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ABSTRACT

Techniques based on non-negative matrix factorization (NMF) can

be used to efficiently decompose a magnitude spectrogram into a set

of template (column) vectors and activation (row) vectors. To bet-

ter control this decomposition, NMF has been extended using prior

knowledge and parametric models. In this paper, we present such an

extended approach that uses additional score information to guide

the decomposition process. Here, opposed to previous methods, our

main idea is to impose constraints on both the template as well as the

activation side. We show that using such double constraints results

in musically meaningful decompositions similar to parametric ap-

proaches, while being computationally less demanding and easier to

implement. Furthermore, additional onset constraints can be incor-

porated in a straightforward manner without sacrificing robustness.

We evaluate our approach in the context of separating note groups

(e. g. the left or right hand) from monaural piano recordings.

Index Terms— Score-informed processing, non-negative ma-

trix factorization, music synchronization, alignment.

1. INTRODUCTION

In recent years, methods for separating musically meaningful sound

sources from monaural music recordings have been applied to many

music processing tasks. For example, techniques to extract individ-

ual instrument tracks have been incorporated into approaches for in-

strument recognition [1] or instrument-wise equalization [2,3]. Most

of these techniques rely on some variant of non-negative matrix fac-

torization (NMF) [4], or an equivalent formulation such as proba-

bilistic latent component analysis (PLCA) [5]. Here, the idea is to

decompose the magnitude spectrogram of a given recording into a

set of template (column) vectors and activation (row) vectors.

However, as discussed in more detail below, template vectors

learnt by NMF-based approaches are often hard to interpret and lack

explicit semantics. To obtain musically meaningful vectors, the orig-

inal NMF can be modified such that each template vector is associ-

ated with a single musical pitch. To this end, many approaches spec-

ify the template vectors using a parametric model. For example, the

template vectors in [1] are described by a source/filter model, in [6]

by harmonic combs and in [2, 7, 8] by spectrally and/or temporally

localized Gaussians. On the one hand, a parametric model allows

for a straightforward integration of musical knowledge. For exam-

ple, in [8] the authors extend their harmony-based approach with a

percussive component exploiting the typical spectral shape around

onsets. Furthermore, allowing only solutions that are valid within

the model, the parametric approaches offer a high degree of robust-

ness. On the other hand, the parameter estimation and the resulting
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spectrogram approximation can be inaccurate in the case that some

model assumptions are violated. Additionally, the parameter estima-

tion process is often computationally expensive.

In this paper, we present a method that combines the efficiency

and flexibility of classic NMF with advantages of parametric ap-

proaches. Our method is based on a strategy originally presented

in [9]. Here, the underlying idea is to enforce a harmonic structure

for the template vectors by setting those entries to zero that are not

in a neighborhood of an expected partial. Then, using multiplicative

update rules guarantees that these constraints remain valid during the

subsequent learning process. We extend this idea in several ways.

First, opposed to previous methods, we simultaneously constrain the

template vectors as well as the activations. This way, instead of just

specifying what is expected we additionally specify when something

is expected. The use of these double constraints becomes possible

by exploiting available score information in the form of a MIDI file.

Here, we use high-resolution synchronization techniques to align

the MIDI file with a given recording. As a second extension, we

exploit the robustness gained by the double constraints to integrate

template vectors that represent percussive elements such as onsets.

As our experiments show, these double constraints in combination

with the onset template vectors stabilize the resulting separation re-

sults and lead to an increased overall separation quality. Altogether,

the proposed method combines the expressive power of parametric

approaches with the efficiency of classic NMF, while still being easy

to implement.

The remainder of this paper is organized as follows. In Section 2

we introduce our NMF-based method using double constraints.

Then, in Section 3, we report on systematic experiments, where we

employ the proposed method to separate note groups (e. g. the left

or right hand) from monaural piano recordings. Conclusions and

prospects on future work are given in Section 4. Further related

work is discussed in the respective sections.

