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Abstract. Under a simple power leakage model based on Hamming weight, a
software implementation of a data-whitening routine is shown to be vulnerable to
a first-order Differential Power Analysis (DPA) attack. This routine is modified
to resist the first-order DPA attack, but is subsequently shown to be vulnerable to
a second-order DPA attack. A second-order DPA attack that is optimal under cer-
tain assumptions is also proposed. Experimental results in an ST16 smartcard
confirm the practicality of the first and second-order DPA attacks.

1 Introduction

Recently there has been increased concern over the vulnerabilities of cryptographic
algorithms to leakage attacks [1]. These attacks exploit the fact that a hardware device
can sometimes leak information when running a cryptographic algorithm. One source
of leaked information is the time-varying power consumption of a device executing a
cryptographic algorithm. In 1998, Kocher et al. introduced a leakage attack that uses a
technique called Differential Power Analysis (DPA) [2]. Attacks using DPA have been
shown to be quite successful at breaking the security of smartcards [3]. Researchers
have reported power analysis attack against many algorithms, [e.g., 4-7] and have also
developed countermeasures that can resist such attacks [e.g., 8-9].

The main focus of past research has been on first-order DPA attacks. However,
higher-order DPA attacks [2] also need to be understood. For example, countermeasures
that prevent first-order DPA attacks may not be effective against higher-order attacks.
In my investigations, I assume that power leakage can be described by a simple model
based on Hamming weights. I use this model to show that a naive implementation of a
data-whitening routine is vulnerable to a first-order DPA attack. I then implement a
countermeasure to protect this routine from attack, but this new routine is subsequently
shown to be vulnerable to a second-order DPA attack. Finally, I show that this second-
order DPA attack is approximately optimal under certain reasonable assumptions.
Experimental results in an ST16 smartcard manufactured by ST Microelectronics are
used to confirm the practicality of my attacks.

1.1 Definitions

A higher-order DPA attack is defined by Kocher et al. [2] as a DPA attack that combines
one or more samples within a single power trace. During a first-order DPA attack, the
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attacker monitors power consumption signals and calculates the individual statistical
properties of the signals at each sample time. In a higher-order DPA attack, the attacker
calculates joint statistical properties of the power consumption at multiple sample times
within the power signals. For the purpose of this paper, the definition of an nth-order
DPA attack is given as follows.

Definition 1. An nth-order DPA attack makes use of n different samples in the power
consumption signal that correspond to n different intermediate values calculated
during the execution of an algorithm.

The attacks described in this paper are proven to be sound. The definition of a sound
DPA attack is given as follows.

Definition 2. A DPA attack against an algorithm’s secret key is sound when it is theo-
retically possible for an attacker to use power consumption information to learn the
value of all the bits of the secret key.

In general, a sound attack may or may not be practical. Evaluating the practicality of a
sound attack will usually require direct experimentation or a thorough simulation of a
specific implementation. In this paper, I will confirm the soundness of two attacks, a
first-order DPA attack and a second-order DPA attack. I will then examine the practi-
cality of these attacks using an ST16 smartcard. These results likely represent the first
documented analysis of an actual second-order DPA attack.

1.2 Power Leakage Model

For the attacks described in this paper, I assume that the processor will leak information
about the Hamming weight of the data being processed. I also assume that processing
data with higher Hamming weight will consume more power than processing data with
lower Hamming weight and that this relationship is roughly linear. Such assumptions
are not unreasonable since my research has confirmed that many present-day smartcard
processors can exhibit precisely these characteristics.

Let the power consumption at a particular time j be represented by P[/]. The value
of P[/] can be split into three parts. The first part represents the power contribution that
varies with the Hamming weight of the data being processed. The second part repre-
sents a constant additive portion and the third part represents noise. This simple linear
relationship for P[/] can be written as

P[j] =eUj]+L+n )
where, d[j] represents the Hamming weight of the intermediate data result at time j, €
represents the incremental amount of power for each extra ‘1’ in the Hamming weight,
L represents the additive constant portion of the total power, and n represents the noise.
The noise 7 is assumed to have zero mean, thus when sufficient statistical averaging is
used, this noise can usually be ignored.
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1.3 Power Attack Countermeasures

Goubin et al. [8] proposed a strategy, called the “duplication method”, to protect the
DES algorithm from first-order DPA attacks. Their countermeasure works by splitting
secret data into two random halves and operating on each half separately. Such an
approach causes the power consumption signals to be randomized, thus thwarting DPA.
Similar techniques were also proposed to protect the advanced encryption standard
algorithms from power attacks [9]. As a generalization, Chari et al. [10] suggested a
countermeasure that splits the data into & shares. They proved that the amount of anal-
ysis needed to attack such a scheme increases exponentially with respect to k.

