

Using Security Logs for Collecting and Reporting Technical Security Metrics

Risto Vaarandi and Mauno Pihelgas

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current

or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication at the 2014 IEEE Military Communications Conference, and the final version of the

paper is included in Proceedings of the 2014 IEEE Military Communications Conference (DOI: 10.1109/MILCOM.2014.53)

Using Security Logs for Collecting and Reporting

Technical Security Metrics

Risto Vaarandi and Mauno Pihelgas

NATO Cooperative Cyber Defence Centre of Excellence

Tallinn, Estonia

firstname.lastname@ccdcoe.org

Abstract—During recent years, establishing proper metrics

for measuring system security has received increasing attention.

Security logs contain vast amounts of information which are

essential for creating many security metrics. Unfortunately,

security logs are known to be very large, making their analysis a

difficult task. Furthermore, recent security metrics research has

focused on generic concepts, and the issue of collecting security

metrics with log analysis methods has not been well studied. In

this paper, we will first focus on using log analysis techniques for

collecting technical security metrics from security logs of

common types (e.g., network IDS alarm logs, workstation logs,

and Netflow data sets). We will also describe a production

framework for collecting and reporting technical security metrics

which is based on novel open-source technologies for big data.

Keywords—security metrics; security log analysis

I. INTRODUCTION

During recent years, the question “how to measure system
security?” has received increasing attention, and has been
addressed in a number of academic papers [1–6], governmental
research reports [7–9], standards [10], books [11–12], and
various other documents like recommendations and domain
overviews [13–15]. For easing the process of measuring the
system security, the notion of security metric is employed by
most researchers and practitioners. Although this notion is
defined in a slightly different way in different documents, all
sources agree that security metric refers to a standard of
measurement. For example, one can define the metric number
of port scanners per day which involves collecting relevant
data from a firewall after the end of each day. In several
sources, the following common properties of a good security
metric have been identified [4, 9, 11–13]:

 It is unambiguous and meaningful for predefined
purposes, making sense to the human analyst

 Taking measurements for the metric should not
involve significant cost impact

 Measurements should be taken consistently using
the same methodology, with appropriate time
frames between measurements, and preferably
through an automated data collection procedure

It is often hard to find a metric that is equally meaningful

for every possible audience. For example, while the metric
number of port scanners per day is useful for security
administrators, it has little value to a higher level executive
who is interested in business level metrics. In a recent study
[14], security metrics are classified by their expected audience
into management, operational, and technical metrics.
Technical metrics provide details for security experts, but also
a foundation for other two metric classes which are primarily
meant for different levels of management [14].

Even if the metric is meaningful for a particular audience,
the knowledge of a wider context around the metric is often
useful for increasing its clarity [13]. For instance, the metric
number of port scanners per day does not make much sense if
one is looking only at a single measurement taken for the last
24 hours, since it is not known what the usual values for this
metric in a given environment are. Furthermore, during the
metrics collection process the knowledge about the
surrounding environment should be used. For example, if
known false positive alarms are excluded when the metric
number of network attacks per day is collected, the value of
this metric will greatly increase.

Although metrics related issues have been studied in a
number of sources, they often lack detailed recommendations
for implementing security metrics collection and reporting
system. Furthermore, since many metrics can only be obtained
from security logs that are often very large in size, metrics
collection requires a log management solution for big data with
efficient searching and reporting capabilities. However, many
traditional log management solutions are not able to cope with
big data which creates a serious obstacle for metrics collection.
Moreover, high-end commercial solutions are not affordable
for many smaller institutions.

Also, in existing literature metrics reporting is often seen as
the generation of static reports to end users. One notable
exception is a hierarchical visualization architecture proposed
by Savola and Heinonen [3] which supports interactive
navigation from generic metrics to underlying more specific
metrics. We take a step further and argue that the security
metrics reporting system should be able to access raw security
data sets (such as security logs) and have efficient drill-down
functionality – the generation of more specific reports on user-
defined queries, and the identification of individual entities in
raw security data (such as log messages or Netflow records).
This allows the human analyst to study the details behind the

This paper is a product of NATO CCDCOE. It does not necessarily
reflect the policy or the opinion of NATO CCDCOE or of NATO. NATO

CCDCOE may not be held responsible for any loss or harm arising from the

use of information contained in this paper and is not responsible for the
content of external sources, including websites referenced in this paper.

metric and increase its meaningfulness [3], and also helps to
find root causes for anomalies which have been spotted in
reported metric values.

