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Abstract—During recent years, establishing proper metrics 

for measuring system security has received increasing attention. 

Security logs contain vast amounts of information which are 

essential for creating many security metrics. Unfortunately, 

security logs are known to be very large, making their analysis a 

difficult task. Furthermore, recent security metrics research has 

focused on generic concepts, and the issue of collecting security 

metrics with log analysis methods has not been well studied. In 

this paper, we will first focus on using log analysis techniques for 

collecting technical security metrics from security logs of 

common types (e.g., network IDS alarm logs, workstation logs, 

and Netflow data sets). We will also describe a production 

framework for collecting and reporting technical security metrics 

which is based on novel open-source technologies for big data. 
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I. INTRODUCTION 

During recent years, the question “how to measure system 
security?” has received increasing attention, and has been 
addressed in a number of academic papers [1–6], governmental 
research reports [7–9], standards [10], books [11–12], and 
various other documents like recommendations and domain 
overviews [13–15]. For easing the process of measuring the 
system security, the notion of security metric is employed by 
most researchers and practitioners. Although this notion is 
defined in a slightly different way in different documents, all 
sources agree that security metric refers to a standard of 
measurement. For example, one can define the metric number 
of port scanners per day which involves collecting relevant 
data from a firewall after the end of each day. In several 
sources, the following common properties of a good security 
metric have been identified [4, 9, 11–13]: 

 It is unambiguous and meaningful for predefined 
purposes, making sense to the human analyst 

 Taking measurements for the metric should not 
involve significant cost impact 

 Measurements should be taken consistently using 
the same methodology, with appropriate time 
frames between measurements, and preferably 
through an automated data collection procedure 

It is often hard to find a metric that is equally meaningful 

for every possible audience. For example, while the metric 
number of port scanners per day is useful for security 
administrators, it has little value to a higher level executive 
who is interested in business level metrics. In a recent study 
[14], security metrics are classified by their expected audience 
into management, operational, and technical metrics. 
Technical metrics provide details for security experts, but also 
a foundation for other two metric classes which are primarily 
meant for different levels of management [14]. 

Even if the metric is meaningful for a particular audience, 
the knowledge of a wider context around the metric is often 
useful for increasing its clarity [13]. For instance, the metric 
number of port scanners per day does not make much sense if 
one is looking only at a single measurement taken for the last 
24 hours, since it is not known what the usual values for this 
metric in a given environment are. Furthermore, during the 
metrics collection process the knowledge about the 
surrounding environment should be used. For example, if 
known false positive alarms are excluded when the metric 
number of network attacks per day is collected, the value of 
this metric will greatly increase. 

Although metrics related issues have been studied in a 
number of sources, they often lack detailed recommendations 
for implementing security metrics collection and reporting 
system. Furthermore, since many metrics can only be obtained 
from security logs that are often very large in size, metrics 
collection requires a log management solution for big data with 
efficient searching and reporting capabilities. However, many 
traditional log management solutions are not able to cope with 
big data which creates a serious obstacle for metrics collection. 
Moreover, high-end commercial solutions are not affordable 
for many smaller institutions. 

Also, in existing literature metrics reporting is often seen as 
the generation of static reports to end users. One notable 
exception is a hierarchical visualization architecture proposed 
by Savola and Heinonen [3] which supports interactive 
navigation from generic metrics to underlying more specific 
metrics. We take a step further and argue that the security 
metrics reporting system should be able to access raw security 
data sets (such as security logs) and have efficient drill-down 
functionality – the generation of more specific reports on user-
defined queries, and the identification of individual entities in 
raw security data (such as log messages or Netflow records). 
This allows the human analyst to study the details behind the 
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metric and increase its meaningfulness [3], and also helps to 
find root causes for anomalies which have been spotted in 
reported metric values. 

During the last few years, open-source technologies for 
storing, searching, analyzing, and visualizing very large log 
data sets have rapidly emerged (e.g., Elasticsearch, Kibana, and 
Graylog2). These technologies can be used for creating a cost-
efficient security metrics collection and reporting system with 
dynamic reporting and drill-down capabilities for security logs. 