2. SCORE-INFORMED CONSTRAINTS FOR NMF

Given the magnitude spectrogram of a music recording V ∈ R
m×n
≥0

and k ∈ N, classical NMF derives two non-negative matrices

W ∈ R
m×k
≥0 and H ∈ R

k×n
≥0 such that a distance D(V,WH), typi-

cally a modified Kullback-Leibler divergence, is minimized. In this

context, the columns of W are often referred to as template vectors

and the rows of H as the corresponding activities. To compute a fac-

torization one typically initializes W and H with random values and

updates them iteratively using multiplicative rules [4]. Such rules

offer several advantages over alternative approaches. Firstly, they

are easy to implement. Secondly, each entry of W and H set to zero

remains zero throughout the update process, which easily allows for

imposing hard constraints on the factorization. Thirdly, consisting of

only highly-parallelizable matrix operations, multiplicative update

rules are computationally very efficient. In contrast, most parametric
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Fig. 1. NMF factorizations resulting from several initialization strategies for a recording of the first measures of Chopin’s Op. 28 No. 4. (a)

Score and MIDI representation of the piece as well as a magnitude spectrogram of the recording. (b) Standard random initialization. (c) IW:

Initialization of the template vectors. (d) IH: Initialization of the activations. (e) IWH: Combination of IW and IH. (f) IOWH: Extended

variant of IWH involving onset template vectors.

approaches usually require a computationally much more expensive

learning procedure involving a large number of function evaluations.

However, a major drawback of NMF is that the factorization is hard

to control. As an example, Fig. 1(b) shows the initialization and

resulting NMF factorization for a recording of the first measures

of Chopin’s Op. 28 No. 4. Here, k is set to the number of active

pitches in this section of the piece. The example illustrates that the

NMF template vectors and activations often have little to no musical

meaning even though their product closely approximates V .

2.1. Constraints in NMF

To obtain a semantically more meaningful factorization most ap-

proaches enforce a certain structure for the template vectors. Here,

one possibility is to describe the vectors via parametric models.

While this approach allows for a direct integration of musical

knowledge, it is computationally more expensive and susceptible

to inappropriate model assumptions. In [9], an alternative approach

is presented. Here, each template vector is initialized by a rough

overtone model specifying the partials’ energy distribution, see

Fig. 1(c). Zero-valued entries between the expected partials enforce

the intended structure during the refinement process. As a result,

the learnt template vectors have an explicit harmonic structure, see

Fig. 1(c). This is a significant gain in structure compared to the

chaotic template vectors computed via standard NMF. In the fol-

lowing, we refer to this initialization strategy as IW. Alternatively,

another possibility is to constrain the activations instead of the tem-

plate vectors. To this end, one can mark suitable regions in H where

a given pitch is expected while setting the remaining entries to zero,

see Fig. 1(d). This results in a similar factorization as the one using

IW. However, the results depend strongly on the input data. In our

example, several pitches appear only in groups of two, such that the

corresponding template vectors tend to be mixtures of those pitches.

However, such conditions usually do not occur when using more

extensive audio material instead of just short snippets. We refer to

this initialization strategy in the following as IH.

Opposed to previous methods, our main idea is to constrain both

the template vectors and the activities, see Fig. 1(e). As to be ex-

pected, such double constraints lead to an increased stability and

robustness of the factorization. While this will be experimentally

shown in Section 3, it can also be observed in our example, see

Fig. 1(e). Here, almost all template vectors have a well-defined har-

monic structure. We refer to this combined strategy as IWH. Further-

more, the robustness of IWH even allows for introducing additional

template vectors dedicated to describe onsets. This further stabilizes

the factorization and leads to even more meaningful template vec-

tors, see Fig. 1(f). In the next subsection, we describe this strategy,

referred to as IOWH, in more detail.



2.2. Proposed Method

Overall, to use strategy IOWH, one needs to suitably initialize onset

and harmony template vectors as well as their activations. After that,

only the standard NMF updates rules have to be applied. For the har-

mony template vectors, our procedure essentially follows [9]. To this

end, each vector is assigned to a pitch and then initialized such that

only areas around the partials are non-zero. We choose the size of

these areas relatively generous in order to be flexible in dealing with

potential inharmonicities of the recorded instrument or non-standard

tunings. More exactly, the area for the n-th partial of pitch p corre-

sponds to the frequency range (n · f(p − φ), n · f(p + φ)), where

φ is a parameter in semitones to control the size of these areas (we

use φ = 1 in our experiments). Here, f : R → R≥0 defined by

f(p) := 2(p−69)/12
· 440 maps the pitch to the frequency scale.