During the last few years, open-source technologies for
storing, searching, analyzing, and visualizing very large log
data sets have rapidly emerged (e.g., Elasticsearch, Kibana, and
Graylog2). These technologies can be used for creating a cost-
efficient security metrics collection and reporting system with
dynamic reporting and drill-down capabilities for security logs.

 Unfortunately, these developments have received little
attention in recent academic and industrial papers, and previous
works have not focused on using security logs for metrics
collection. This paper addresses this research gap, and
discusses log analysis methods and open-source solutions for
collecting and reporting technical security metrics. The
remainder of the paper is organized as follows – section II
provides an overview of related work, section III discusses log
analysis methods for extracting metrics from security logs of
common types, section IV describes an open-source based
production framework for security metrics collection and
reporting, and section V concludes the paper.

II. RELATED WORK

One of the earliest works which suggested the use of
security metrics was a book by Jaquith [11]. The book
describes the properties of a good metric and provides a
detailed discussion on how to report metrics. During the past
few years, the use of security metrics has been proposed for a
wide variety of domains, including SCADA and other control
systems [5, 7, 8], cloud computing [6], application security [2],
software design [1], and assessment of cyber threats [9].

Recently, the Center for Internet Security has published a
report [14] on standard metric and data definitions that can be
used across different organizations, in order to collect and
analyze data on security processes and outcomes. The report
offers universal guidelines on implementing security metrics
program in an organization. It also proposes 28 metric
definitions that have all been categorized in two ways, either
by relevant business function or by purpose and target
audience. These metrics are meant to serve as a starting point
for organizations which are beginning to implement their
metrics program. Nevertheless, the report does not offer any
detailed recommendations for implementing a production
system for metrics collection and reporting.

A recent paper by the Council on CyberSecurity [15]
describes 20 critical controls for achieving effective cyber
defense. The paper considers security log collection and
analysis as one of the critical controls, and also emphasizes the
importance of IDS and Netflow based network monitoring.
Although the main focus of the paper is not on security
metrics, it proposes a number of specific metrics for measuring
the efficiency of suggested cyber defense controls.

Security metrics have also been discussed in the ISO/IEC
27004:2009 standard [10] which aims to measure, report on,
and systematically improve the effectiveness of Information
Security Management Systems that have been specified in
ISO/IEC 27001. However, the current standard has been

criticized by some security practitioners for being too generic
and lacking practical guidance on which particular metrics to
collect [12].

In addition to aforementioned sources, a recent book by
Brotby and Hinson [12] offers practical recommendations and
examples on implementing security metrics program. The
authors of the book propose the novel PRAGMATIC
methodology for defining, scoring, and ranking metrics, in
order to identify the most beneficial ones for different
audiences (e.g., security professionals, managers, and other
stakeholders). Furthermore, the book describes over 150
example metrics, in order to help the reader to build his/her
own metrics program.

Apart from generic studies, security metrics have also been
suggested for measuring specific aspects of cyber security. For
example, a recent study conducted in Sandia National Labs [9]
discusses possible metrics for cyber threats (malicious
organizations and individuals), and proposes the use of the
threat matrix model for assessing cyber threats.

III. EXTRACTING TECHNICAL SECURITY METRICS FROM

SECURITY LOGS

As discussed in the previous section, existing works often
focus on generic security metric concepts, and lack
recommendations for implementing production systems for
metrics collection and reporting. In this section, we will discuss
the use of log analysis methods and tools for several common
security log types, in order to collect technical security metrics.