Secret splitting schemes protect against first-order DPA attacks, but they may leave
an implementation susceptible to higher-order attacks. For some situations, this suscep-
tibility might not be an issue because higher-order attacks are considered to be more dif-
ficult. For instance, in a recent paper Daemen et al. summarize that second-order DPA
attacks require more complex analysis, increased memory and processing requirements,
and an increased number of power consumption measurements [11]. One goal of this
paper is to probe the complexity of a second-order DPA attack by investigating a spe-
cific example attack. Such research is necessary to ensure the design of secure counter-
measures.

1.4 Example Data-Whitening Routines

To better understand the concept of a second-order DPA attack, it is useful to consider
some simple examples. The pseudocode for algorithm segments, ¥} and ,, are given
in Fig. 1. These algorithms begin by combining the input P77 data with a secret key.
This combining step is sometimes referred to as a “whitening process” and is used as a
first step in some algorithms; i.e., a specific example is in the Twofish encryption
algorithm [12]. The whitening of the input data is performed using the XOR operation.
The W, algorithm immediately performs this XOR operation at line 4. Unfortunately,

}/\1( PTI) ¥\é( PTI)

—» A Result = PTI O SecretKey —» B: Randomvask = rand()
nPTI = PTI O RandomMask

other operations . . . L » C Result = nPTI O SecretKey
) return CTO ot her operations .
return CTO

Vulnerable to first-order DPA Attack) Gulnerable to second-order DPA Attac@

Fig. 1. Routines that Are Vulnerable to DPA Attacks

The routine on the left is vulnerable to a first-order DPA attack at line 4. The routine on the
right is safe from first-order attacks, but is vulnerable to second-order DPA. An attacker can
mount a second-order DPA attack by using joint statistics on the power consumed when
executing the operations at lines B and C.
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the XOR operation at line 4 can leak information about the secret key. Thus, the ¥
algorithm is potentially susceptible to a first-order DPA attack.

In an attempt to avoid this DPA attack, the ¥, algorithm takes an indirect approach
to the whitening operation. First, a random mask is generated at line B. Then, the XOR
of'the P77 data and the random mask are computed to produce intermediate result mPT1.
Next, the XOR of mPTI and the secret key is computed at line C. The random mask is
generated internally and is not observable to an attacker. Thus, when considered sepa-
rately, the results of the operations at lines B and C leak only random information, and
a DPA attack is prevented. However, when considered jointly, the operations at lines B
and C are vulnerable to a second-order DPA attack.

2 Comparison of First and Second-Order DPA Attacks

The analysis in this section looks at specific attacks against the algorithms shown in
Fig. 1. The attacks described here are proven to be sound. The specific steps for one
possible DPA attack against the ¥ algorithm are now outlined in the following prop-
osition.

Proposition 1. When the W, algorithm is implemented in an N-bit processor, where
there is a linear relationship between the instantaneous power consumption and the
Hamming weight of the data being processed, the following DPA attack is sound:

1. Repeat for i equal to O through N—1 {

2 Repeat forb=0to 1 {

3 Calculate the average power signal Ap[j] by repeating the following:{

4. Set the ith bit of the PTI input to b.

5. Set the remaining PTI bits to random values.

6 Collect the algorithm s power signal. } }

7 Create the DPA bias signal T[j] = Ay[j] - 41/]-

8 T1j1 will have a positive bias spike when the ith secret key bit is a one, and
will have a negative DPA bias spike when ith secret key bit is a zero. }

Proof. Let j* be the sample time that corresponds to the time at which the result of line
A in the W routine is calculated. Also, let the power consumption at this time be repre-
sented by P. Thus, using the model of Equation (1), P = d€ + L + n, where d repre-
sents the Hamming weight of the variable Result at line 4 of W.

