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Using Run-Time Reconfiguration for
Fault Injection Applications

Lörinc Antoni, Régis Leveugle, and Béla Fehér

Abstract—The probability of faults occurring in the field in-
creases with the evolution of the CMOS technologies. It becomes,
therefore, increasingly important to analyze the potential conse-
quences of such faults on the applications. Fault injection tech-
niques have been used for years to validate the dependability level
of circuits and systems, and approaches have been proposed to an-
alyze very early in the design process the functional consequences
of faults. These approaches are based on the high-level description
of the circuit or system and classically use simulation. Recently,
hardware emulation on FPGA-based systems has been proposed
to accelerate the experiments; in that case, an important charac-
teristic is the time to reconfigure the hardware, including re-syn-
thesis, place and route, and bitstream downloading. In this paper,
an alternative approach is proposed, based on hardware emulation
and run-time reconfiguration. Fault injection is carried out by di-
rect modifications in the bitstream, so that re-synthesizing the de-
scription can be avoided. Moreover, with some FPGA families (e.g.,
Virtex or AT6000), it is possible to reconfigure the hardware par-
tially at run-time. Important time-savings can be achieved when
taking advantage of these features, since the injection of a fault ne-
cessitates the reconfiguration of only a few resources of the device.
The injection process is detailed for several types of faults and ex-
perimental results are discussed.

Index Terms—Fault injection, FPGA, Hardware Prototyping,
partial run-time reconfiguration (RTR).

I. INTRODUCTION

THE fault injection techniques have been recognized for a

long time as necessary to validate the dependability of a

system by analysing its behavior when a fault occurs. Also, re-

configurable devices such as FPGAs are appropriate to imple-

ment and test prototypes by synthesising descriptions in high-

level languages such as VHDL. Another advantage of proto-

typing is the possibility to perform “in-system” emulation be-

fore any manufacturing. Approaches have been recently pro-

posed to take advantage of prototyping to improve the efficiency

of fault injection campaigns. These approaches are based on the

implementation in a FPGA device of a specific version of the

circuit under analysis, instrumented to perform the injection of

internal faults by changing the value of dedicated circuit inputs.
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Run-time reconfiguration (RTR) is a well-known technique

that reconfigures the hardware during the execution of an ap-

plication. Such a reconfiguration may be applied to the whole

device or only to a given subset of the internal elements. Also,

in the later case, the other elements may either remain in oper-

ation or become idle during the reconfiguration.

In this paper, a new approach is proposed for fault injection in

circuit prototypes. This approach is based on RTR to inject the

faults, avoiding any instrumentation of the initial circuit descrip-

tion. Experiments reported in this paper include the injection of

permanent or transient stuck-at faults in the combinatorial parts

of the circuit, as well as the injection of asynchronous transient

faults such as single event upsets (SEUs) in both combinatorial

parts and flip-flops.

The first goal of the study was to demonstrate the feasibility

of the proposed approach based on RTR. The second goal was to

analyze the potential benefits of this approach in terms of time

required to perform the fault injection campaign, and to identify

the potential bottlenecks. The aim of this paper is, therefore, not

to report detailed fault injection results for a given circuit ex-

ample, but to set the bases of a new approach for fault injection.

The paper is organized as follows. Section II gives an

overview of fault-injection techniques and a brief introduction

to RTR. Alternative fault injection approaches are presented in

Section III and the proposed approach is detailed in Section IV.

Section V discusses the results achieved by the experiments

and points out bases for further work.

II. PRELIMINARIES

A. Fault-Injection and Hardware Prototyping

As previously mentioned, fault injection techniques have

been proposed for a long time to evaluate the dependability of a

given circuit or system implementation. Most of the approaches

proposed up to now apply once the system or circuit is available.

Such approaches include pin-level fault injection, memory

corruption, heavy-ion injection, power supply disturbances,

laser fault injection, or software fault injection.