A. Extracting Security Metrics from Network IDS Alarm Logs

Today, network IDSs are used by vast majority of
institutions which are processing data of critical importance.
Therefore, IDS alarm based security metrics are a popular
choice for measuring the system security and the threat level
against the local network. In production systems, it is a
common practice to measure the number of IDS alarms per
hour, day, or some other time frame, and report this metric as
time-series data to the human analyst. Based on IDS alarm
attributes, a number of additional metrics can be defined (e.g.,
the number of botnet related alarms per time frame). Also, it is
often worthwhile to use event correlation for detecting alarm
patterns that correspond to specific attacks, since this allows
for creating metrics for these attacks (section IIIc provides a
detailed example on how to employ event correlation for
extracting metrics from log data).

Although network IDS alarm based metrics are commonly
used, they are sensitive to false positives, especially if a larger
volume of false positive alarms appears and the reported metric
becomes seriously distorted. Furthermore, IDS signatures
which detect frequent bad traffic of low importance (such as
probes from well-known Internet worms) can routinely trigger
many alarms over longer periods of time [16]. Such alarms
form the background noise that might again distort reported
metrics. Although filters for known false positives and threats
of low importance can be created manually, new types of false
positives and noise might be easily introduced with signature
updates and changes in the environment. In order to alleviate
this problem, we have proposed a real-time IDS alarm

classification algorithm during our past research which is able
to distinguish false positives and noise from interesting alarms
[16]. The proposed algorithm applies various data mining
techniques to past IDS alarm logs, in order to learn patterns
that describe noise and false positive alarms, and uses detected
patterns for real-time IDS alarm classification. The learning
step of the algorithm is periodically repeated (e.g., once in 24
hours), in order update the classification knowledge and adjust
to changes in the surrounding environment. While our previous
paper described preliminary results of using this algorithm
[16], we have employed this method for several years in
production. One of the purposes for introducing this method
was to filter out irrelevant IDS alarms and calculate more
meaningful security metrics from important alarms only.

B. Extracting Security Metrics from Netflow Data

Netflow is a network traffic statistics collection protocol
developed by Cisco Systems. If a network device has Netflow
statistics collection enabled, it will extract data from the header
of each observed packet, and store these data in Netflow
records. For each network flow a separate record is maintained,
where the network flow is identified by the transport protocol,
source and destination IP addresses, source and destination port
numbers, and couple of other fields (such as Type of Service).
Apart from transport protocol, source and destination transport
addresses, each Netflow record contains a number of additional
fields, including the total number of packets and bytes for the
network flow, the union of all TCP flags seen in the packet
headers of the flow, and the start and end times of the flow.
Collecting Netflow data in Internet backbone networks requires
a lot of resources, and is often accomplished with sampling in
such environments (e.g., only 0.01% of the packets are
processed). However, in institutional networks that handle
much less traffic than Internet backbones, collection without
sampling is often feasible. This provides a detailed picture of
all communications in monitored network segments without
storing full packet payloads. In the following discussion, we
assume that Netflow data are collected without sampling.

When Netflow data are collected, they can be used for
calculating a number of security metrics. Firstly, it is often
useful to set up blacklist-based security metrics, in order to
monitor and collect trend information on data exchange with
known malicious, compromised, or suspicious peers in the
Internet. Some security institutions such as EmergingThreats
are maintaining publicly available blacklists of known bad
hosts, including botnet C&C nodes, compromised nodes, and
Tor nodes (e.g., see [17]). When these blacklists are frequently
downloaded and used for querying collected Netflow data sets,
it is straightforward to create metrics that describe
communications with malicious peers. For example, Fig. 1 and
Fig. 2 depict metrics which reflect daily traffic exchanged with
known compromised nodes and Tor network nodes during the
last 2 months (Fig. 1 and Fig. 2 display the average bits-per-
second traffic rate for each day, and data for the metrics have
been collected on the outer network perimeter of a large
institution).

Collected Netflow data can also be used for creating
metrics for abnormal and potentially malicious network
activity which supplement similar IDS alarm based metrics.

For example, since a Netflow record contains a field for
holding the union of all observed TCP flags for the given flow,
it is straightforward to write a filtering condition for detecting
flows with illegal flag combinations (e.g., TCP FIN flag never
appears without TCP ACK flag in normal network traffic).
Based on detected flows, metrics can be set up that describe
various aspects of illegal traffic (such as the number of distinct
Internet hosts per hour which are sources of abnormal traffic).