Furthermore, since the lower partials usually carry most of the en-

ergy, we set all entries in the n-th area to 1/n2, see Fig. 1(f). In a

next step, we initialize the onset template vectors. Here, opposed to

many other approaches, we take into account that the spectral shape

for onsets is for many instruments (including the piano) not the same

as for white noise but depends on the respective pitch with the en-

ergy being concentrated around the partials. Therefore, we use one

onset vector for each pitch. Contrary to the harmonic templates, we

do not enforce here any spectral constraints but initialize the onset

templates uniformly and let the learning process derive their shape.

To compensate for this lack of constraints, we apply more rigid re-

strictions on the activation side.

Next, to meaningfully initialize the activations, our method ex-

ploits available score information given in the form of a MIDI file.

Here, instead of unrealistically assuming that a perfectly aligned

MIDI file is available (as it is done in many of the previously de-

scribed methods), we employ a high-resolution music synchroniza-

tion approach to determine for each MIDI note event its correspond-

ing position in the audio recording [10]. To impose the activation

constraints, we essentially initialize H to look like a piano roll rep-

resentation of the synchronized MIDI file. Starting with the activa-

tions for the harmony template vectors, we extract a pitch, as well as

an onset and offset position from each MIDI event. Then, we set the

corresponding entries in H to 1, while all remaining entries are set to

zero. To account for possible alignment inaccuracies that occur us-

ing automatic synchronization procedures, we relax these constraints

to some degree. To this end, we additionally set all entries in H in

a tolon-neighborhood around onsets and in a toloff -neighborhood

around offsets to 1 (in our experiments we use tolon = 0.2 seconds

and toloff = 1 second). Then, in a final step, we initialize the ac-

tivations for the onset template vectors. Here, we place more strict

constraints by only setting entries in a tolon-neighborhood around

the MIDI onset positions to 1, see Fig. 1(f).

Comparing the IOWH factorization to the others in Fig. 1, we

see that the harmonic vectors of IOWH have the clearest harmonic

structure with most partials being very sharp in frequency direction.

Here, a reason is that the percussive broadband energy is now well-

described by the onset vectors, such that onsets have significantly

less disturbing influence on the harmonic vectors. Furthermore, most

onset vectors are activated in an impulse-like manner at the start of

note events, which indeed indicates their use for representing onsets.

Overall, making use of double constraints, the initialization strategy

IOWH allows for computing musically meaningful factorizations in-

cluding a dedicated representation of onsets. It combines the expres-

sive power of parametric approaches with the efficiency of classic

NMF, while still being easy to implement. Furthermore, as shown

in the next section, it is robust regarding smaller alignment errors

as well as regarding potential inharmonicities of an instrument or

non-standard tunings.
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Fig. 2. Illustration of the separation process for the left and the right

hand. (a)/(b): Partition of the activations matrix H (Fig. 1(e)) into

HL and HR. (c)/(d): Masking matrices ML and MR. (e)/(f): Sepa-

rated spectrograms.

3. EXPERIMENTS

In this section, we report on systematically conducted experiments

to illustrate the potential of our method. To this end, we created a

database consisting of ten pieces from the Western classical music

repertoire. The database consists of four Bach pieces (mainly in-

ventions) and six Chopin pieces (mainly preludes and mazurkas).

Here, we used uninterpreted score-like MIDI files from the Mutopia

Project1, high-quality audio recordings from the Saarland Music

Database (SMD)2 as well as digitized versions of historical record-

ings from the Piano Society project3. In total, the database contains

24 minutes of music with each recording having a length between

30 seconds and 5 minutes.

In a first step, we indicate the quality of our approach quantita-

tively using synthetic audio data. To this end, we used the Mutopia

MIDI files to create two additional MIDI files for each piece using

only the notes of the left and the right hand, respectively. Using

a wave table synthesizer, we then generated audio recordings from

these MIDI files which are used as ground truth separation results in

the following. A linear mix of these two recordings serves as input

for all evaluated separation approaches. For the experiment, we com-

pute a magnitude spectrogram of the mix and derive a factorization

with one of the methods discussed in Section 2. To employ the fac-

torization for the separation of the left and the right hand, we again

make use of the available score information. While we could sepa-

rate any user-defined group of notes, we exploit here that the used

MIDI files specify which note event belongs to which hand. This

way, we can partition the computed H into matrices HL and HR,

see Fig. 2(a)/(b). From these matrices, we then derive masking ma-

trices ML := (WHL)/(WH+ǫ) and MR := (WHR)/(WH+ǫ),
where the division is understood pointwise and ǫ is a small positive

