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��������	�The ever increasing size of wind turbines and the move to build them offshore have accelerated 

the need for optimised maintenance strategies in order to reduce operating costs. Predictive maintenance 

requires detailed information on the condition of turbines. Due to the high costs of dedicated condition 

monitoring systems based on mainly vibration measurements, the use of data from the turbine Supervisory 

Control And Data Acquisition (SCADA) system is appealing. This review discusses recent research using 

SCADA data for failure detection and condition monitoring, focussing on approaches which have already 

proved their ability to detect anomalies in data from real turbines. Approaches are categorised as (i) 

trending, (ii) clustering, (iii) normal behaviour modelling, (iv) damage modelling and (v) assessment of 

alarms and expert systems.�Potential for future research on the use of SCADA data for advanced turbine 

condition monitoring is discussed.�

��� �������������

 The global capacity of installed wind power stood at 432 GW at the end of 2015 [1]. The industry 

has long moved on from small clusters of turbines where maintenance access was relatively 

straightforward and the overhead of sending a maintenance team in at regular intervals was not excessive. 

In the case of offshore wind farms, in particular, the cost of maintenance relative to the levelised cost of 

energy (LCOE) is significantly increased compared to onshore. According to [2], the typical cost of 

operation and maintenance (O & M) as a fraction of the LCOE is between 18% and 23% compared to 12% 

for onshore with recent European offshore O & M costs amounting to between 40 and 44 Euros/MWh [3]. 

The restrictions imposed by the offshore environment as well as the increasingly large number of 

machines in a typical wind farm means that maintenance is moving to what in the past would have been 

scheduled or responsive to a regime that is more predictive and proactive. A key element in this move has 

been the more intelligent monitoring of wind turbine (WT) state of health, generally termed condition 

monitoring (CM). 

So�called condition monitoring systems (CMS) have been developed by a number of manufacturers. 

These monitor several key parameters including drive train vibration, oil quality and temperatures in some 

of main subassemblies. Such systems are normally installed as additional ‘add�ons’ to the standard WT 

configuration. The significant costs of CMS – usually more than 11,000 Euros per turbine [4] – has 

deterred operators from installing these systems, although the financial benefit of early fault detection by 

CMS has been proven [5]. However, all large utility scale WTs have a standard Supervisory Control and 
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Data Acquisition (SCADA) system principally used for performance monitoring. Such systems provide a 

wealth of data at normally 10�minute resolution, though the range and type of signals recorded can vary 

widely from one turbine type to another. As CM using SCADA data is a potentially low cost solution 

requiring no additional sensors, a number of approaches using these data for early failure detection have 

been developed in recent years. 

A number of general literature reviews of WT CM have been conducted in the last decade to gather 

together information on new approaches and techniques. A comprehensive collection of CM techniques 

sorted by CM system and fault detection for different subsystems was provided by [6]. An overview of 

CM methodologies and signal processing techniques complemented by a fault tree analysis were given in 

[7]. A systematic literature review in [8] revealed the geographical contribution to this research topic and 

listed different approaches. An extensive review linked monitoring techniques with possible failures [9]. 

Considerations of the advantages, disadvantages, costs, online feasibilities, fault diagnosis abilities and 

deployment statuses of CM methodologies were discussed in [5]. The latest review considering 

complexity, capability, signal�to�noise ratio, sampling frequency and cost of multiple approaches was 

given in [10, 11]. However, to date, there has not yet been a detailed review of the use of SCADA data for 

the CM of WTs. In this paper, the use of SCADA data in this regard is covered including the potential for 

monitoring different subassemblies and the ways in which SCADA data are actually used to predict, 

diagnose and prognose failure. 

In the next section, WT reliability and failure rates of subassemblies are briefly reviewed. The next 

and main part of this paper addresses the use of SCADA data for CM. The final section discusses the 

strengths and weaknesses of the different approaches reviewed and highlights areas for future research. 

���  ��!���������������

Several surveys of WT failures have been conducted in the last two decades to identify failure rates 

and associated downtime for different subassemblies. However, the different taxonomies used by different 

turbine manufacturers, wind farm operators and researchers make comparisons between these surveys 

challenging.  

The evaluation of 15 years of data from the German “250 MW Wind” programme [12] and >95% of 

all the turbines operating between 1997 and 2005 in Sweden [13] gave first insights into the reliability of 

the first onshore WTs. The German turbines had an average availability of about 98%. An average failure 

rate of 0.4 failures per turbine per year resulted in an average downtime of 130 hours per turbine per year 

for the Swedish turbines. A distinctive difference between failure rate and downtime distribution in 
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subassembly groups was identified. The electrical and electronic control systems were identified as the 

most failure�prone, but gearbox and generator failures caused the longest downtime. 

An evaluation of the Windstats newsletter providing statistics for turbines in Denmark and Germany 

for a similar time range revealed differences in failure rates of WTs in the two countries [14]. Higher 

failure rates for the German turbine population were traced back to the different age and the newer (but 

less mature) variable speed and pitch control technology employed in German turbines. The electrical 

system was the most failure�prone subassembly in the German turbine population, whereas the Danish 

population was mostly affected by yaw system and so�called “unclassified” failures. Records of the 

Chamber of Agriculture in Schleswig�Holstein, Germany, confirmed the failure rates for German WTs 

[15]. The different studies up to this time agreed that the gearbox had been the source of failure with the 

longest downtime [16]. An analysis of the first operating years of the UK Round 1 offshore wind farms 

revealed availabilities of only 80.2%. The main causes for this relatively low availability were found to be 

gearbox and generator bearing problems [17]. 

A more recent failure survey was conducted as part of the Reliawind project [18]. In this survey, 

35,000 downtime events from 350 WTs were evaluated. The order of the subsystem failure rates was 

found to be led by the power module assembly followed by rotor module, control system, nacelle and 

drive train in descending order. The three most failure�prone subassemblies were identified as the pitch 

system, frequency converter and the yaw system. The downtime hierarchy was very similar to the failure 

rate order. This finding was in contrast to previous studies, which found that the gearbox was the greatest 

contributor to unscheduled turbine downtime. 

A report from the National Renewable Energy Laboratory (NREL) in the US [19] stated that approx. 

70% of gearbox failures were caused by bearing faults and approx. 26% by gear teeth faults based on a 

database of 289 failure events collected from 20 partners since 2009. 