Fig. 1. Daily traffic exchanged with known compromised hosts (reflects

probing activity from infected Internet hosts, but also suspicious or unwanted
communications from local network to malicious hosts)

Fig. 2. Daily traffic exchanged with known Tor network hosts (reflects Tor

client traffic to institutional web site and other public services, but can also
reveal Tor clients in the institutional network)

Netflow statistics collection and analysis can also be
employed in private networks, in order to discover illegal
devices and services, malicious insiders, and infected
computers, since they often manifest themselves through
anomalous network traffic which differs from regular network
usage patterns. Netflow based network monitoring offers some
unique advantages. Firstly, it does not involve packet payload
inspection and consumes much less computing resources than
network IDS. Also, traditionally illegal devices and services
are detected by scanning the entire network with dedicated
tools. However, this is an expensive and time consuming
procedure which might also alert the owner of illegal device or
service. In contrast, Netflow based detection is stealthy and
does not consume network bandwidth.

However, service detection from Netflow data involves
several caveats. Most notably, due to commonly found design
flaws in Netflow implementations, some Netflow records can
have imprecise timestamps [18, 19]. As a result, if the Netflow
record for service-to-client traffic is incorrectly tagged with an
earlier timestamp than the record for client-to-service traffic,
the service can be mistakenly taken for the client.

Fig. 3. Daily login failures for all institutional Windows workstations (note that unexpected spike in April 22 reflects an account probing activity by malware

which infected one of the workstations, but was promptly detected and removed)

Also, some router-based Netflow implementations might
leave the “union-of-flags” field unset [18], and this exacerbates
service detection further. For addressing these issues, various
heuristic techniques have been suggested [19, 20]. After
services and hosts have been identified from Netflow data and
compared with the lists of legitimate hosts and services, it is
straightforward to identify illegal devices and services, and
create corresponding security metrics (e.g., the number of
illegal devices by organizational unit as recommended in [15]).

In order to detect anomalous network traffic in private
networks that might indicate malware infection, illegal data
access, or malicious insider activity, various methods can be
applied to Netflow data sets. For example, if workstations in
the private network are using a small set of well-known
services, a simple filtering condition might be written which
reports workstation traffic not related to known services (this
would easily allow to find a number of network misuse cases,
such as malware propagation from an infected workstation to
other workstations). For more complex networks, automated
methods might be used that learn normal network usage
patterns from past Netflow data sets, and use detected
knowledge for finding deviations from normal behavior. For
example, during our past research, we have developed a
method which learns and updates service usage profiles for
each individual client node and the entire network, and uses
these profiles for real-time detection of anomalous TCP and
UDP network flows [20]. Once anomalous network flows have
been identified, it is straightforward to create metrics from
them (e.g., the number of anomalous TCP flows per 24 hours).

C. Extracting Security Metrics from Workstation Logs

Workstations in institutional networks are major targets for
malware and targeted attacks, and therefore their monitoring
and the creation of security metrics from monitoring
information plays an important role. Significant amount of
workstation security status information can be obtained from
workstation logs, such as login failures into the workstation,
antivirus alerts, etc. Unfortunately, since workstations create
large volumes of log data, the collection and analysis of these
data is expensive and thus often neglected. A recent SANS
paper by Anthony [21] suggests several strategies for setting up
a centralized log collection and analysis framework for
Windows workstations, and identifies a number of event types
which should be collected, monitored, and correlated. In order
to minimize the cost of log collection and analysis, the paper

[21] proposes to send events of relevant types only to the
central collection point where they are analyzed with SEC [22].
Another recent paper [23] provides a number of detailed
recommendations for monitoring Windows event logs, in order
to detect adversarial activities.