 Unfortunately, these developments have received little 
attention in recent academic and industrial papers, and previous 
works have not focused on using security logs for metrics 
collection. This paper addresses this research gap, and 
discusses log analysis methods and open-source solutions for 
collecting and reporting technical security metrics. The 
remainder of the paper is organized as follows – section II 
provides an overview of related work, section III discusses log 
analysis methods for extracting metrics from security logs of 
common types, section IV describes an open-source based 
production framework for security metrics collection and 
reporting, and section V concludes the paper. 

II. RELATED WORK 

One of the earliest works which suggested the use of 
security metrics was a book by Jaquith [11]. The book 
describes the properties of a good metric and provides a 
detailed discussion on how to report metrics. During the past 
few years, the use of security metrics has been proposed for a 
wide variety of domains, including SCADA and other control 
systems [5, 7, 8], cloud computing [6], application security [2], 
software design [1], and assessment of cyber threats [9]. 

Recently, the Center for Internet Security has published a 
report [14] on standard metric and data definitions that can be 
used across different organizations, in order to collect and 
analyze data on security processes and outcomes. The report 
offers universal guidelines on implementing security metrics 
program in an organization. It also proposes 28 metric 
definitions that have all been categorized in two ways, either 
by relevant business function or by purpose and target 
audience. These metrics are meant to serve as a starting point 
for organizations which are beginning to implement their 
metrics program. Nevertheless, the report does not offer any 
detailed recommendations for implementing a production 
system for metrics collection and reporting. 

A recent paper by the Council on CyberSecurity [15] 
describes 20 critical controls for achieving effective cyber 
defense. The paper considers security log collection and 
analysis as one of the critical controls, and also emphasizes the 
importance of IDS and Netflow based network monitoring. 
Although the main focus of the paper is not on security 
metrics, it proposes a number of specific metrics for measuring 
the efficiency of suggested cyber defense controls.  

Security metrics have also been discussed in the ISO/IEC 
27004:2009 standard [10] which aims to measure, report on, 
and systematically improve the effectiveness of Information 
Security Management Systems that have been specified in 
ISO/IEC 27001. However, the current standard has been 

criticized by some security practitioners for being too generic 
and lacking practical guidance on which particular metrics to 
collect [12]. 

In addition to aforementioned sources, a recent book by 
Brotby and Hinson [12] offers practical recommendations and 
examples on implementing security metrics program. The 
authors of the book propose the novel PRAGMATIC 
methodology for defining, scoring, and ranking metrics, in 
order to identify the most beneficial ones for different 
audiences (e.g., security professionals, managers, and other 
stakeholders). Furthermore, the book describes over 150 
example metrics, in order to help the reader to build his/her 
own metrics program.  

Apart from generic studies, security metrics have also been 
suggested for measuring specific aspects of cyber security. For 
example, a recent study conducted in Sandia National Labs [9] 
discusses possible metrics for cyber threats (malicious 
organizations and individuals), and proposes the use of the 
threat matrix model for assessing cyber threats. 

III. EXTRACTING TECHNICAL SECURITY METRICS FROM 

SECURITY LOGS 

As discussed in the previous section, existing works often 
focus on generic security metric concepts, and lack 
recommendations for implementing production systems for 
metrics collection and reporting. In this section, we will discuss 
the use of log analysis methods and tools for several common 
security log types, in order to collect technical security metrics. 

A. Extracting Security Metrics from Network IDS Alarm Logs 

Today, network IDSs are used by vast majority of 
institutions which are processing data of critical importance. 
Therefore, IDS alarm based security metrics are a popular 
choice for measuring the system security and the threat level 
against the local network. In production systems, it is a 
common practice to measure the number of IDS alarms per 
hour, day, or some other time frame, and report this metric as 
time-series data to the human analyst. Based on IDS alarm 
attributes, a number of additional metrics can be defined (e.g., 
the number of botnet related alarms per time frame). Also, it is 
often worthwhile to use event correlation for detecting alarm 
patterns that correspond to specific attacks, since this allows 
for creating metrics for these attacks (section IIIc provides a 
detailed example on how to employ event correlation for 
extracting metrics from log data). 