More recently, several authors proposed to apply fault injec-

tion early in the design process. The main approach consists

in injecting the faults in high level models (most often, VHDL

models) of the circuit or system. [1] describes, for example, the

injection of faults in behavioral VHDL descriptions of micro-

processor-based system. [2] and then [3] or [4] consider the in-

jection of different types of faults in the VHDL model of a cir-

cuit at several abstraction levels and using various techniques,

including modifications of the initial VHDL description. As in

the case of [1], simulations are used to evaluate the impact of
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the faults on the circuit behavior. As mentioned in [5], the main

drawback related to the use of simulations is the huge amount

of time required to run the experiments when many faults have

to be injected in a complex circuit.

To cope with the time limitations imposed by simulation, it

has been proposed to take advantage of hardware prototyping,

using a FPGA-based hardware emulator [6]. Another advantage

of emulation is to allow the designer to study the actual behavior

of the circuit in the application environment, taking into account

real-time interactions [7]. When an emulator is used, the ini-

tial VHDL description must of course be synthesisable. In some

limited cases, the approaches developed for fault grading using

emulators (e.g., [8], [9]) may be used to inject faults. However,

such approaches are classically limited to stuck-at fault injec-

tion. In most cases, specific modifications are therefore required

in the initial description to perform the injections. After these

modifications, the description must remain synthesisable and

must satisfy a set of constraints related to the emulator hard-

ware [5].

The main goal of the work presented hereafter is to evaluate

the feasibility of a new fault injection approach, avoiding any

modification of the initial circuit description before it is imple-

mented onto the emulation hardware.

B. Run-Time Reconfiguration

In most cases, the functions implemented onto a FPGA-based

system are completely defined during an initialization phase and

cannot change anymore during the execution of the application.

The same system may be reconfigured to implement other func-

tions, but not during the execution of a single application. This

is called compile-time reconfiguration (CTR) [10].

On the opposite, RTR is a technique reconfiguring hardware

resources during the execution of a given application, for ex-

ample to adapt the functions performed by the hardware to the

specific requirements of different application phases. This ap-

proach has been proposed for example in [11] and [10]. Of

course, RTR can only be used in the case of FPGAs that can be

re-programmed in the field, e.g., using SRAM or Flash memo-

ries to store their configuration.

RTR can be applied in different ways. A first approach con-

sists in temporarily halting the execution of the application in

order to reload a new configuration in the whole FPGA memory.

This will be called global RTR, as the reconfiguration applies

globally to the device. In this case, the application is divided

into distinct temporal phases and each phase corresponds to a

single system-wide configuration that occupies all FPGA re-

sources [10].

Another approach consists in reconfiguring only some re-

sources in the device. Such a partial reconfiguration corresponds

to a local RTR and the functions used in several phases of the

application are not redefined during the reconfiguration (e.g.,

function A in Fig. 1). In this case, noticeable time-savings can

be achieved with respect to a complete reconfiguration of the

component. Of course, such an approach requires specific capa-

bilities of the reconfigurable device and is therefore limited to a

subset of the commercial devices (e.g., Virtex or AT6000).

When a partial reconfiguration is used, the functions re-

maining unchanged may in some cases remain active during

Fig. 1. Illustration of a local RTR.

the reconfiguration. In this particular case, the application may

not be interrupted between two subsequent phases.

III. FAULT INJECTION ALTERNATIVES

A. CTR-Based Versus RTR-Based Flows

As previously mentioned, the most widely used approach for
fault injection is based on the instrumentation of the circuit by
modification of the high level description (often assumed to be
in VHDL). In a second step, the VHDL code is synthesised and
a netlist is generated. After placement and routing of this netlist,
a bitstream is obtained that can be downloaded onto the FPGA.
Finally, a set of experiments is performed and the analysis of the
circuit responses is made. For each experiment, one or several
faults are injected during the application run. The analysis may
aim at categorising the faults (identifying those having some
types of effects) or may end up with a functional model of the
system behavior, that shows how the system evolves when the
faults occur (identification of the error propagation paths).

With the classical approach, each fault to inject requires ad-
ditional hardware implemented in the prototype, and additional
control signals to define the fault activated at a given time during
the experiments. Due to the hardware limitations of the emu-
lator, it is not always possible to include in a single prototype all
the modifications required to inject all the faults. Several instru-
mented descriptions may therefore be necessary, each of them
allowing the designer to inject a subset of the faults and thus
to run a subset of the experiments. The synthesis, placement,
and routing of each description has to be done separately and
the emulator is reconfigured globally (using CTR) at the end of
each subset of experiments [Fig. 2(a)].