Denote the ith bits of the SecretKey and the PT/ data as k; and p;, respectively. The
expected value of the Hamming weight d depends on the values of k; and p; as follows:

E[d|kiDpi=0}=N;1 E[d|kiE|pi=1J=N%l
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When k; = 0, equations for AO[]'*] and Al[j*] can be written in terms of the expected
values of P

N-1

A,/ 1=E[P|k;=0,p,=0] = E[de+L+n|k,=0,p,=0] = e+l (@)
o P N+
A\ 1 =EIPk=0,p;= 1] = Elde+L+nk;=0,p,=1] = =e+L (3)

Taking the difference of Equations (2) and (3) yields

T 1 =4 1 -4,/ 1=-¢ whenk; =0 4
Similarly, when k; = 1, equations for AO[]'*] and Al[]'*] can be written in terms of the
expected values of power consumption P

A1 =E[P|k,=1,p,= 0] = E[de+L+n|k,=1,p,=0] = N%lsu 5)
. S o N-d
AL 1=ELPIk = 1,p,= 1] = Elde+L+n|k,=1,p,=1] = - Levr (o)

Taking the difference of Equations (6) and (5) yields
T 1 = 4 1 -4,/ 1=¢  when k; = 1 (7)
So, it is clear from Equations (4) and (7) that there should be a positive bias spike when

k;=1 and a negative bias spike when k; = 0. Thus, Proposition 1 is a sound DPA attack.
O

2.1 Second-Order DPA attack

Now, consider the W, algorithm on the right side of Fig. 1. This algorithm is not vul-
nerable to the DPA attack of Proposition 1. Instead of directly calculating the XOR of
the SecretKey and PTI, this algorithm first generates a random variable RandomMask
to mask the value of PTI. The secret key is used at line C, but the Hamming weight of
the result is random. Thus, the power consumption of the result at line C cannot be cor-
related to the values of the secret key or the P77 data. The W, algorithm seems secure
against a first-order DPA attack, yet a second-order DPA attack is definitely possible.

Proposition 2. When the W, algorithm is implemented in an N-bit processor, where
there is a linear relationship between the instantaneous power consumption and the
Hamming weight of the data being processed, the following second-order DPA attack
is sound:

1. Repeat for i equal to O through N—1 {
2 Repeat forb=0to 1 {
3 Calculate average statistic S), = | Py —P | by repeating the following:{
4. Set the ith bit of the PTI input to b.
5. Set the remaining PTI bits to random values.
6. Collect the algorithm s instantaneous power consumption as lines B
and C. Call these values Py and P, respectively. } }
Calculate the DPA bias statistic T = Sy— S, .
8. If T > 0 then the ith key bit is a one, otherwise it is a zero.

N
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Proof. The power consumption at lines B and C of W,, respectively Pp, P, can be mod-
eled using the linear relationships:

Pp = dpep+tLgand P = degct L, (®)
where, dp represents the Hamming weight of the data RandomMask at line B, d repre-
sent the Hamming weight of the data Result at line C, €5 and €. represent the extra
amount of power for each ‘1’ in the data at lines B and C, and Ly and L~ represent the
constant portions of the total power at lines B and C. The noise contributions are
ignored, since when averaging is used, these contributions will be removed. Also, to
simplify the proof, I initially assume that

Ly =Lcoand ey = €, )
My experimental results confirmed that the assumptions of equality in Equation (9) are
true for the implementation I considered. However, in the general case these equalities
may not hold. For this proof I will first consider the case where Equation (9) holds.
Then, at the end of this proof I will comment on the more general case.
In the second-order DPA attack of Proposition 2, the value of | P, — P | is used as
a statistic to determine the value of the ith bit of the key. The value of | Pp— PC| can
be rewritten by using Equations (8) and (9),

|PB—PC| = €| dB—dC|
where, € = €5 = €. Now, refer back to the ¥, algorithm in Fig. 1. Let the ith bit of
the variable SecretKey be k; the ith bit of the random variable RandomMask be r; and
the ith bit of PTI be p;. Recall that the variables d and d- are random variables corre-
sponding to the Hamming weights of the N-bit data processed at lines B and C, respec-

tively. The expected value of dp is dependent on r; and the expected value of d is
dependent on the values of r;, k; and p;

Eldy|r,=1] = E[dc| 04D p;=1]

(N+1)/2
(10)

Eldy|r,=0] = E[dc|r, 040 p;=0] = (V-1)/2

Assuming that the variable RandomMask is uniformly distributed and using
Equation (10), the values of S, and S in the attack of Proposition 2 can now be calcu-
lated. Recall that when S‘O is calculated, the ith bit of P71 is set to a zero, and that when
S is calculated, the ith bit of PT7 is set to a one. Thus, when k; = 0, the value of S, can
be derived