One group of well-known security event types in the
workstation log reflects login attempts into the local
workstation. Note that these event types are not Windows-
specific, but can also be easily identified for UNIX-like
workstation platforms (e.g., login failures for SSH or FTP
services). As discussed in [15], user account monitoring and
control is one of the critical cyber defense controls. Also, the
monitoring of unusual login attempts helps to detect malware
propagation [21] and malicious insiders [15]. For these
reasons, it makes sense to set up metrics that describe different
types of successful and failed login attempts into workstations
(e.g., the number of successful logins from unexpected remote
hosts per 1 hour). For example, Fig. 3 depicts a metric which
presents daily numbers of login failures for all institutional
workstations during 1 month time frame (this example metric
has been collected in a large institutional network from the logs
of thousands of workstations). In addition to the above
scenario, several other metrics could be collected from
workstation logs, for example, the number of distinct
workstations or accounts with login failures in a given
timeframe (sudden increase in the number of hosts and
accounts might indicate massive account probing over the
entire network, in order to get unauthorized access to data).

Also, event correlation techniques are often useful for
creating more meaningful metrics from workstation log events.
For example, instead of including each accidental login failure
in a relevant metric, the login failure might only be taken into
account if it is not followed by a successful login within a
reasonable amount of time (e.g., 60 seconds). Fig. 4 displays an
example SEC event correlation rule for Linux platform which
processes events for failed and successful SSH login attempts,
and sends collected metric values to Graphite reporting and
visualization system.

Apart from event types mentioned above, workstation logs
contain a wide variety of other events that can be harnessed for
creating useful security metrics. For example, Fig. 5 presents
two metrics which indicate daily numbers of update and
patching failures for Windows operating system and Internet
Explorer (depicted metrics have been collected from the logs of
thousands of Windows workstations of a large institution, and

the metrics are used for measuring the quality of the patching
process). Finally, it should be noted that the relevance of a
particular event type for the metric collection process depends
on the nature of the environment (e.g., in many regular
networks USB insertion events are unimportant, while in
classified networks they often deserve closer inspection).

if the login failure is not followed by a successful login
within 60 seconds, include the failure in the metric

type=PairWithWindow
ptype=RegExp
pattern=sshd\[\d+\]: Failed .+ for (?:invalid user)?(\S+) \
from ([\d.]+) port \d+ ssh2
desc=SSH login failed for user $1 from IP $2
action=lcall %count %count -> (sub { ++$_[0] })
ptype2=RegExp
pattern2=sshd\[\d+\]: Accepted .+ for $1 from $2 port \d+ ssh2
desc2=SSH login successful for user %1 from IP %2
action2=none
window=60

send the current metric value to the Graphite server
in every 5 minutes and reset the metric counter

type=Calendar
time=*/5 * * * *
desc=report SSH login failure metric once in 5 minutes
action=if %count () else (assign %count 0); eval %n "\n"; \
 tcpsock graphite:2003 login.failures.ssh.total5m %count %u%n; \
 free %count

Fig. 4. Sample SEC ruleset for collecting the metric number of SSH login

failures for all workstations per 5 minutes, and sending it to Graphite

reporting and visualization platform

D. Extracting Security Metrics from Other Logs

Security metrics can be extracted from a number of other
logs, including server and router logs, firewall logs, service
logs, etc. Establishing proper metrics is especially important
for public services that can be accessed from the Internet.
Apart from creating metrics from events which describe known
security issues, one can also process both regular and unusual
events. For example, while normally most HTTP client
requests are for existing web pages, occasionally clients might
request non-existing or forbidden pages that produce HTTP log
entries with 4xx response codes. However, unexpectedly large
volumes of 4xx log messages or normal 200 messages can
indicate a reconnaissance scan or the start of a DDoS attack.
Deriving metrics from such messages will help to assess the
threat level for the service. Also, applying event correlation

techniques for a service log or cross-correlating messages from
different logs (e.g., service log and IDS log) is often useful for
detecting advanced threats, and creating metrics for these
threats (see our previous papers [22, 24] for examples on how
to employ SEC for various event correlation tasks).

IV. SECURITY METRICS COLLECTION AND REPORTING

FRAMEWORK FOR SECURITY LOGS

In this section, we will describe a production framework for
collecting and reporting security metrics that harnesses log
analysis techniques outlined in the previous section. The
framework has been set up in a large institution which is an
important part of the national critical information
infrastructure, and has a complex organizational network
consisting of many thousands of workstations, servers, network
devices, IDSs, firewalls, and other nodes.