The basic idea proposed in this paper is to replace the modi-
fications performed in the VHDL description by modifications
performed directly in the bitstream obtained after synthesis,
placement, and routing of the initial circuit description. The
bitstream modification must be done for each fault to inject, but
only one synthesis, placement and routing has to be done, no
matter the number of faults to inject. Since these design steps
can be very time consuming, avoiding to repeat them may lead
to reduce the time globally spent when running a fault injection
campaign on a hardware emulator.

For each experiment, the bitstream modified for a new fault
configuration has to be downloaded onto the emulator at the in-
jection time, using RTR. This may of course be done by a global
reconfiguration of the device [Fig. 2(b)]. However, in practice,
only a small number of bits has to be changed in a bitstream
to inject a fault and this implicitly corresponds to a local re-
configuration, that can take advantage of partial reconfiguration
capabilities of the device [Fig. 2(c)]. The emulator has to be
reconfigured at least one time per experiment to inject perma-
nent faults, and at least two times per experiment if transient
faults are targeted (one time to inject the fault, and one time to
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Fig. 2. Alternative fault injection flows. (a) Use of VHDL modifications
with CTR or direct injection into the prototype with (b) global or (c) local
reconfiguration.

remove it). The total number of configurations of the emulator
is therefore much higher than in the classical case, but the total
configuration time is optimized in the proposed approach by the
possible use of partial reconfigurations.

B. Handling the System State During Reconfiguration

In the case of global RTR, the system state must be handled to
keep the information computed before each configuration step: a
means must be provided to support inter-configuration commu-
nication [10]. Because each phase occupies all reconfigurable
resources, interfaces between configurations are fixed and all
circuit modules can be designed under the same general con-
text. This approach was used to develop a hardware accelerator
for image processing [12]. Another application implementing
global RTR, the RTR artificial neural network (RRANN), is de-
scribed in [13], where a host PC stores all configuration infor-
mation for the FPGAs, monitors the progress of each stage of
execution and supplies the appropriate configuration data to the
FPGA board. In the case of fault injection, the internal state of
the circuit under analysis remains unchanged during the partial
reconfiguration and thus does not require external management.

When partial reconfiguration is applied, the parts of the cir-
cuit that are not reconfigured may stay in operation while the
other parts are reconfigured. In the case of fault injection, the
application must in fact be temporarily halted in order to inject
the fault at the desired cycle in the execution.

IV. DEVELOPED FAULT INJECTION TECHNIQUE

This section details the approaches illustrated in Fig. 2(b) and

(c). Faults are injected at “low-level,” directly in the bitstream,

so that the circuit must not be modified or re-synthesised.

The study has been carried out using FPGAs from Xilinx,

and especially Virtex FPGAs with partial reconfiguration capa-

bilities. The bitstream modifications were automated using the

JBits toolset [14], that is described in Section IV-A.

Different fault models have been considered, targeting both

combinatorial parts and memory elements. For the combinato-

rial parts, the classical stuck-at model has been chosen and faults

are injected on the inputs or outputs of the configurable logic

blocks (CLBs) by modifying the contents of the look-up tables

(LUTs). The approach used for stuck-ats can also be extended to

signal inversions, modeling some types of SEUs in the combina-

torial logic. RTR-based reconfiguration to inject these types of

faults is detailed in Section IV-B. Another application of RTR is

then detailed in Section IV-C. Here, asynchronous bit-flips are

injected directly in the functional flip-flops used in the circuit

under analysis.

A. JBits API

The JBits application programming interface (API) is a Java-

based tool set that allows designers to write information directly

to a Xilinx FPGA to carry out whatever customer logic oper-

ations were designed for it [14] [15]. Using JBits, the FPGA

bitstream can be modified quickly and easily, allowing for fast

reconfiguration of the FPGA.

