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Abstract 

In this paper, we explore the execution of pipelined 
hash joins in a multiprocessor-based database system. 
To improve the query execution, an innovative ap- 
proach on query execution tree selection is proposed 
to exploit segmented right-deep trees, which are bushy 
trees of right-deep subtrees. We first derive an analyt- 

ical model for the execution of a pipeline segment, and 
then, in light of the model, develop heuristic schemes 

to determine the query execution plan based on a seg- 
mented right-deep tree so that the query can be ef- 
ficiently executed. As shown by our simulation, the 
proposed approach, without incurring additional over- 

head on plan execution, possesses more flexibility in 
query plan generation, and leads to query plans of sig- 
nificantly better performance than those achievable by 
the previous schemes using right-deep trees. 

1 Introduction 

In relational database systems, joins are the most 

expensive operations to execute, especially with the 

increases in database size and query complexity [13] 
[15] [26]. Several applications involving decision sup- 
port and complex objects usually have to specify their 
desired results in terms of multi-join queries, and some 

complex queries for such applications may take hours 
or even days to complete, thus degrading the system 
performance. As a result, parallelism has been rec- 
ognized as the solution for the efficient execution of 

multi-join queries for future database management [2] 

PI [71 P31 WA. 
Intra-operator parallelism, which occurs when sev- 

eral processors work in parallel on a single two-way 
join operation, was the focus of most prior studies 
on exploiting parallelism for database operations [l] 

[5] [lo] [14] 1161 [18] [20]. In addition, inter-operator 
parallelism allows that several joins within a query 

be executed in parallel. Despite its importance, inber- 
operator parallelism did not attract as much attention 
as intra-operator parallelism. This can be in part ex- 
plained by the reasons that in the past the power/size 
of a multiprocessor system was limited, and the query 
structure used to be too simple to require further par- 
allelizing in the inter-operator level. Notice, however, 

that those two limiting factors have been phased out 
by the rapid increase in the capacity of multiprocessors 

and the trend for queries to become more complicated 
nowadays, thus justifying the necessity of exploiting 
inter-operator parallelism [4] [9] [ll] [17] [21]. 

Similarly to the study on intra-operator parallelism, 
to explore inter-operator parallelism, one has to con- 
sider the join methods employed. Among various join 

methods, the hash join has been elaborated upon by 
much research effort and reported to have superior 
performance to others [5] [14] [24]. Moreover, for ex- 
ploiting inter-operator parallelism, hash joins provide 
the feasibility of pipelining. Using hash joins, multi- 
ple joins can be pipelined so that the early resulting 

tuples from a join, before the whole join is completed, 
can be sent to the next join for processing. A detailed 
description of pipelined hash joins and their advan- 
tages can be found in Section 2. Though pipelining 

has been shown to be very effective in reducing the 
query execution time, as will be described later, prior 
approaches on the implementation of pipelined hash 
joins are usually confined to a linear order of rela- 

tions involved, thus not fully exploiting the flexibility 

on query plan generation. Consequently, in response 
to the increasing demand for a better performance of 
database operations, to study and improve the execu- 
tion of pipelined hash joins for multi-join queries in a 
multiprocessor system is taken as the objective of this 

paper. 
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Figure 1: Illustration of different query trees. 

The execution of a query can be denoted by three 
forms of query execution trees: left-deep trees, right- 

deep trees, and bushy trees. In a query tree, a leaf 
node represents an input relation and an internal node 
represents the resulting relation from joining the two 
relations with its two child nodes, and the query tree 
is executed in a manner of bottom up. In the context 
of hash joins the left and right child nodes of an in- 
ternal node denote, respectively, the inner and outer 

relations of a join [19], where, as explained in Section 
2, the inner relation is the relation used to build the 
hash table and the outer relation is the one whose tu- 
pies are applied to probe the hash table. Examples of 
the three forms of query trees are shown in Figure 1, 

where the inner and outer relations are indicated for 
illustration. It can be seen that both right-deep and 
bushy trees allow the implementation of pipelining. 
Schneider and Dewitt are among the first to study 
the effect of pipelining [19] [21], where the focus was 

on the use of right-deep trees due mainly to the sim- 
plicity of right-deep trees and the uncertainty for the 

improvement achievable by using bushy trees. Clearly, 
for a given query, the number of right-deep trees to 
be considered is significantly less than that of bushy 