Carroll ��� ��� [20] compared failure rates in the first five years of 1822 turbines with Doubly�Fed 

Induction Generators (DFIGs) with 400 turbines using a Permanent Magnet Generator (PMG) with a fully 

rated converter. For the PMG turbines, a lower generator failure rate was found to be accompanied by a 

much higher failure rate in the converter. 

The most recent analysis of failure statistics from Carroll ������ [21] looked at data from around 350 

relatively new offshore turbines from one manufacturer recorded over a 5 year period at 5�10 wind farms. 

The failure rates were highest for the pitch/hydraulic subassembly, followed by “other components” and 

the generator, but only those failures were considered where unscheduled maintenance visits were made. 

Analysis of the failure rate by year of operation showed a decrease in the first five years. A comparison 
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with onshore turbines [20] suggested higher failure rates offshore, but not as high as expected given the 

different turbine populations and environmental characteristics. Analysis of average repair times, material 

costs and the number of required technicians indicated that blades, hub and gearbox were the most critical 

subassemblies in this context. 

 �

"�� ����������##����$���������!������	
	������������

This review focuses on CM approaches, which have already been applied using real data from 

operational WTs. Different methods have been developed, which are classified as (i) ‘trending’, (ii) 

‘clustering’, (iii) ‘normal behaviour modelling’ (iv) ‘damage modelling’ and (v) ‘assessment of alarms and 

expert systems’. Class (v) covers how alarm logs and modelling results can be automatically interpreted. 

The usage of SCADA data for purposes besides CM is briefly outlined in (vi) ‘other applications’.  

The parameters typically recorded by SCADA systems of geared�drive turbines are listed in Table 1. 

In general, SCADA records are 10�minute averages of 1 Hz sampled values. However, maximum, 

minimum and standard deviation are often recorded as well. The number of starts and stops and alarm logs 

recorded by the SCADA system can also be seen as part of CM [22]. Vibrations [4, 23], oil pressure level 

and filter statuses [24] could be recorded by a WT SCADA system too, but these are commonly recorded 

separately in a what might be termed a ‘dedicated’ CMS. There is no such thing as a standard set of 

monitoring equipment or measurement nomenclature for the different turbine populations seen today. 

Nevertheless, a general trend has been seen for the installation of more sensors in modern turbines. An 

overview of commercially available SCADA systems is given in [5, 25]. 
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����� Basic SCADA parameters according to [4, 5, 22, 26–32].  

 
Environmental  Electrical characteristics  Part temperatures Control variables 

 

Wind speed Active power output Gearbox bearing Pitch angle 

Wind direction Power factor Gearbox lubricant oil Yaw angle 

Ambient temperature Reactive power Generator winding Rotor shaft speed 

Nacelle temperature Generator voltages Generator bearing Generator speed 

 Generator phase current Main bearing Fan speed / status 

 Voltage frequency Rotor shaft Cooling pump status 

  Generator shaft Number of yaw movements 

  Generator slip ring Set pitch angle / deviation 

  Inverter phase Number of starts / stops 

  Converter cooling water Operational status code 

  Transformer phase  

  Hub controller  

  Top controller  

  Converter controller  

  Grid busbar  

���������	
���

Although WT SCADA systems have not been developed specifically for the purposes of CM, using 

SCADA data to monitor the health of turbines has been investigated as soon as optimising maintenance 

became a high priority in the wind industry. The main challenge lies in how to interpret trends given the 

variability in the operational conditions of modern WTs. A change in the value of a SCADA parameter is 

accordingly not necessarily evidence for a fault. One of simplest approaches is to collect data over a long 

period and monitor ratios of SCADA parameters and how they change over time. Past studies have 

involved trying to find early signs of degradation by using such trending approaches.  

Research in the Condition Monitoring for Offshore Wind Farms (CONMOW) project carried out 

from 2002 to 2007 included SCADA CM techniques [33]. Simple trending methods e.g. using regression 

lines in scatter diagrams of temperature against power or three�dimensional visualisations including the 

ambient temperature were suggested. Manual interpretation of filtered SCADA data comparisons was seen 

as beneficial for detecting anomalies. Due to the lack of faults during the measurement campaign 

conducted on five turbines, detailed algorithms were not developed. 

Kim ������ [34] investigated a Principal Component Analysis (PCA) trending approach with an auto�

associative neural network. The structure of this network consisted of one input layer, a mapping layer, a 
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bottleneck layer, a de�mapping layer and an output layer. After training with data from normal operation, 

the network produced a set of principal components, which were evaluated using the Q�statistic (a measure 

of uncaptured variation) and the Hotelling T� statistic (a measure of the model variation). Testing the 

approach using a known fault case from the 600kW Control Advanced Research Turbine 2 located at 

NREL proved the general ability to detect a failure thought no advance signs of the fault were detected. 

Testing using another control data set where no known faults occurred showed that false detections could 

occur. 

Feng ��� ��� [24, 35] showed that if the gearbox efficiency decreases, the gearbox temperature rise 

(compared to the ambient temperature) will increase. Example gearbox oil temperature trends from a case 

study of a 2 MW variable speed turbine are shown grouped by power bin in Fig. 1. The deterioration of the 

gearbox is already visible 6 months before a catastrophic planetary gear failure. 

 

������������	
��
�������������������	���
����	�����������������
���������������
�[24]���

������������
�[24]���
�������������������������
��
���
��� ���������!
����"����

�

 Yang ������ [4] proposed a trending method using bin averaging by wind speed, generator speed or 

output power. Two case studies with real turbines were analysed: a three�bladed turbine with a generator 

bearing failure; and a two�bladed turbine with a blade failure as shown in Fig. 2 (a) and (b), respectively. 

A CM quantifying criterion (denoted ‘c’) based on a correlation model of historic and present data was 

proposed as a way of detecting levels of damage, though the value of the criterion has a different scale 

depending on the damage mode and dependent parameter. 
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   �       	 
���������������
��	�����������������#�������
�����������
��	����������������������	�����������
����
������#�������
����

�������
���
�$����
�������������������
��������������%�����
���������#��#��������&�������������������������'#(������
���[4]��

������������
�[4]���
��������)���*+��������������
����
�,���������

a Generator bearing fault detection in filtered bearing temperature 

b Blade deterioration detection in filtered torque (calculated from generator power and rotor speed). 