As discussed in section I, the collection of security metrics
should not involve significant cost impact, and it should be
preferably done with an automated collection system. In order
to address these requirements, our framework is centralized,
since analyzing security logs locally at workstations, servers,
and other nodes would impose additional load on them, and
interfere with normal system activities. Also, decentralized log
analysis would considerably increase the complexity of the
metrics collection system. For reducing the implementation
costs, our framework runs on CentOS Linux platform and is
based on open-source solutions.

Our centralized framework is receiving security log data
from all relevant nodes in the organizational network over the
syslog and Netflow protocols. For events which are not
natively in syslog format, appropriate format conversion
gateways are used (e.g., Windows EventLog messages are
converted to syslog format with Nxlog [25]). Incoming syslog
events are received by several central log collection servers
that are running Syslog-ng [26], and collected events are
further correlated by a number of SEC instances. During the
event correlation, a number of security metrics are extracted
and sent to Graphite reporting and visualization system.
Graphite [27] has been specifically designed for performing
computations on time-series data, and generating wide variety
of graphs and reports from computation results.

Fig. 5. Daily updating and patching failures of Windows operating system and Internet Explorer for all institutional Windows workstations

For collecting unsampled Netflow data from network
devices and dedicated probes, our centralized framework uses
NfSen [28] that is a flexible Netflow visualization tool with
drill-down capabilities (see Fig. 1 and Fig. 2 for example
metric reports generated with NfSen).

From syslog and Netflow collection servers, all syslog
events and Netflow data are forwarded to a central
Elasticsearch [29] database cluster which the end users are
accessing through Kibana visualization interface [30]. The
database cluster runs on several CentOS Linux nodes with two
quad-core CPUs and 48GB of memory. Currently, almost 100
million security log records are stored in Elasticsearch on a
daily basis (the records are kept in Elasticsearch for three
months). In order to receive, parse, and store these data, we are
using Rsyslog [31] and Logstash [32]. According to our past
experiments, Rsyslog is one of the most efficient syslog servers
with Elasticsearch support, while Logstash supports flexible
parsing of syslog and Netflow data [33]. In Kibana, more than
20 dashboards have been set up for displaying various security
metrics (Fig. 3 and Fig. 5 display two metric report examples).
All reports generated with Kibana are interactive and allow for
drilling down to more specific reports and individual log
records. Therefore, after spotting an anomaly in a metric report,
the root cause events for this anomaly can be quickly
identified.

V. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the use of security logs for
collecting and reporting of security metrics, and have reviewed
a number of metrics collection scenarios for common security
log types. Also, we have described a production framework for
metrics collection and reporting which is based on open-source
log management technologies. For the future work, we plan to
research log analysis methods for insider threat detection, and
to implement relevant algorithms within our framework.

REFERENCES

[1] B. Alshammari, C. Fidge, and D. Corney, “Security Metrics for Object-
Oriented Class Designs,” in Proceedings of 2009 International
Conference on Quality Software, pp. 11-20

[2] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen, “Using
security patterns to combine security metrics,” in Proceedings of 2008
International Conference on Availability, Reliability and Security, pp.
1156-1163

[3] R. M. Savola and P. Heinonen, “A Visualization and Modeling Tool for
Security Metrics and Measurements Management,” in Proceedings of
2011 Information Security for South Africa Conference, pp. 1-8

[4] R. Barabanov, S. Kowalski, and L. Yngström, “Information Security
Metrics: Research Directions,” University of Stockholm, Technical
Report, 2011

[5] W. Boyer and M. McQueen, “Ideal Based Cyber Security Technical
Metrics for Control Systems,” in Proceedings of 2007 International
Conference on Critical Information Infrastructures Security, pp.
246-260

[6] C. A. da Silva, A. S. Ferreira, and P. L. de Geus, “A Methodology for
Management of Cloud Computing using Security Criteria,” in
Proceedings of 2012 IEEE Latin American Conference on Cloud
Computing, pp. 49-54