So %Eh dg—dc|

0

rp=k,=p;= O}+§E{S|d3—dc|

ro=1k=p =0
1 y L l } (11)
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and the value of S can be derived

5, - %Eﬁd};dc”pi =1, =k = o}%g{q%dd

r=p.=1k=0
o ' }(12)

=€

The combination of Equations (11) and (12) yields
T = SO — Sl = —-€

In the case where k; = 1, the derivation of S, and S| is very similar except that the results
are swapped, Sy = € and §; = 0. Therefore, when 7<0, then k; = 0, and when
T>0, then k;=1. Hence, the sign of T indicates the value of k; and the attack in
Proposition 2 is a sound second-order DPA attack. O

Remark. The proofof Proposition 2 is based on the assumption in Equation (9) that cer-
tain parameters are equal. When this equality assumption is not true, the situation can
be handled through a process of normalization. Instead of calculating S, and S; by
directly using Pg and P, normalized versions of Pg and P can be used. Normalized
versions of Pg and P are calculated by subtracting the mean and dividing by the vari-
ance. For example, a normalized version of Pj is calculated as

normalized P, = (P,—E[Pg])/var [Py (13)
By using normalized values for Pg and P, the equality assumption of Equation (9) is
effectively forced to be true, thus resulting in a sound attack.

3 Experimental Results

In this section I provide experimental results showing the practical aspects of the previ-
ously described DPA attacks. The EEPROM memory of an ST16 smartcard was pro-
grammed with versions of the ¥| and W, algorithms from Fig. 1. Then, the attacks from
Propositions 1 and 2 were implemented and tested against this smartcard. Statistical
results from measuring the smartcard’s power consumption were collected and ana-
lyzed.

In a first-order DPA attack, knowledge of design information is not required. In a
second-order DPA attack, however, knowledge of the algorithm code and the processor
operation is much more important. Without such knowledge, attackers will not know
which points in the power consumption signal are important. For example, in the W,
algorithm these points correspond to the execution of lines B and C. Attackers that do
not know which points to observe will need to resort to additional statistical analysis to
find these points. Although possible, such an approach makes an attack more difficult,
especially as the order of the DPA attack grows. To avoid these complications in my
experiments, I assumed that the attacker knows exactly which points in the power trace
to monitor.

With knowledge of which points in a power trace to monitor, it becomes easy to
implement both DPA attacks. The hardware used for this experiment was simply a PC,
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a digital sampling oscilloscope, and a smartcard reader. The smartcard reader was phys-
ically modified to allow for easy power measurements. This modification entailed plac-
ing an 18 ohm resistor in series between the smartcard and reader’s ground pins. Power
consumption was monitored by sampling the voltage across this resistor. The smartcard
was clocked at 3.57 Mhz and the power signal was asynchronously sampled by setting
the oscilloscope’s sampling rate to 1.0 Gsamples/second.

Implementors of smartcard systems often wonder how much sample data an attacker
will need for a successful attack. I designed an experiment that looks at this question for
my given ST16 implementations. In my experiments, DPA attacks were run and power
signals were collected. As each power signal was collected, an updated value of 7' was
calculated. The accuracy of my attacks increased as the number of power signals used
to calculate T increased. Thus, as the number of power signals increased, the sign of T
converged to be either positive or negative, depending on the value of the bit being
attacked.

My experiments were run a number of times and typical graphs showing the conver-
gence of T versus the number of power signals are given in Figs. 2 and 3. The results of
the first-order DPA attack in Proposition 1 are shown in Fig. 2. The plots in this figure
show the convergence of T for each bit of the byte being attacked. In this example, the
byte being attacked is equal to 0x6B. Thus, for bit #0, T should converge to a positive
value; for bit #1, T should converge to a positive value; for bit #2, T should converge to
a negative value, etc. My experimental result confirmed that this attack is practical.
Fewer than 50 power signals were needed for 7 to converge to the correct value for all
bits. In fact, for most bits, 7' converged with much fewer than 50 signals.

My second experimental results, that confirm the attack of Proposition 2, are given
in Fig. 3. Again, it is clear that this attack is practical. An interesting observation is that
T converges at different rates for different bits in a byte. For some bits, 7 converged
quickly; fewer than 50 power signals were needed. However, for other bits, 7' converged
more slowly. For example, in Fig. 3, bit #5 requires about 2,500 power signals before T
stabilizes to the correct sign. In general, the convergence of 7 in the second-order attack
is slower and more erratic than in the first-order attack. Surprisingly, however, for some
bits, T converges nearly as fast for both attacks.