 

Astolfi ������ [36] investigated trending of temperatures against the rated power over different time 

scales. Comparisons of results for a nine turbine onshore wind farm of 2 MW turbines were made. 

Historical and real time analyses helped the operator to detect problems. 

Wilkinson ������ [31] investigated different methods of using SCADA data for CM. One approach 

included a simple comparison of temperature trends of different turbines in a particular wind farm. The 

authors ultimately dismissed this approach due to inaccuracy resulting from differing environmental 

conditions or operational modes in a wind farm. 

Trending of SCADA parameters, especially drive train temperatures, can reveal the development of 

a failure using historical data. However, different studies have shown that changes in temperature are 

highly case�specific and require manual interpretation. Using a numerical description of the trend instead 

of visual interpretation of scatter diagrams did not prove to be beneficial. If trending is to be used for 

online monitoring, difficulties in the interpretation of changes and the setting of thresholds will most likely 

result in high uncertainties and possibly false alarms. 

�����������
���

Visual interpretation of trends can be problematic if a large fleet of wind turbines operating under 

very different conditions is to be monitored cost�effectively. A next step in the evolution of CM with 

SCADA data was the application of clustering algorithms to automate the classification of ‘normal’ and 

‘faulty’ observations. 
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Kusiak and Zhang [37, 38] analysed WT vibrations using SCADA records including drive train and 

tower acceleration. Vibrations were grouped by a modified k�means clustering algorithm conditioned on 

the wind speed. Abnormal vibrations were detected by measuring the Euclidean distance between data and 

cluster centroids built in an initial training period. Limitations in determining the boundaries of clusters 

and the missing description of temporal changes were acknowledged and subsequently a normal behaviour 

modelling approach was pursued. 

Catmull [28] and Kim ��� ��� [34] were the first to apply an artificial neural network (ANN) self�

organising map approach to SCADA data. The method builds clusters by rearranging neurons on a regular 

grid during the training process in a way that neighbouring neurons denote similar input data. A unified 

distance matrix can be used to visualise the clustering. In combination with projections of parameters, this 

enables interpretation of the clustering. Fig. 3 shows a general example of a clustering with self�organizing 

maps. Catmull used only normal operational data for training and proposed the calculation of the distance 

between new input data and the best matching neuron, called quantisation error, for abnormality detection. 

Example applications of the method using data from WTs with a sensor error, reactive power loss and an 

unidentified generator failure showed a general ability to detect failures. Kim ������ used a training data set, 

which included failures. They were then able to assign subsequent WT failures to corresponding clusters. 

Wilkinson ��� ��� [31] pursued Catmull’s approach and presented some examples of detecting gearbox 

failures comparing the quantisation error for multiple turbines.  

 

  �    	� � � � # 
��������������������-
�����.����������������
�[28]���
�������������#�����
���#�����������������������������
�����������
����

������#
����������������������������
��
��[28]���
���������������,!�/����
����

a Unified distance matrix. Higher values indicate a greater Euclidean distance between the nodes. 

b Power output component plane . 

c Wind speed component plane. 

�
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From the evidence reviewed, the clustering of healthy and faulty observations has not shown a clear 

advantage in terms of CM compared to trending algorithms, as the interpretation of results is again 

difficult. In addition, using fault data for training is not necessarily feasible in an industrial setting. 

�����������������
������	���
���������

NBM uses the idea of detecting anomalies from normal operation as used in the previous methods, 

but tries to empirically model the measured parameter based on a training phase. Fig. 4 illustrates the idea 

of model�based monitoring. The residual of measured minus modelled signal acts as a clear indicator for a 

possible fault: it is assumed to be approx. 0 with a given tolerance for normal conditions and not equal to 0 

for changed conditions or failures. Two main concepts for NBM can be differentiated: Full Signal 

ReConstruction (FSRC), where only those signals, other than the target are used to predict the target, and 

AutoRegressive with eXogenous input modelling (ARX), where historic values of the target are also used.  

 

�����	��&
���-	�����
���
���������������������(�)��
��	
���������
#���	�(�)���������
���	�	��������
�������
(�)�����
�(�)��

�����#�������������������������
��
������������(�)��!0��#������������
�[39]��

�

��������
�������	��������
�����	���1 The simplest form NBM is based on linear or polynomial models. 

Garlick ������ [39] used a linear ARX model to detect generator bearing failures in the bearing temperature. 

A cross�correlation analysis was conducted, i.e. the sample cross�correlation was computed as an estimate 

of the covariance between the target signal and each possible input. The correlation analysis determined 

that the generator winding temperature was the best exogenous input. Different numbers of polynomial 

parameters were investigated and evaluated with the coefficient of determination and Akaike’s 

Information Criterion. 3 years of SCADA data for 12 turbines were evaluated with a three�parameter 

model trained with one day of data. Some of the detected anomalies were found to correlate with fault log 

reports. 

Cross and Ma [23] investigated different NBM approaches using SCADA data from 26 turbines and 

16 months of operation. Gearbox and generator winding temperatures were modelled using wind speed 

and active power in an ARX model. The coefficients of determination were only moderate for normal 

�(�) Sensor 

�		(�) 

Process 

Model 

�(�) 


�(�) 

�(�) 


(�) 
+ 

− 
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operation with 0.710 and 0.833 for the gearbox and winding temperature, respectively. No detailed study 

on linear models was conducted, as other approaches were considered as more suitable. 

Wilkinson ��� ��� [31] developed higher order polynomial FSRC models for NBM of drive train 

temperatures with different SCADA inputs based on correlation analysis and the physics of the system. 

Data from the same turbine, different turbines at the same site as well as different turbines at different sites 

were used. The developed algorithms were blind tested on 472 turbine years of data from five different 

wind farms. Examples of successful detection of gearbox and main bearing failures by modelling of a 

bearing or gearbox temperature with rotor speed, power output and the nacelle temperature were presented. 

Overall, 24 of 36 component failures were detected with only three false alarms with accuracy highly 

dependent on the wind farm. The algorithm resulted in detection of failures from one month to two years 

in advance.  