Although network IDS alarm based metrics are commonly 
used, they are sensitive to false positives, especially if a larger 
volume of false positive alarms appears and the reported metric 
becomes seriously distorted. Furthermore, IDS signatures 
which detect frequent bad traffic of low importance (such as 
probes from well-known Internet worms) can routinely trigger 
many alarms over longer periods of time [16]. Such alarms 
form the background noise that might again distort reported 
metrics. Although filters for known false positives and threats 
of low importance can be created manually, new types of false 
positives and noise might be easily introduced with signature 
updates and changes in the environment. In order to alleviate 
this problem, we have proposed a real-time IDS alarm 



classification algorithm during our past research which is able 
to distinguish false positives and noise from interesting alarms 
[16]. The proposed algorithm applies various data mining 
techniques to past IDS alarm logs, in order to learn patterns 
that describe noise and false positive alarms, and uses detected 
patterns for real-time IDS alarm classification. The learning 
step of the algorithm is periodically repeated (e.g., once in 24 
hours), in order update the classification knowledge and adjust 
to changes in the surrounding environment. While our previous 
paper described preliminary results of using this algorithm 
[16], we have employed this method for several years in 
production. One of the purposes for introducing this method 
was to filter out irrelevant IDS alarms and calculate more 
meaningful security metrics from important alarms only. 

B. Extracting Security Metrics from Netflow Data 

Netflow is a network traffic statistics collection protocol 
developed by Cisco Systems. If a network device has Netflow 
statistics collection enabled, it will extract data from the header 
of each observed packet, and store these data in Netflow 
records. For each network flow a separate record is maintained, 
where the network flow is identified by the transport protocol, 
source and destination IP addresses, source and destination port 
numbers, and couple of other fields (such as Type of Service). 
Apart from transport protocol, source and destination transport 
addresses, each Netflow record contains a number of additional 
fields, including the total number of packets and bytes for the 
network flow, the union of all TCP flags seen in the packet 
headers of the flow, and the start and end times of the flow. 
Collecting Netflow data in Internet backbone networks requires 
a lot of resources, and is often accomplished with sampling in 
such environments (e.g., only 0.01% of the packets are 
processed). However, in institutional networks that handle 
much less traffic than Internet backbones, collection without 
sampling is often feasible. This provides a detailed picture of 
all communications in monitored network segments without 
storing full packet payloads. In the following discussion, we 
assume that Netflow data are collected without sampling. 

When Netflow data are collected, they can be used for 
calculating a number of security metrics. Firstly, it is often 
useful to set up blacklist-based security metrics, in order to 
monitor and collect trend information on data exchange with 
known malicious, compromised, or suspicious peers in the 
Internet. Some security institutions such as EmergingThreats 
are maintaining publicly available blacklists of known bad 
hosts, including botnet C&C nodes, compromised nodes, and 
Tor nodes (e.g., see [17]). When these blacklists are frequently 
downloaded and used for querying collected Netflow data sets, 
it is straightforward to create metrics that describe 
communications with malicious peers. For example, Fig. 1 and 
Fig. 2 depict metrics which reflect daily traffic exchanged with 
known compromised nodes and Tor network nodes during the 
last 2 months (Fig. 1 and Fig. 2 display the average bits-per-
second traffic rate for each day, and data for the metrics have 
been collected on the outer network perimeter of a large 
institution). 

Collected Netflow data can also be used for creating 
metrics for abnormal and potentially malicious network 
activity which supplement similar IDS alarm based metrics. 