[7] R. A. Kisner, W. W. Manges, L. P. MacIntyre, J. J. Nutaro, J. K. Munro,
P. D. Ewing, M. Howlander, P. T. Kuruganti, R. M. Wallace, and M. M.
Olama, “Cybersecurity through Real-Time Distributed Control
Systems,” Oak Ridge National Laboratory, Technical Report
ORNL/TM-2010/30, February 2010

[8] A. McIntyre, B. Becker, and R. Halbgewachs, “Security Metrics for
Process Control Systems,” Sandia National Laboratories, Sandia Report
SAND2007-2070P, September 2007

[9] M. Mateski, C. M. Trevino, C. K. Veitch, J. Michalski, J. M. Harris, S.
Maruoka, and J. Frye, “Cyber Threat Metrics,” Sandia National
Laboratories, Sandia Report SAND2012-2427, March 2012

[10] ISO/IEC 27004:2009 standard “Information technology -- Security
techniques -- Information security management -- Measurement”, 2009

[11] A. Jaquith, Security Metrics: Replacing Fear, Uncertainty, and Doubt.
Addison-Wesley, 2007

[12] W. K. Brotby and G. Hinson, PRAGMATIC Security Metrics: Applying
Metametrics to Information Security. Auerbach Publications, 2013

[13] P. E. Black, K. Scarfone, and M. Souppaya, “Cyber Security Metrics
and Measures,” in Wiley Handbook of Science and Technology for
Homeland Security, John Wiley and Sons, 2009

[14] “The CIS Security Metrics,” The Center for Internet Security, Technical
Report, version 1.1.0, November 1 2010

[15] “The Critical Controls for Effective Cyber Defense,” Council on
CyberSecurity, Technical Report, version 5.0, 2014

[16] R. Vaarandi and K. Podiņš, “Network IDS Alert Classification with
Frequent Itemset Mining and Data Clustering,” in Proceedings of the
2010 IEEE Conference on Network and Service Management, pp.
451-456

[17] http://rules.emergingthreats.net/fwrules/emerging-Block-IPs.txt

[18] R. Hofstede, I. Drago, A. Sperotto, R. Sadre, and A. Pras, “Measurement
Artifacts in NetFlow Data,” in Proceedings of the 2013 Passive and
Active Measurement Conference, pp. 1-10

[19] B. Trammell, B. Tellenbach, D. Schatzmann, and M. Burkhardt,
“Peeling Away Timing Error in NetFlow Data,” in Proceedings of the
2011 Passive and Active Measurement Conference, pp. 194-203

[20] R. Vaarandi, “Detecting Anomalous Network Traffic in Organizational
Private Networks,” in Proceedings of the 2013 IEEE CogSIMA
Conference, pp. 285-292

[21] R. Anthony, “Detecting Security Incidents Using Windows Workstation
Event Logs,” SANS Institute, InfoSec Reading Room Paper, June 19
2013

[22] R. Vaarandi, “Simple Event Correlator for real-time security log
monitoring,” Hakin9 Magazine, vol. 1/2006 (6), pp. 28-39, 2006

[23] “Spotting the Adversary with Windows Event Log Monitoring,”
National Security Agency/Central Security Service, Information
Assurance Directorate, Technical Report, Revision 2, December 16
2013

[24] R. Vaarandi and M. R. Grimaila, “Security Event Processing with
Simple Event Correlator,” Information Systems Security Association
Journal, vol. 10(8), pp. 30-37, 2012

[25] http://nxlog.org

[26] http://www.balabit.com/network-security/syslog-ng

[27] http://graphite.readthedocs.org

[28] http://nfsen.sourceforge.net

[29] http://www.elasticsearch.org

[30] http://www.elasticsearch.org/overview/kibana/

[31] http://www.rsyslog.com

[32] http://logstash.net

[33] R. Vaarandi and P. Niziński, "Comparative Analysis of Open-Source
Log Management Solutions for Security Monitoring and Network
Forensics," in Proceedings of the 2013 European Conference on
Information Warfare and Security, pp. 278-287