In Virtex FPGAs, JBits can partially or fully reconfigure the

internal logic of the hardware device. The Virtex architecture al-

lows this reconfiguration to be as extensive as necessary and still

maintain timing information [14] [15]. JBits also makes possible

to integrate the operations of the FPGA with other system com-

ponents such as an embedded processor, a graphics coprocessor,

or any digital peripheral device.

B. Fault Injection in Combinatorial Parts

To implement the approach in Fig. 2(b), the initial bitstream

can be read from a file, and the modified bitstream can be written

to a file that is then downloaded onto the board. The approach

in Fig. 2(c) is more interactive and directly sends new config-

uration data to the FPGA. Similarly, the bitstream can be read

directly back from the device.

As far as combinatorial parts are concerned, two types of

faults have been considered: stuck-at faults and signal inver-

sions. The faults can only be injected on signals connecting

CLBs, i.e., on LUT inputs or outputs. This is not a limitation

in practice since injecting faults on other types of signals would

be meaningless, due to the very different implementation in the

final circuit and in the prototype. From a functional point of

view, meaningful injection targets classically correspond to pri-

mary inputs of the circuit or to flip-flop outputs, connected to

the primary inputs of combinatorial blocks. In some cases, the

injection can be useful also on a signal connecting two different

blocks in the circuit description hierarchy. In all cases, these sig-

nals are mapped to LUT inputs if the synthesis maintains the de-

scription hierarchy. Of course, the injection of a fault on an in-

termediate signal that disappears during the synthesis optimiza-

tions is meaningless, since this signal will not exist in the actual

circuit.

When modifying the FPGA configuration, each injection

target is determined by a set of low-level parameters: the CLB

row and column numbers, and the input of the CLB (F1, G4,

etc.). In order to simplify the specification of the injection
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(a)

(b)

Fig. 3. Injection of a stuck-at-0 fault on the F4 input of a CLB: (a) original
LUT state and (b) modified LUT.

campaign, the program developed for our experiments starts

from a list of targets identified by the name of the signals in

the initial high-level description. If the targets are meaningful,

these names appear in the netlist after synthesis. Then, using

the reports generated during the placement and routing phases,

it is possible to identify the position of the targets in the FPGA

array. Finding the correspondences between the high-level

signal names and the low-level parameters defining the assigned

LUT inputs is therefore conceptually very easy. The process

can however be tricky, depending on the exact information

given by the tools used for synthesis, placement and routing.

Such a process was automated for the version of the tools used

during the experiments; it would have to be revisited for new

versions or other tools.

Once the targets are localized in the FPGA array, the faults are

injected by modifying the contents of the LUT(s). Let us con-

sider the example shown in Fig. 3. In this example, a stuck-at-0

fault is injected on the F4 input of the CLB. It can easily be seen

that in this case, the output value for F4F3F2F1 0000 must be

copied to the output value for F4F3F2F1 1000, the value for

0001 to 1001, etc. The bitstream used for the experiment is mod-

ified accordingly.

Similar modifications of the contents of a LUT can be defined

for each kind of fault (stuck-at-0, stuck-at-1 or signal inversion)

and for each input of the CLB. Similar modifications also allow

to inject the fault on the output of a LUT, that is more efficient

in the case of a signal with high fanout.

C. SEU Fault Injection in CLB Flip-flops

The SEU fault model is currently receiving an increasing at-

tention and is often associated with asynchronous bit-flips of the

memory cells in a circuit. Three main differences can be pointed

out compared with the previous case.

• The modification of the functional data must be performed

directly in a flip-flop (FF) element.

• The modification must occur asynchronously with respect

to the system clock (that could be a gated clock in some

cases).

• The value to inject in the FF depends on the correct func-

tional value at injection time since the flip-flop must com-

mute.

For these reasons, it is not possible to inject SEUs in memory

elements by modifying the function (or LUT configuration) of

the circuit.

In fact, the only way of changing asynchronously the state of

a FF in a Virtex FPGA is to apply a set or reset to it, depending

on whether it should be changed to 1 or 0. However, in the con-

text of run-time reconfiguration, it is only possible to pulse the

global set/reset (GSR) line of the device, that sets or resets si-

multaneously all the FFs in the device. The actual effect of the

GSR line is determined for each flip-flop by the position of a

switch.