For example, since a Netflow record contains a field for 
holding the union of all observed TCP flags for the given flow, 
it is straightforward to write a filtering condition for detecting 
flows with illegal flag combinations (e.g., TCP FIN flag never 
appears without TCP ACK flag in normal network traffic). 
Based on detected flows, metrics can be set up that describe 
various aspects of illegal traffic (such as the number of distinct 
Internet hosts per hour which are sources of abnormal traffic). 

 

 

Fig. 1. Daily traffic exchanged with known compromised hosts (reflects 

probing activity from infected Internet hosts, but also suspicious or unwanted 
communications from local network to malicious hosts) 

 

 

Fig. 2. Daily traffic exchanged with known Tor network hosts (reflects Tor 

client traffic to institutional web site and other public services, but can also 
reveal Tor clients in the institutional network) 

Netflow statistics collection and analysis can also be 
employed in private networks, in order to discover illegal 
devices and services, malicious insiders, and infected 
computers, since they often manifest themselves through 
anomalous network traffic which differs from regular network 
usage patterns. Netflow based network monitoring offers some 
unique advantages. Firstly, it does not involve packet payload 
inspection and consumes much less computing resources than 
network IDS. Also, traditionally illegal devices and services 
are detected by scanning the entire network with dedicated 
tools. However, this is an expensive and time consuming 
procedure which might also alert the owner of illegal device or 
service. In contrast, Netflow based detection is stealthy and 
does not consume network bandwidth. 

However, service detection from Netflow data involves 
several caveats. Most notably, due to commonly found design 
flaws in Netflow implementations, some Netflow records can 
have imprecise timestamps [18, 19]. As a result, if the Netflow 
record for service-to-client traffic is incorrectly tagged with an 
earlier timestamp than the record for client-to-service traffic, 
the service can be mistakenly taken for the client. 



 

Fig. 3. Daily login failures for all institutional Windows workstations (note that unexpected spike in April 22 reflects an account probing activity by malware 

which infected one of the workstations, but was promptly detected and removed) 

Also, some router-based Netflow implementations might 
leave the “union-of-flags” field unset [18], and this exacerbates 
service detection further. For addressing these issues, various 
heuristic techniques have been suggested [19, 20]. After 
services and hosts have been identified from Netflow data and 
compared with the lists of legitimate hosts and services, it is 
straightforward to identify illegal devices and services, and 
create corresponding security metrics (e.g., the number of 
illegal devices by organizational unit as recommended in [15]). 

In order to detect anomalous network traffic in private 
networks that might indicate malware infection, illegal data 
access, or malicious insider activity, various methods can be 
applied to Netflow data sets. For example, if workstations in 
the private network are using a small set of well-known 
services, a simple filtering condition might be written which 
reports workstation traffic not related to known services (this 
would easily allow to find a number of network misuse cases, 
such as malware propagation from an infected workstation to 
other workstations). For more complex networks, automated 
methods might be used that learn normal network usage 
patterns from past Netflow data sets, and use detected 
knowledge for finding deviations from normal behavior. For 
example, during our past research, we have developed a 
method which learns and updates service usage profiles for 
each individual client node and the entire network, and uses 
these profiles for real-time detection of anomalous TCP and 
UDP network flows [20]. Once anomalous network flows have 
been identified, it is straightforward to create metrics from 
them (e.g., the number of anomalous TCP flows per 24 hours). 

C. Extracting Security Metrics from Workstation Logs 

Workstations in institutional networks are major targets for 
malware and targeted attacks, and therefore their monitoring 
and the creation of security metrics from monitoring 
information plays an important role. Significant amount of 
workstation security status information can be obtained from 
workstation logs, such as login failures into the workstation, 
antivirus alerts, etc. Unfortunately, since workstations create 
large volumes of log data, the collection and analysis of these 
data is expensive and thus often neglected. A recent SANS 
paper by Anthony [21] suggests several strategies for setting up 
a centralized log collection and analysis framework for 
Windows workstations, and identifies a number of event types 
which should be collected, monitored, and correlated. In order 
to minimize the cost of log collection and analysis, the paper 

[21] proposes to send events of relevant types only to the 
central collection point where they are analyzed with SEC [22]. 
Another recent paper [23] provides a number of detailed 
recommendations for monitoring Windows event logs, in order 
to detect adversarial activities. 