Schlechtingen and Santos [40] developed a linear model based on up to 14 months of SCADA data 

from ten 2 MW offshore WTs. The linear FSRC model for the generator bearing temperature built with 

generator power output, nacelle temperature and shaft speed as inputs predicted the target temperature 

with an accuracy of �4�  after filtering. A catastrophic generator bearing failure of one turbine was 

successfully detected as shown in Fig. 5. The use of daily averages of the residual was demonstrated to be 

plausible for the purposes of fault detection. The first alarm limit violation was 25 days prior to the 

damage.  

 

 

   �       	 
�����
����������
��	������������
��	������������������
����������
�������#������
���#���������[40]��2���������������
��

���������������
������������������)3���
�4+��������������������������
���������������0�����������������
�[40]��

�
��������)����+�������������
����
�,���������

a 10 minute prediction error 

b Daily averaged prediction error 

 

������� ��
!
"
�������������#��$�� ���%�ANNs are a way of determining non�linear relationships between 

observations using training data. The basic architecture for modelling contains one input layer, a variable 
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number of hidden layers and one output layer. Each layer consists of different numbers of neurons, which 

are fed by all inputs or other neuron outputs from the previous layer. The basic learning of the network 

involves the changing of input weights. Each neuron consists of a nonlinear transfer function to combine 

the inputs and an activation function deciding if output is generated. Common networks are feed�forward, 

i.e. only with links from lower to higher layers, in contrast to recurrent architectures [27, 41]. �

Garcia ������ [26] developed an intelligent system for predictive maintenance called SIMAP based on 

ARX NBM with ANNs. Table 2 shows the inputs used in this work for modelling of the gearbox bearing 

temperature, the cooling oil temperature and the difference in the cooling temperature before and after the 

gearbox determined by cross�correlation and impulse response analyses. A confidence level of 95% was 

proposed resulting in lower and upper bands for the detection of anomalies by comparison with measured 

values. Garcia ������ did not provide details of the ANN configuration and training algorithm or any results 

of a detailed case study. 

 


������� Inputs for ANN based modelling in SIMAP [26] Reprinted from [26],Copyright (2006) with permission from Elsevier. 

 
Model Type Inputs 

 

Gearbox bearing temperature model Multilayer perceptron Gearbox bearing temperature (��� 1, ��� 2) 

  Generated power (��� 3) 

  Nacelle temperature (�) 

  Cooler fan slow run (��� 2) 

  Cooler fan fast run (��� 2) 

Gearbox thermal difference model Multilayer perceptron Gearbox thermal difference (��� 1) 

  Generated power (��� 2) 

  Nacelle temperature (�) 

  Cooler fan slow run (��� 2) 

  Cooler fan fast run (��� 2) 

Cooling oil temperature model Multilayer perceptron Cooling oil temperature (��� 1) 

  Generated power (��� 2) 

  Nacelle temperature (�) 

  Cooler fan slow run (��� 2) 

  Cooler fan fast run (��� 2) 

 

Zaher ��� ��� [27] investigated ANN based gearbox bearing and cooling oil temperature modelling 

and demonstrated its ability using 2 years of SCADA data for 26 Bonus 0.6 MW stall�regulated turbines. 

An ANN with 3 neurons in the hidden layer was presented as the best architecture. The inputs for the two 
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investigated FSRC models were based on cross�correlation and included values from previous time�steps. 

Roughly 13,000 training data points were manually chosen to represent normal behaviour. Zaher ��� ��� 

were able to detect a gearbox fault in one turbine with the trained model. Overheating problems were 

detected almost 6 months before the failure of one turbine. The interpretation of the highly fluctuating 

residual with several spikes was not conclusively explained, as no simple threshold would result in the 

depicted diagnosis. 

Brandão ������ [42, 43] applied a FSRC ANN approach to gearbox and generator fault detection in a 

Portuguese wind farm with 13 turbines with 2MW rated power and an US farm consisting of 69 turbines 

with 1.5 MW rated power. The inputs were chosen based on cross�correlation and included appropriate 

delays. It was stated that at least 6 months’ training data were needed, but details of settings were not 

provided. A fixed value of the mean absolute error was used as an alarm level, although this value was 

specific and not valid after maintenance actions.  

Schlechtingen and Santos [40] compared a linear model (as described earlier) with two different 

ANN model configurations in a study of up to 14 months’ SCADA data from ten 2 MW offshore WTs. 

The FSRC model used the generator stator temperature, nacelle temperature, power output and generator 

speed to predict the generator bearing temperature. The second model, an ARX approach, used additional 

historic values of the generator bearing temperature. A feed�forward network with one hidden layer with 5 

or 6 neurons for FSRC and ARX modelling, respectively, was trained with three months of data. Input pre�

processing was applied including: checking against the means of data ranges, checking for large changes 

in observations, normalisation of data, exclusion of records with missing data and lag removal based on 

cross�correlation. The accuracy of the FSRC model was comparable with the linear approach, whereas the 

ARX model showed errors of only �2� most of the time. Using daily average prediction errors was 

demonstrated to be beneficial. All models were able to detect bearing damage prior to a catastrophic 

failure. The alarm was triggered earlier in the case of the ANN models compared to the linear model. A 

further disadvantage of the linear model was seen in a strong seasonality of the prediction error. Two other 

investigated bearing damage events were detected by the ANNs about 185 days ahead with up to 5 days 

difference between FSRC and ARX models. The FSRC model allowed easier identification of the bearing 

failures due to larger shifts in the mean. Another advantage of the FSRC model was seen in the possible 

identification of sensor problems due to the monitoring of absolute changes in the reconstructed signal. 

Higher false alarm rates were expected for the FSRC model, however.  

Kusiak and Verma [44] studied bearing fault detection using four months’ SCADA data in 10 s 

resolution from 24 1.5 MW turbines. The input parameters for the FSRC model were selected firstly using 
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physical understanding of the system and next by one of three data mining algorithms: wrapper with 

genetic search, wrapper with best first search and boosting tree algorithm. The differences between the 

five tested ANN configurations were in the number of neurons (5�25) and activation functions (tanh, 

exponential, identity, logistics). The best configuration consisted of 18 neurons, logistic hidden activation 

and identity output activation. NBM was successfully demonstrated and abnormal bearing behaviour 

during one week of data for one turbine was analysed.  