The reconfiguration process to inject a SEU is therefore much

more complex than the process previously presented. In order to

change the state of only one FF, the states of all FFs and set/reset

switches must be read back first at the injection time. If there are

FFs where the switch is not in a position coherent with the FF

contents (e.g., the switch is in “set” position but the FF state is

“0”), the switch must be changed before pulsing the GSR line in

order to leave the FF in its initial state. Conversely, in the case

of the FF where the SEU should be injected, the switch must

be set in the opposite position. The basic steps of the algorithm

used for asynchronous SEU injection in FFs are thus as follows:

• Initialization: reading of the bitstream and full configura-

tion of the device;

• read the states of set/reset switches.

Then, for each injection experiment:

• start execution of the application;

• stop the execution at injection cycle;

• read the states of FFs;

• change the set/reset switches where needed (depending on

FF states);

• pulse the GSR line.

• re-change the switches modified before the GSR pulse;

• continue the execution of the application until either the

end of the experiment or the next injection.

Partial reconfiguration as well as partial read-back of the con-

figuration and functional data are controlled through the JBits

API.

V. RESULTS

Preliminary experiments were realized on a XS40 board [16]

using JBits 1.1. This board contains an XC4010XL FPGA de-

vice [17] that is not able to implement partial reconfiguration.

Global reconfiguration was therefore used in this case. Other ex-

periments have been carried out on a XSV development board
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based on a Virtex XCV50 device and supporting partial recon-

figuration [18]. In the two cases, the application that has been

developed requires only a fraction of a second to inject a fault

at low level, directly in the bitstream. This may be compared

with the minutes or hours that could be required for a single

synthesis, placement, and routing process. The feasibility of

RTR-based fault injection has been demonstrated for the var-

ious fault models discussed in Section IV, using simple design

examples, both combinatorial and sequential.

Evaluations made on the Virtex devices have also shown that

configuration time savings of several orders of magnitude can

be expected when using partial reconfiguration, with respect

to global reconfiguration [19]. As an example, injecting a

stuck-at implies to modify eight frames that require 0.424 ms

on a XCV400 device, instead of 169.738 ms for a complete

reconfiguration. The same injection in a XCV2000E device

would require 0.816 ms to be compared with 677.309 ms for a

complete reconfiguration.

In order to make efficient fault injection campaigns using the

proposed approach, it is, however, not sufficient to use partial

reconfiguration. The speed of the reconfiguration and readback

has also to be carefully optimized. Ideally, this would require

a device architecture better suited to this application than the

Virtex architecture. As an example, one could imagine to group

all the configuration bits of a LUT in a single frame. In that case,

only one frame should be reconfigured to inject a stuck-at fault,

instead of eight in a Virtex device. Also, it has been shown that

the Virtex architecture imposes strong constraints on the injec-

tion of asynchronous bit-flips. Here, again, a different architec-

ture may noticeably shorten the injection.

Apart from the device architecture, other characteristics must

be optimized at the system level, including:

• the place and route algorithms, that may group the CLBs

used by a given design so that a minimum number of

frames has to be used during the configuration of the de-

vice;

• the configuration bandwidth on the development board

(high frequency configuration clock and/or configuration

data sent in parallel mode onto the FPGA);

• the bandwidth of the interface between the development

board and the host computer.

Developing such an efficient environment for RTR-based

fault injection is a subject for further work.

VI. CONCLUSION

The experiments reported in this paper demonstrate the fea-

sibility of a new fault injection approach, based on RTR in a

FPGA-based circuit prototype. The modifications required in

the bitstream to inject the faults can be automated for various

fault models, including permanent and transient stuck-at and

SEU faults.

Using partial reconfiguration capabilities available in some

FPGAs, the proposed approach could lead to noticeable time-

savings compared with other fault injection approaches. How-

ever, in order to achieve efficient fault injection campaigns, the

speed of the reconfiguration (and readback) must be maximized

since one or two partial reconfigurations are necessary for each

injection. This requires the development of a prototyping en-

vironment taking into account this constraint that is quite dif-

ferent from the constraints classically considered for other ap-

plications needing only a few reconfigurations.
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