One group of well-known security event types in the 
workstation log reflects login attempts into the local 
workstation. Note that these event types are not Windows-
specific, but can also be easily identified for UNIX-like 
workstation platforms (e.g., login failures for SSH or FTP 
services). As discussed in [15], user account monitoring and 
control is one of the critical cyber defense controls. Also, the 
monitoring of unusual login attempts helps to detect malware 
propagation [21] and malicious insiders [15]. For these 
reasons, it makes sense to set up metrics that describe different 
types of successful and failed login attempts into workstations 
(e.g., the number of successful logins from unexpected remote 
hosts per 1 hour). For example, Fig. 3 depicts a metric which 
presents daily numbers of login failures for all institutional 
workstations during 1 month time frame (this example metric 
has been collected in a large institutional network from the logs 
of thousands of workstations). In addition to the above 
scenario, several other metrics could be collected from 
workstation logs, for example, the number of distinct 
workstations or accounts with login failures in a given 
timeframe (sudden increase in the number of hosts and 
accounts might indicate massive account probing over the 
entire network, in order to get unauthorized access to data). 

Also, event correlation techniques are often useful for 
creating more meaningful metrics from workstation log events. 
For example, instead of including each accidental login failure 
in a relevant metric, the login failure might only be taken into 
account if it is not followed by a successful login within a 
reasonable amount of time (e.g., 60 seconds). Fig. 4 displays an 
example SEC event correlation rule for Linux platform which 
processes events for failed and successful SSH login attempts, 
and sends collected metric values to Graphite reporting and 
visualization system.  

Apart from event types mentioned above, workstation logs 
contain a wide variety of other events that can be harnessed for 
creating useful security metrics. For example, Fig. 5 presents 
two metrics which indicate daily numbers of update and 
patching failures for Windows operating system and Internet 
Explorer (depicted metrics have been collected from the logs of 
thousands of Windows workstations of a large institution, and 



the metrics are used for measuring the quality of the patching 
process). Finally, it should be noted that the relevance of a 
particular event type for the metric collection process depends 
on the nature of the environment (e.g., in many regular 
networks USB insertion events are unimportant, while in 
classified networks they often deserve closer inspection).  

 

# if the login failure is not followed by a successful login 
# within 60 seconds, include the failure in the metric 
 
type=PairWithWindow 
ptype=RegExp 
pattern=sshd\[\d+\]: Failed .+ for (?:invalid user )?(\S+) \ 
from ([\d.]+) port \d+ ssh2 
desc=SSH login failed for user $1 from IP $2 
action=lcall %count %count -> ( sub { ++$_[0] } ) 
ptype2=RegExp 
pattern2=sshd\[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2 
desc2=SSH login successful for user %1 from IP %2 
action2=none 
window=60 
 
# send the current metric value to the Graphite server 
# in every 5 minutes and reset the metric counter 
 
type=Calendar 
time=*/5 * * * * 
desc=report SSH login failure metric once in 5 minutes 
action=if %count () else ( assign %count 0 ); eval %n "\n"; \ 
  tcpsock graphite:2003 login.failures.ssh.total5m %count %u%n; \ 
  free %count 

 

Fig. 4. Sample SEC ruleset for collecting the metric number of SSH login 

failures for all workstations per 5 minutes, and sending it to Graphite 

reporting and visualization platform 

D. Extracting Security Metrics from Other Logs 

Security metrics can be extracted from a number of other 
logs, including server and router logs, firewall logs, service 
logs, etc. Establishing proper metrics is especially important 
for public services that can be accessed from the Internet. 
Apart from creating metrics from events which describe known 
security issues, one can also process both regular and unusual 
events. For example, while normally most HTTP client 
requests are for existing web pages, occasionally clients might 
request non-existing or forbidden pages that produce HTTP log 
entries with 4xx response codes. However, unexpectedly large 
volumes of 4xx log messages or normal 200 messages can 
indicate a reconnaissance scan or the start of a DDoS attack. 
Deriving metrics from such messages will help to assess the 
threat level for the service. Also, applying event correlation 

techniques for a service log or cross-correlating messages from 
different logs (e.g., service log and IDS log) is often useful for 
detecting advanced threats, and creating metrics for these 
threats (see our previous papers [22, 24] for examples on how 
to employ SEC for various event correlation tasks). 