Kusiak and Zhang [37, 38] modelled WT drive train and tower accelerations from SCADA data at 

10 s resolution. Two fault code situations were studied using a few days of data from six variable speed 

1.5 MW turbines. The models used for fault detection were ANN, ANN ensemble, boosting regression 

tree, support vector machine, random forest with regression, standard classification and regression tree and 

k�nearest�neighbour ANN. Modelling used several time�steps of wind speed, ‘wind deviation’ (assumed to 

stand for yaw error), blade pitch angle, generator torque and previous time�steps of the target variable as 

inputs using an ARX approach. Details of the algorithm settings were not provided, but results under 

normal conditions showed that the ANN and the ANN ensemble performed best for modelling drive train 

and tower acceleration, respectively. In a second approach, the accelerations were successfully modelled 

with inputs from two different turbines (here called virtual sensor concept). Detection of two anomalies in 

the data set was demonstrated. 

Z.�Y. Zhang ������[45] applied ARX ANN modelling to the main shaft rear bearing temperature in 

direct�drive turbines. Based on approx. one year of data from two 3 MW turbines in a 17 WT farm, a 

failure in one turbine was detected three months ahead with a model using output power, nacelle 

temperature and turbine speed as exogenous inputs. The anomaly threshold was set to 1.5°C for the 

residual and was validated with normal operation from a second turbine. 

Li ��� ��� [46] built a monitoring system utilising an ANN for modelling component temperatures, 

power output and rotor speed based on data from 34 1.5 MW turbines. Temperatures were modelled in an 

ARX approach using current wind speed, ambient temperature and the output power as exogenous inputs. 

The authors stated that a specific model needs to be tuned to each individual turbine and is influenced by 

seasonal variations of wind speed and ambient temperature. A mean absolute error for normal conditions 

of 0.67– 0.91°C was stated. Failure detection using a ‘health degree’ measure utilised penalty factors for 

residuals in the outer regions of a probability distribution. Sun ��� ��� [32] investigated a revised system 

with additional models trained using either samples from a time period one year before or measurements 

on other turbines. Although the traditional models trained with up�to�date data of the same turbine perform 

best, the other models were beneficial in anomaly detection, where their prediction errors were weighted 
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based on the accuracy under normal conditions. Two case studies highlighted the advantages of the 

anomaly detection system compared to simple residual thresholds or single�model based assessment. A 

further 14 fault cases were identified with 93.25% detection accuracy. 

Cross and Ma’s [23] second approach to NBM used ANN. The gearbox bearing temperature, 

generator winding temperature and active power output were predicted in an ARX approach using wind 

speed as an exogenous variable. Ten neurons with a sigmoidal transfer function were applied in the hidden 

layer. NBM with ANN resulted in high coefficients of determination significantly outperforming two other 

investigated approaches, namely linear and state dependent parameter modelling. In a multivariate setting 

with the active power as a second exogenous input, the state dependent parameter modelling was more 

accurate, however. 

Bangalore and Tjernberg [47] applied an ANN for NBM of gearbox bearing temperatures in an ARX 

configuration. The selection of the training data was automated by using filtering and selection [48]. Self�

evolution by automatically updating the ANN after maintenance actions was suggested [49]. Anomalies 

were detected by considering residual and target distributions from the training period in a Mahalanobis 

distance. Five ANNs were built to model temperatures of five bearings in a common gearbox based on 

data from an onshore 2 MW turbine. All ANNs used power, gearbox oil temperature, nacelle temperature 

and the rotational speed as inputs as well as up to two additional temperatures of the other investigated 

bearings. The Mahalanobis distance was averaged over three days and compared with a threshold defined 

by training results. A recorded gearbox failure due to spalling in one bearing was successfully detected by 

the approach one week before the vibration�based CM system identified the failure. Comparison with root 

mean square errors emphasised the advantage of the Mahalanobis distance in detecting anomalies earlier.  

 

�������&�''��������%�A fuzzy inference system evaluates inputs with if�then rules based on fuzzy logic, i.e. 

degrees of truth instead of Boolean logic (true/false). Membership functions define how inputs are mapped 

to a fuzzy value. If�then rules are built of two parts: the ‘if’ – the ‘antecedent’ with the evaluation of the 

input membership(s) and the ‘then’ – the ‘consequence’ applying the rule and returning a fuzzy output or 

an output as a function of the inputs (Sugeno fuzzy model) [50]. 

Schlechtingen ������ [30] proposed an Adaptive Neuro�Fuzzy Inference System (ANFIS) for NBM. 

ANFIS can be described as network�based learning of membership functions of fuzzy inference systems. 

Three years of SCADA data from 18 onshore 2 MW turbines were used as the basis of this research. Two 

rules with generalised normal distribution membership functions were applied for each input. Depending 

on the target variable and its physical properties, reconstruction with signals of a different sensor type or 
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of the same type (cross prediction, e.g. temperature of another phase of the generator) were chosen. The 

resulting 45 models are visualised in Fig. 6. Hybrid gradient descent and least squares estimation learning 

was used for training. A comparison with ANN modelling similar to the approach described above by the 

same authors [40] showed that the prediction accuracy in terms of the standard deviation of the error was 

comparable. ANFIS required less time for training, however. For failure diagnosis, the prediction errors 

were averaged to daily values and compared with a probability limit of 0.01%. An alarm was raised when 

at least three daily values violated the threshold within a week. Successful detection of a hydraulic oil 

leakage, gearbox oil temperature increases, converter fan malfunctions, an anemometer offset and a 

controller malfunction were demonstrated [51]. 

 

 

�������5�..��
�������������������
���������
�[30]��������������
�[30]���
��������)���*+�������������
����
�,���������

�

����(�� )����� �����	����
��%�Wang and Infield [52] proposed a non�parametric, non�linear state 

estimation technique (NSET) for NBM using SCADA data. This approach was based on an estimation of 
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the target value by using a state memory matrix of inputs. The NSET algorithm uses a product of the 

memory matrix and a weighting vector to estimate each new operational state. The weighting vector was 

determined using a least squares approach for minimising the residuals of estimated and measured output 

utilising a Euclidean distance operator. The input variables considered for building the state memory 

matrix were chosen using physical understanding of the system and correlation analysis. A data selection 

algorithm was applied to reduce the number of states for each variable. Welchs’s t�test, as a distance 

measure for samples with different variances, or a one�sided hypothesis test was used for anomaly 

detection. 