constant to avoid a potential division by zero, see Fig. 2(c)/(d). Ap-

plying the masking matrices to the original mixture spectrogram V
via pointwise multiplication yields a separate spectrogram for the

left and the right hand, see Fig. 2(e)/(f). Finally, to yield the sepa-

rated audio signals an inverse FFT in combination with an overlap-

add technique is applied to the separated spectrograms using the

phase of the original spectrogram.

To assess the quality of a separation result, we employ version

3.0 of the BSSEVAL toolkit [11] to compute signal-to-distortion

(SDR) values. Fig. 3 shows SDR values for the initialization strate-

gies IH, IW, IWH and IOWH separately for the left and the right hand

as well as an average for both hands. All values are averaged over

1http://www.mutopiaproject.org
2http://www.mpi-inf.mpg.de/resources/SMD/
3http://pianosociety.com
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the ten pieces in our database. Note that the SDR values for the

right hand are consistently higher than those for the left hand. Here,

the main reason is that the right hand often corresponds to the main

melody and is therefore played louder (level difference is 1.64 dB

on average). As a consequence, there is more energy related to this

hand in the mixture making the separation easier. Furthermore, we

see in Fig. 3 that the strategies IH and IW, which initialize only one

of the matrices, yield the lowest SDR values. Combining the two

strategies (IWH) we see a significant SDR-gain of almost 1.5 dB. Fi-

nally, integrating onset information leads to another substantial gain

of 1.2 dB for the strategy IOWH. Here, the dedicated representation

of the percussive sounds leads to a more coherent representation of

the harmonic parts and consequently to a better separation quality.

To additionally indicate how a typical parametric model (PM)

behaves in our scenario, we also include SDR values for a state-of-

the-art approach based on spectrally localized Gaussians [7]. Similar

to IWH, this approach only models the harmonic part of a recording,

i. e. no onset model is included, and, indeed, the average SDR val-

ues for both approaches are almost identical (11.3 dB and 11.47 dB

SDR, respectively). However, the NMF factorization, using only

simple matrix operations, can be computed more efficiently than the

parameter estimation required for PM and additionally is easier to

implement. For example, to process the whole database consisting

of 24 minutes of music, our Matlab implementation takes about 6
minutes on an Intel W3530 for the synchronization and another 6
minutes for the factorization using 100 NMF iterations. Using more

optimized implementations, both values could be reduced even fur-

ther. This is in contrast to many parametric approaches, which often

require several hours to process this amount of data. Furthermore,

the straightforward integration of an onset model allows for a signif-

icant SDR-gain for the IOWH strategy over PM.

Since the MIDI files were perfectly aligned to their sonifications

in the first experiment, we also investigated how the synchronization

accuracy affects the separation performance. To this end, we simu-

late a low accuracy alignment by shifting each note event randomly

by ±∆ seconds. Fig. 4 gives the SDR values for the four initial-

ization strategies and varying values for ∆. Here, we see that all

approaches are relatively stable as long as the synchronization error

is not larger than tolon (200 ms in our experiments). Beyond tolon,

all SDR values drop significantly. However, it should be noted that

even with very inaccurate onset information the strategy IOWH stays

on a similar level as IWH demonstrating its overall robustness.

Since signal-to-distortion ratios and similar evaluation measures

often do not capture the perceptual separation quality, we addition-

ally provide a website with audible separation results4. Here, real,

non-synthetic audio recordings from the SMD and Piano Society

databases are used to give a realistic and perceptually meaningful

impression of the quality of our approach in real world scenarios.

4. CONCLUSIONS

In this paper, we have presented an extended NMF variant that ex-

ploits available score information to guide the factorization. Based

on the idea of simultaneously constraining both the template vectors

as well as the activations, the method yields similar results as a state-

of-the-art parametric approach. These results are further improved

by integrating template vectors dedicated to representing onsets. In

the future, we plan to further extend the idea of double constraining

to integrate further model assumptions into the NMF framework and

to apply our framework to other types of music.
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