOG Rule Language. http://www.ilog.com/
5. JADE: Java Agent Development Framework. http://jade.cselt.it2
6. JBoss Rules (Drools) http://www.drools.org
7. Jena The Semantic Web Framework. http://jena.sourceforge.net/
8. Jess, Sandia Lab., http://herzberg.ca.sandia.gov/jess/
9. Kifer, M., Lausen, G., and Wu, J.: Logical Foundations of Object-Oriented and Frame-

Based Languages. Journal of ACM, May 1995. ftp://ftp.cs.sunysb.edu/pub/
TechReports/kifer/flogic.pdf

10. Laudon, K.C., Traver, C.G.: E-commerce. business. technology. society (2nd ed.). Pearson
Addison-Wesley, 2004.

11. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in
electronic commerce. In: F. Dignum, C. Sierra (Eds.): Agent Mediated Electronic Commerce:
The European AgentLink Perspective, LNCS 1991, Springer Verlag 2002, 19–33.

12. Object Constraint Language (OCL), v2.0, // http://www.omg.org/docs/ptc/
03-10-14.pdf

13. Object Management Group (OMG), http://www.omg.org
14. Oracle Business Rules,
http://www.oracle.com/technology/products/ias/business_rules/index.
html.

15. McAfee, R.P., McMillan, J.: Auctions and bidding. In: Journal of Economic Literature, 1987,
25(2):699–738.

16. Rolli, D., Luckner, S., Gimpel, A.: A Descriptive Auction Language. Electronic Markets. In:
Electronic Markets – The International Journal, 2005.

17. Rolli, D., Eberhart, A.: An Auction Reference Model for Describing and Running Auctions.
In: 7 Internationale Tagung Wirtschaftsinformatik, Bamberg, Germany, 2005.

18. Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: Ontologies for Supporting Negotiation
in E-Commerce. In: Engineering Applications of Artificial Intelligence, 18, Elsevier, 2005,
223–238.

19. Tamma, V., Wooldridge, M., Dickinson, I.: An Ontology Based Approach to Automated Ne-
gotiation. In: Proceedings AMEC’02: Agent Mediated Electronic Commerce, LNAI 2531,
Springer-Verlag 2002 219–237.

20. R2ML - The REWERSE I1 Rule Markup Language,
http://oxygen.informatik.tu-cottbus.de/rewerse-i1/?q=node/6

21. The Rule Markup Initiative, RuleML, http://www.ruleml.org.
22. Patel-Schneider, Peter F., Horroks I.: OWL Web Ontology Language Semantic and Abstract

Syntax, http://www.w3.org/2004/OWL
23. Wagner, G.: Seven Golden Rules for a Web Rule Language. Invited contribution to the Trends

& Controversies section of IEEE Intelligent Systems 18:5, Sept/Oct 2003.
24. Wagner, G., Giurca, A., Lukichev, S.: R2ML: A General Approach for Marking up Rules,

Dagstuhl Seminar Proceedings 05371, In: F. Bry, F. Fages, M. Marchiori, H. Ohlbach (Eds.)
Principles and Practices of Semantic Web Reasoning, 2005.

25. Wagner, G., Giurca, A., Lukichev, S.: A Usable Interchange Format for Rich Syntax Rules
Integrating OCL, RuleML and SWRL, RoW2006, Edinburgh, UK, May 22nd, 2006.

26. Wooldridge, M.: An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.
27. Wurman, P.R., Wellman, M.P., Walsh, W.E.: Specifying Rules for Electronic Auctions. In:

AI Magazine, 2002, 23(3),15–23.
28. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameterization of the Auction Design

Space. In: Games and Economic Behavior, 35, Vol.1/2 2001, 271–303.