It should be stressed, however, that these experimental results apply only to my spe-
cific ST16 implementation that was being tested. Implementors of other systems will
need to test or simulate their own implementations to accurately assess any vulnerabil-
ities.

4 Developing an Optimal Second-Order DPA Attack

The attack from Proposition 2 is based on the statistic S = E[ |P PC|] The formula
for statistic S was chosen using an ad hoc approach based on the linear model of the
power consumption signal. Although, an attack using S was experimentally shown to
be practical, statistics that use other combinations of Pg and P~ may lead to even better
attacks. For example, Chari et al. [10] suggest an alternate statistic, based on multiply-
ing Pp and P, rather than taking their difference. Finding the optimal statistic for a
second-order DPA attack is the topic that will now be investigated.
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Fig. 2. First-Order DPA Threshold versus the Number of Power Signals

The above plot shows the convergence of T versus the number of power signals. The byte
being attacked is equal to 0x6B and the resulting convergence plots for each bit of this byte are
given above. The horizontal shaded lines denote the axis where T equals zero. A positive value
for T indicates a bit is a one and a negative value indicates a bit is a zero. In all cases, T'
converges to the correct bit using fewer than 50 power signals.

A DPA attack against a secret bit of a key is a perfect example of a classic decision
problem. Given noisy power consumption data, an attacker needs to decide whether a
key bit is a zero or a one. An optimal decision is made when the probability of a wrong
decision is minimized. Given a set of power consumption data, one can compute prob-
abilities to determine the optimal decision. Let &;, »; and p; be defined as before and let
W represent all of the observed power consumption data. During an attack, I assume
that adversaries know p;, so it is sufficient for them to determine &; J p, . In an optimal
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Fig. 3. Second-Order DPA Threshold versus the Number of Power Signals

The above plot shows the convergence of T versus the number of power signals. The byte
being attacked is equal to 0x6B and the resulting convergence plots for each bit of this byte are
given above. The horizontal shaded lines denote the axis where 7T equals zero. A positive value
for T indicates a bit is a one and a negative value indicates a bit is a zero. In most cases T'
converges to the correct bit using fewer than 50 power signals. However, in the case of bit #5,
T requires more than 2,500 power signals to converge.

attack, the attacker will choose the value for k; [J p; that was more likely to have pro-
duced the observed data W . Symbolically, the decision problem is reduced to solving
the inequality

Wk, Op; =0l SPr[WkOp,=1] (14)
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The job of the attacker is to calculate both of the probabilities in Equation (14). The
larger of the probabilities indicates the most likely value for k; [ p; . To begin calculat-
ing these probabilities, let the observed power consumption data W be represented by
N vectors, where each vector is the power consumption data from a single run of the
algorithm. In a second-order DPA attack, the kth vector is composed of two elements
(by, i), where by, and c;, represent the instantaneous power consumptions for the two
instructions being attacked. In the , algorithm, b, and ¢, represent the normalized
power consumption of the instructions at lines B and C, respectively.

The power consumption values b, and ¢, are random variables having probability
density functions f;, and f;, respectively. The distributions for these variables is assumed
to be Guassian and the distributions are

1,(b) ON(O, 62) /.(c) ON(O, 62)

The probability distributions for b, and ¢, conditioned on &, r; and p;, are also Guas-
sian.

Sy(by| ;= 0 ONG-5, 0%) Sy(by| 7= 1D ONG, 0%
(1s)
fuleg i DKD =0 ONCE ) [y, Dk p;= D ONE, 0%

For shorthand, the results of Equation (15) can be written as
- +
fb :fb(bk|”,':0) fb :fb(bk|”,~: 1)

fo = IAe|r, 0K p;=0)  fo = fley|r, Ok p=1)

Using this shorthand notation and the assumption that 7; is equally likely to be a one or
a zero, the joint conditional probability distributions of b, and ¢; can be shown to be

Jp, by cx|k; B p; = 0) = lfbfc *lfztf:
Tp, b cy|k; B p;=1) = %fbf:-’_%f;fc

The joint conditional probabilities of Equation (16) can now be used to solve the deci-
sion problem that was given in Equation (14).