In a case study, Wang and Infield investigated gearbox failures using 3 month of SCADA data from 

10 turbines. Data from different turbines were used for training (7 turbines), validation (1 turbine) and 

testing data (2 turbines with failures). The target gearbox cooling oil temperature was modelled with the 

gearbox bearing temperature, the power output, the nacelle temperature and the oil temperature itself. 

Using this approach, alarms were reported almost a month before the final gearbox failures. A comparison 

with a four�input four�output ANN approach similar to [26, 27] demonstrated better performance for the 

NSET. Guo [53] investigated NSET to model a generator bearing temperature, but did not actually apply 

the approach to failure detection. 

Butler ��� ��� [54] presented modelling based on sparse Bayesian learning of a configuration 

equivalent to ARX to predict the main bearing temperature. The model was defined as a weighted sum of 

radial basis functions. A threshold based on the residual distribution was used to detect fault conditions. 

The authors presented an estimation of remaining useful life with Particle Filtering (or Sequential Monte 

Carlo) methods. 

Cross and Ma [23] applied, as a third approach, a quasi�linear State Dependent Parameter (SDP) 

model for NBM. The coefficients of determination were high for normal operations, i.e. 0.983 and 0.997 

for the gearbox temperature and generator winding temperature, respectively. A three�dimensional surface 

built using the prediction model acted as an adaptive threshold for failure detection with fuzzy rules. 

����*��+
�"���
��% Multiple studies have proven that NBM can be used to detect failures. Although 

the concept of evaluating a residual of measured minus modelled signal provides a failure indicator which 

is easy to interpret, the dependency on training data and manually set thresholds can result in undetected 

changes or frequent false alarms. The usage of a confidence factor based on training duration and accuracy 

as suggested in [31] might help to improve anomaly detection and assessment. Different NBM concepts as 

ARX and FSRC, different techniques based on linear models, ANN, ANFIS etc. and different anomaly 

detections as simple thresholds, Mahalanobis distance or health degree approaches have been tested, but 
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sufficiently comprehensive comparisons are needed to evaluate which solution is best. Additionally, there 

is a need for a universal strategy to select inputs for NBM.  

��(��+��������	���
���

The NBM approaches described above tend to be ‘black�box’ based with little or no insight into the 

physical processes which drive failure. Instead of comparing measured signals with empirical models of 

normal behaviour, interpreting measured signals using physical models can potentially better represent 

damage development and give more accurate results.  

Gray and Watson [55] presented a Physics of Failure approach for damage calculation and failure 

probability estimation, i.e. developing a damage model based on a physical understanding of the particular 

failure mode of interest. For failure modes, which manifest themselves through accumulated damage, such 

as fatigue, the probability of an imminent breakdown can be estimated. The approach was applied in a 

field study using two years of SCADA data from a wind farm consisting of 160 fixed�speed 1 MW 

turbines in order to study gearbox failures. A Lundgren�Palmgren damage model for gearbox bearings was 

proposed and linear damage accumulation assumed. Constants were calibrated by comparison of the 

assumed design lifetime and the actual lifetime of the failed bearings. An assessment of the resulting 

damage in the full turbine distribution for the wind farm revealed that the failed turbines show higher 

damage values than 75% of the population, see Fig. 7. The widely distributed values showed that it would 

be difficult to accurately predict which turbines were about to fail, but nonetheless could be used to help 

prioritise maintenance actions within a large fleet of turbines. The approach was also applied to yaw 

failures for the same wind farm [29]. 
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Breteler ������ [56] generated a general framework for a Physics of Failure approach as illustrated in 

Fig. 8. An additional load generator module was proposed to consider external factors. A gearbox failure 

in a helical gear due to bending fatigue of a gear tooth was investigated in a case study. Laser 

measurements of the misalignments were used to calculate loads using a finite element method calculation. 

Number of cycles and forces were calculated from averaged ten minute SCADA power output and 
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generator speed measurements. The resulting remaining lifetime showed large differences not only 

between reference state and failure, but also between three different turbines.  

Qiu ��� ��� [57, 58] built a theoretical model for a turbine with gearbox and a DFIG based on 

thermodynamic principles and combined it with temperature trending approaches. Steady�state rotor 

aerodynamics was combined with simplified rigid drivetrain dynamics and an electromagnetic torque 

formula. In a case study of a 1.5 MW turbine, a gearbox gear teeth failure, a generator ventilation fault and 

generator winding unbalance were examined. SCADA data trends were used to validate the simulated 

degradation as shown in Fig. 9. Diagnostic rules were determined for the investigated faults based on the 

power transmission efficiency and generator winding or lubricant temperature gradients.  

Borchersen and Kinnaert [59] developed a mathematical model for three generator coil temperatures. 

The model for the switching generator cooling and heating system was built without knowledge of the 

actual system. Parameters were found by applying an extended Kalman filter. The anomaly detection 

utilised residuals of model parameters for the different coils with a cumulative sum algorithm. In a case 

study with 3 years of SCADA data from 43 offshore turbines, 16 out of 18 cooling faults were 

successfully detected with only one false alarm.  

Comparing measured signals with physical turbine or damage models has been successfully applied 

to fault detection, although challenges to get sufficient detection accuracy remain. Due to a lack of studies 

with sufficiently large numbers of failures, different failure modes or different turbines, the potential for 

using damage modelling in CM is not yet fully established. 
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a Ventilation fault. 

b Voltage unbalance. 

 

��*�� �����������!����������	��,�������������

Different systems have been proposed in order to better interpret outputs from SCADA control 

alarms or NBM results.  

��(����-������"�	�����"���
��%�Qiu ������ [60] developed two approaches to reduce SCADA alarms based 

on up to two years of data from two different wind farms with more than 400 turbines in total and two 

different manufacturers. The different types of alarms were classified as general, system operation, 

environmental and communication/connection/software alarms. The average alarm rate was about 10�20 

per ten�minute interval, but high maximum rates of up to 1500 alarms per ten minutes occurred. Remotely 

resetting was possible for only about 24% of the alarms (considering only one turbine type). An alarm 

time�sequence analysis was used to identifying cases where one alarm triggered another. In a second 

approach, probabilities were analysed using Bayes’ theorem and probabilistic patterns were compared 

using a Venn diagram. An example probability analysis is given in Fig. 10. Although the time�sequence 

analysis was found to be useful when few data were available, root causes were better identified with the 

probability based analysis.��
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Chen ������ [61] utilised a binary ANN to map from alarm pattern to faults. A hidden layer size of 50 

neurons was found to be optimal in the prediction of a pitch fault. The training data included 221 alarm 

patterns of 31 SCADA alarms from one turbine with an electrical pitch system. Tests using alarms from 

four other turbines showed a detection accuracy of only 8�47%. The training data dependency of this 

approach was highlighted and possible extrapolation errors discussed. 