IV. SECURITY METRICS COLLECTION AND REPORTING 

FRAMEWORK FOR SECURITY LOGS 

In this section, we will describe a production framework for 
collecting and reporting security metrics that harnesses log 
analysis techniques outlined in the previous section. The 
framework has been set up in a large institution which is an 
important part of the national critical information 
infrastructure, and has a complex organizational network 
consisting of many thousands of workstations, servers, network 
devices, IDSs, firewalls, and other nodes. 

As discussed in section I, the collection of security metrics 
should not involve significant cost impact, and it should be 
preferably done with an automated collection system. In order 
to address these requirements, our framework is centralized, 
since analyzing security logs locally at workstations, servers, 
and other nodes would impose additional load on them, and 
interfere with normal system activities. Also, decentralized log 
analysis would considerably increase the complexity of the 
metrics collection system. For reducing the implementation 
costs, our framework runs on CentOS Linux platform and is 
based on open-source solutions. 

Our centralized framework is receiving security log data 
from all relevant nodes in the organizational network over the 
syslog and Netflow protocols. For events which are not 
natively in syslog format, appropriate format conversion 
gateways are used (e.g., Windows EventLog messages are 
converted to syslog format with Nxlog [25]). Incoming syslog 
events are received by several central log collection servers 
that are running Syslog-ng [26], and collected events are 
further correlated by a number of SEC instances. During the 
event correlation, a number of security metrics are extracted 
and sent to Graphite reporting and visualization system. 
Graphite [27] has been specifically designed for performing 
computations on time-series data, and generating wide variety 
of graphs and reports from computation results.  

 

 

 

Fig. 5. Daily updating and patching failures of Windows operating system and Internet Explorer for all institutional Windows workstations 

 



For collecting unsampled Netflow data from network 
devices and dedicated probes, our centralized framework uses 
NfSen [28] that is a flexible Netflow visualization tool with 
drill-down capabilities (see Fig. 1 and Fig. 2 for example 
metric reports generated with NfSen).  

From syslog and Netflow collection servers, all syslog 
events and Netflow data are forwarded to a central 
Elasticsearch [29] database cluster which the end users are 
accessing through Kibana visualization interface [30]. The 
database cluster runs on several CentOS Linux nodes with two 
quad-core CPUs and 48GB of memory. Currently, almost 100 
million security log records are stored in Elasticsearch on a 
daily basis (the records are kept in Elasticsearch for three 
months). In order to receive, parse, and store these data, we are 
using Rsyslog [31] and Logstash [32]. According to our past 
experiments, Rsyslog is one of the most efficient syslog servers 
with Elasticsearch support, while Logstash supports flexible 
parsing of syslog and Netflow data [33]. In Kibana, more than 
20 dashboards have been set up for displaying various security 
metrics (Fig. 3 and Fig. 5 display two metric report examples). 
All reports generated with Kibana are interactive and allow for 
drilling down to more specific reports and individual log 
records. Therefore, after spotting an anomaly in a metric report, 
the root cause events for this anomaly can be quickly 
identified. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have discussed the use of security logs for 
collecting and reporting of security metrics, and have reviewed 
a number of metrics collection scenarios for common security 
log types. Also, we have described a production framework for 
metrics collection and reporting which is based on open-source 
log management technologies. For the future work, we plan to 
research log analysis methods for insider threat detection, and 
to implement relevant algorithms within our framework. 
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