(16)

Theorem 1. An optimal second-order DPA attack using N vectors (by, c;), where each
vector is assumed to be independent and by, and c;, are assumed to be jointly normal
random variables, reduces to the decision problem

N-1 N-1

M cosh(b, +c¢;) < M cosh(b, —c;)
k=0 k=0
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Proof. Using Equation (16) and the assumption that the (b, ¢;) vectors are independent
for different values of &, the probabilities in Equation (14) can be shown to be

N-1 N—_1
1
Pr[q”|ki|:]pi:0] = rlfb,c(bk’ck|ki|:]pi = _N |—| (fbfc +fbfc
k=0
N-1 | 1
PI’[LP|ki|]pl.= 1] = Hfb,c(bk’ck|kiDP,-= = _N |—| +fbfc
k=0 0

The decision problem is to solve an inequality, so terms appearing in both equations can
be dropped. The decision problem can now be written as

N-1 N-1
N Gl < N Gfe L) (17)
k=0 k=0

Now, the appr0+pr1ate Gaussian distribution functions can be substituted in for
fb f fb and f, . The left side of Equation (17) can now be written as

2 2
O &g g
N-1g 51 %%+§34%%k+ﬂj E D1 %% 35 %k 73
ﬂ @XDDE > O+ exp 5 UD
k*OD 0 o ] 0 0 |
=0 O ol O i
y-10 [l 2[] O b2 b 82[]‘
0 01 %+1%+bﬁ+cﬁ+— 0 01 k+ck & cks+E 0
ﬂ EEXDE%E 3 D‘FEXDE%E 5 O
k*OE] 0 o ] 0 o 0
-0 0 | 0 Ol

2 2
10 g &g
N-1E El%kiﬂ+%kﬁg 2|t et 0 B
[1 texp PL—5 D+expD—z 5 J
o8 O o 0 0 o i
=F0 O [ O 1
y-1d O 2D O 2,2 SZD\
0 01 bk+ck+bk8 et = 0 01 bk+ckfbk8+ck8+§ 0
[1 BXpPG-5 5 0+exph> > 0
o8 O o 0 0 o 0
-P0 O ] O ]



Using Second-Order Power Analysis to Attack DPA Resistant Software 250

Again, the terms that appear in both equations can be cancelled, resulting in the left side
of Equation (17) being reduced to
V-1 N-1
O 0O O O N £
M @xpg%[bﬁcj]D+expDiz[bj+cj]gj =1 cosh —2(bj+cj)
_o5 D2o O (o o 20 )

j=0

and the right side of Equation (17) being reduced to

-1 N-1

g 0 ¢ O O e [ €
M EEXpD——Z[bk—ck]D+eXpD—2[bk—ck]|j:| =M cosh _2(bk_ck)
0 020 O (Ro il 20

0 k=0

. € . . ..
Finally, the common factor of — can be removed, resulting in the decision problem

given by Theorem 1. 20 O

Remark. When |b = C k| » 1, the ad hoc attack in Proposition 2 is a close approxima-
tion to the optimal decision problem. This can be seen since when |b = C k| »1,
V-1 N-1

[ cosh(b,—c)O 5 |bkfck|

=0 k=0
Thus, the optimal attack statistic is approximately proportional to the ad hoc attack sta-
tistic. To verify this result, I repeated my previous experiments using the optimal attack.
The results confirmed that the optimal and ad hoc second-order attacks are approxi-
mately equal.

5 Countermeasures to Higher-Order DPA Attacks

The long-term solution to these attacks it to develop hardware that does not leak secret
information. Examples for potentially secure hardware have been reported by Moore et
al. [13] and Kessel [14]. Statistical tests such as those suggested in [15] can be used to
evaluate such hardware. Until such hardware is deployed, many of the same counter-
measures that are effective against first-order DPA attacks may also help resist higher-
order DPA attacks. Adding random time delays that are difficult for an attacker to
remove is one such countermeasure. Also, keeping the implementation details secret
can be very effective against higher-order attacks. Unlike first-order DPA, higher-order
DPA is more complex if these details are not known to the attacker. Secret splitting
schemes, such as the one proposed by Chari et al. [10], may also be effective.

6 Conclusions

Whichever countermeasures are chosen, designers will need to test their implementa-
tions for specific vulnerabilities. The theoretical analysis and the example of a practical
second-order DPA attack provided in the paper will hopefully help future designers
make their implementations more secure.
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