Chen ������ [62] continued the probabilistic approach [60] and proposed a Bayesian network to find 

root causes. Good reasoning capabilities were demonstrated with the same data. An example is given in 

Fig. 11. 
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a With pitch fault. 

b Without pitch fault. 

�

Godwin and Matthews [22] post�processed SCADA status codes for the purpose of pitch fault 

detection. The expert system developed based on logical rules learned using a RIPPER algorithm was able 

to concentrate the amount of information.  

Kusiak and Li [63] predicted status codes, their severity and specific code types (in this case, a 

malfunction of the diverter) by mapping codes to wind speed and power output. Training and testing data 

were taken from three months of SCADA data with five�minute resolution from four turbines. Neural 

Network Ensemble, Standard Classification, Regression Tree and Boosting Tree Algorithm Difference 

methods were found to extract the required information best. Faults were predicted 60 minutes ahead. 

Chen ������ [64] utilised an a priori knowledge�based ANFIS to detect pitch faults. Based on six fault 

cases from two turbines, a knowledge base was built by finding relationships between rotor speed, blade 

angle, pitch motor torque and power output. This knowledge was included in the ANFIS structure to 

supplement modelling in cases of insufficient training data. Testing with maintenance records of 28 

months from 26 turbines in a Spanish farm demonstrated the advantage of this approach compared to 

simple alarm counting. For a 21 days’ prognostic horizon, the model detected 62.2% of the cases that 

required maintenance. Tests using data from a US wind farm with 160 fixed speed 1 MW turbines resulted 

in less accurate fault prognosis, however [65]. Unclear maintenance reports, missing torque signals and 

curtailments due to low grid demands were seen as causes. 
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The evaluation of status codes for CM has been proven to be beneficial for better alarm assessment. 

However, the lack of any details concerning algorithms used in recent commercial products and the 

differences in status code generation of different software manufacturers hinders any clear assessment of 

the progress achieved in this field. 

��(����.�
����,���������������� 
���������������������	���
����������%�Garcia ������ [26] applied an expert 

system to assess the output of their ANN modelling. Manually implemented fuzzy rules were used to 

diagnose causes of anomalies. The evolution of health was proposed to be used as a method for the 

prediction of remaining lifetime. Planning of maintenance as well as evaluation of its effectiveness and 

cost were also discussed. Failure history needed to be available for proper training of the system. 

Cross and Ma [23] applied fuzzy inference to their temperature modelling. Trapezoidal and 

triangular membership functions based on fixed values for the residual size and duration were used to 

generate a three�stage status output. 

Schlechtingen ��� ��� [30] proposed an expert system to process their ANFIS modelling results. 

Prediction errors were passed to a fuzzy inference system only if three anomalies were detected by the 

daily probability threshold during one week. Triangular membership functions defined by occurrence 

probabilities and manual definitions in a master threshold table were used. Manually implemented fuzzy 

rules generated three stage condition statements as well as potential root causes, as shown in Fig. 12. 
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H. Li ������ [66] proposed a fuzzy assessment system, which was tested on a 850 kW variable speed 

turbine. A deterioration degree was defined using polynomial functions up to third order of the wind speed 

for setting normal limits of temperatures. Trapezoidal and triangular membership functions were used with 

weights for different temperatures to build a fuzzy synthetic assessment system with linguistic results from 

“excellent” to “danger”. A case study was presented including normal operation, a gearbox fault and a stop 

due to a high generator winding temperature.  
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J. Li ������ [46] and Sun ������ [32] used a similar framework of fuzzy synthetic evaluation to assess 

the results from several ANN models for different targets or based on different training data. Nine 

different faults were used for the allocation of the abnormal level indices to fuzzy memberships. The 

implementation of weights considered the share of each ANN model in the ‘health degree’ [46] and/or the 

prediction accuracy under normal conditions of the ANN models [32]. 

De Andrade Viera and Sanz�Bobi [67] proposed a risk indicator concept based on their ANN 

modelling [26]. Residuals of modelling were integrated over time, if the residual was outside a confidence 

band. Results of different ANN models were combined in a weighted sum based on quality of models. A 

cost�effective maintenance model was proposed adapted to the ongoing observed life with a variable 

threshold depending on a risk indicator growth rate. 

Gray ��� ��� [68] suggested abductive diagnosis to link SCADA errors or modelling results with 

expert knowledge. Assessed failure modes, their location, operational mode and resulting indicator 

changes were used to create a so�called Propositional Horn Clause Abduction Problem which is able to 

provide fault diagnoses using a computational process. 

The usage of expert systems clearly simplifies the interpretation of NBM results. Health degrees or 

risk indicators can play an important role in integrating SCADA CM approaches in maintenance strategies.  

��/��)���������
"��
����

Other applications of SCADA data beside classical CM include: power curve analyses, modelling 

and monitoring, e.g. with k�nearest�neighbour [69], copula estimation [70], k�nearest�neighbour, cluster 

centre fuzzy logic, ANN and ANFIS [71], ANN and Gaussian processes [72], linear and Weibull profiles 

definitions [73] or with stochastic methods [74]. Further references can be found in dedicated power curve 

modelling reviews, e.g. [75]. Spare part demand forecasting was investigated with a proportional hazards 

model utilising counts of temperature threshold violations from SCADA data [76]. More general load and 

structural health monitoring can also employ SCADA data as an additional source of information, e.g. [74, 

77, 78]. 

 �
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Different approaches to utilise SCADA data for CM of WTs are reviewed in this paper grouped as (i) 

trending, (ii) clustering, (iii) NBM, (v) damage modelling and (vi) assessment of alarms and expert 

systems. 

The simple trending of SCADA data has demonstrated good abilities to detect anomalies. Case 

specific configuration and interpretation seem to be required, however. Automated monitoring based on 

trending will most likely struggle to be accurate enough and avoid false alarms. 

 Clustering, as a more advanced technique of finding the differences between normal operation and 

anomaly, has the same disadvantage. Additionally, extensive historical failure data are required, if the 

methods are able to reliably diagnose failures. It is unlikely that the full range of fault stages will be 

available in any training data period in practice. 

NBM has been the focus of recent research using SCADA data for CM due to the advantage of 

relatively easy anomaly detection using the residual of modelled minus measured variables after training 

under normal conditions. Models based on polynomial equations, ANN, ANFIS or NSET demonstrated 

good failure detection abilities. However, comprehensive comparisons of the techniques are lacking in 

order to be able to assess which technique is best. From the different studies, it is hard to assess whether a 

good accuracy and fault detection is based on a certain technique, on the NBM concept being ARX or 

FSRC, or even on further detailed settings. However, it is not satisfactorily shown that the (computational) 

effort of machine learning techniques like ANN, ANFIS or NSET is reasonable as only one case study 

compares linear modelling with ANN [40]. On the other hand, most publications criticising ANN training 

as too time�consuming do not consider the ongoing improvements in computational resources in common 

desktop computers. There is lack of published NBM performance metrics for different case studies in 

order to be able to properly evaluate required effort and performance in terms of normal behaviour 

prediction, true failure detections and false alarms for all of the techniques.  

The damage modelling approaches show potential for CM of WTs focussing on physical causes of 

failures. However, the development of reliable and accurate damage models for all failure modes of a WT 

will be a very difficult task. As only a few studies have been published in this area, the feasibility of using 

such models for online monitoring of different turbines, possibly from different manufacturers and in 

different locations, cannot be assessed yet. 

Status code processing with probabilistic approaches or physical rules shows promise to condense a 

large number of alarms into helpful information. However, the studies reviewed do not discuss recent 

industrial developments, which might have already solved problems discussed. Expert systems with fuzzy 
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inference can be used to automate interpretation of modelling results and deliver easy to understand 

outputs. Complete asset monitoring and maintenance planning will require assessment of monitoring 

alarms and decision making as supported by such systems. 

This review focuses on techniques which have been already applied to real SCADA data. Table 3 

gives a summary of the reviewed SCADA CM approaches with respect to WT type described by rated 

power, the amount of data expressed in WT years, the number of investigated failures or anomalies and the 

subassembly or part of interest. It can be seen, that nearly all research has been based on relatively old WT 

technology with WTs in the range 1�2MW. The majority of the case studies reviewed based their results 

on a relatively small amount of data, with less than 30 WT years of SCADA data. Only four case studies 

were based on more than 10 failures. Most of the approaches focused on detecting failures in gearboxes or 

bearings.  

Based on the presented review of recent CM approaches with SCADA data, future research should 

initially address the following: 

�� comparing the prediction accuracy of different approaches as many publications have 

claimed to have the best solution for SCADA CM, but do not comprehensively compare 

them with other techniques; 

�� validating approaches on modern multi�MW WTs, because all studies up to date have used 

relatively old turbines 

�� testing approaches using data from a range of different wind farms and turbine types as most 

studies have only considered one farm or one WT manufacturer 

For future studies, emphasis should be put on providing sufficient metrics, true and false failure 

detection rates, advance detection times and computational effort to allow better comparison between 

SCADA analysis techniques. In terms of data�driven training, the demonstration of a few successful 

failure detections alone is not sufficient as the practical use is determined by the reliability of the approach, 

i.e. in particular the detection rate and false alarms for new data. 

 Further potential is seen in future research concerning: 

1)� NBM: 

�� comparing ARX and FSRC concepts independent of modelling technique 

�� finding sufficient training length and universal input selection algorithm 

�� validating ANN training and updating algorithm [48] on bigger scale and for other 

techniques 

�� evaluating NSET with more data 
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�� testing of linear, ANN or NSET modelling for multiple targets beside temperatures as done 

with ANFIS [30] 

�� comparing different anomaly detection techniques such as using a Mahalanobis distance [47], 

a health degree based on probability [32, 46], multiple alarms over a given period[30], etc., 

independent of modelling technique 

�� investigating “black�box” information from models: do the model parameters provide helpful 

information? 

2)� Damage modelling: 

�� testing and validating damage models with different turbines 

�� investigating possible merging of Physics of Failure models with “black box” NBM 

�� developing new damage models for turbine components not yet studied 

�� using high resolution SCADA data for damage modelling to provide higher damage 

accumulation accuracy 

3)� Assessment of alarms and status codes: 

�� applying status code processing approaches to subassemblies besides the pitch system 

�� investigating current state�of�the art in industrial SCADA processing systems 
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������� Summary of different SCADA CM approaches and WT type investigated, data used, number of anomalies and subassembly of interest. Only approaches in 

the focus of a paper and with at least one investigated failure from real data are listed. 

 
Category First approach Second approach Third approach Fourth approach Fifth approach 

Trending  
[24]  1

:   
[36]  3

:   
[4]  2

:  
 

 

  

 

Clustering  
[28]  3

:   
[34]  1

:   
 

 
 

   

 

NBM:  Linear and 

polynomial 
[39]  3

:   
[31]  36

:  
 

 

 

   

 
ANN: FSRC [43]  8

:   
[40]  5

:   
[44]  5

:  
[45] 1

:  

  

ANN: ARX [27]  3
:  

[40]  5
:  

[38]  1
:  

[46] 

[32] 
 25

:  
[47]  1

:  

ANFIS / 

NSET 
[51]  31

:  
[52]  2

:  
 

 

 

   

 

Damage modelling [55] 

[29] 
 10

:    
[56]  3

:   
[58]  3

:   
[59]  18

:  

  

 

Status code 

processing 
[60] 

 :  

[61] 

[62]  :  
[63] 

 :  

[64] 

[65] &  
:    

������	  

WT type: �

 : undefined�    : < 1.5 MW:�   : 1.5�2.5 MW  (exception: * 3.0 MW)�

Amount of data:  : undefined  : ≤ 3 WT years  : ≤ 30 WT years  : ≤ 300 WT years  : ≥ 300 WT years�

The superscript depicts the investigated number of failures or anomalies. 

Failing part / subassembly: 
 : Gearbox�  : Pitch or yaw system�  : Generator�     : Bearing�   : Other�

 

* 
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