trees, and simple heuristics can be applied with little 
overhead to generate a right-deep query plan. For ex- 
ample, a right-deep tree can be obtained by first con- 
structing a left-deep tree by some greedy methods and 
then taking a mirror image of the resulting left-deep 
tree [19]. However, right-deep trees might suffer from 

the drawback of less flexibility on structure, which in 
turn implies a limitation on performance. Moreover, 
since the amount of memory is usually not enough to 
accommodate hash tables of all inner relations, spe- 
cial provisions, such as static right-deep scheduling 
and dynamic bottom-up scheduling [21], are needed to 
deal with this problem. In both scheduling methods, a 

right-deep tree is decomposed into disjoint segments in 
such a way that for each segment the hash tables of its 
inner relations can be fitted int,o memory.’ For these 
methods, however, the execution of the whole query is 
implemented in one pipeline and thus restricted to the 
structure of a right-deep tree. An example right-deep 
tree which is decomposed into three segments is shown 
in Figure 2a, where one hash join is called a pipeline 

stage and several stages form a pipeline segment. The 

pipeline segments are executed one by one in a manner 
of bottom up with all resources in the system devoting 
to one segment at a time. Those joins whose resulting 

relations need to be written back to disks are marked 
black in Figure 2a for illustration. The bushy tree, on 

the other hand, offers more flexibility on query plan 

generation at the cost of searching a larger space. It 
has been shown that for sort-merge joins, the execu- 
tion of bushy trees can outperform that of linear trees, 
especially when the number of relations in a query is 
large [4]. However, as far as the hash join is concerned, 
the scheduling for an execution plan of a bushy tree 

structure is much more complicated than that of a 
right-deep tree structure. Particularly, it is very diffi- 
cult, if not impossible, to achieve the synchronization 

required for the execution of bushy trees such that the 
effect of pipelining can be fully utilized. This is the 
very reason that most prior studies on pipelined hash 
joins focused on the use of right-deep trees. 

As an effort to improve the execution of pipelined 
hash joins, one would naturally like to develop effi- 

cient schemes to generate effective query plans that 
fully exploit the advantage of pipelining while avoid- 
ing the above mentioned deficiencies of the bushy and 
right-deep trees. Consequently, we propose in this pa- 
per the approach based on segmented right-deep trees 

for the execution of pipelined hash joins. A segmented 

right-deep tree is a bushy tree which is composed of 
a set of right-deep subtrees. An example of a seg- 

mented right-deep tree of 3 pipeline segments can be 

found in Figure 2b. A segmented right-deep tree is 
similar to a conventional right-deep tree in that all 
processing nodes execute one pipeline segment at a 
time, hence not incurring additional overhead on plan 
execution, but differs from the latter in that the re- 
sulting relation of a pipeline segment in the former 
can be either an inner relation or the outer relation of 

any of the subsequent segments, thus possessing the 

l While the static right-deep scheduling decomposes the 
right-deep tree into segments off-line and loads hash tables of 
a segment into memory in parallel, the dynamic bottom-up 
scheduling loads one hash table into memory at a time and 
determines the break points of segments dynamically according 
to the memory constraint. 
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Figure 2: (a) a conventional right-deep tree, and (b) 

a segmented right-deep tree. 

flesibility of a bushy tree. Note that unlike the gen- 
eration of right-deep trees that can resort to the sim- 
ilar heuristics for generating left-deep trees, to sched- 
ule a pipelined hash joins based on segmented right- 
deep trees, we have to develop new heuristic schemes. 

Specifically, we shall first estimate the number of seg- 
ments to be employed in a query plan, and then de- 

termine the relations that participate in each pipeline 
segment. Clearly, this problem is much more compli- 
cated than the one to select a pair of joining relations 
at a time in building a linear tree, since both a subset 
of relations and their join order have to be determined. 
To deal with this, we shall derive an analytical model 

for the execution of a segmented right-deep tree, and 
then, in light of the model, develop efficient heuris- 
tics for relation selection for each pipeline segment. It 

will be seen that under the execution of a segmented 
right-deep tree not only is the synchronization prob- 

lem completely resolved, but also processor fragmen- 
tation [4] is avoided. As evaluated by our simulation 
that simulates the action of each individual tuple to go 
through the pipeline, the proposed approach on seg- 

mented right-deep trees, without incurring additional 

overhead on plan execution, possesses more flexibility 
in query plan generation, and is favorably compared 
with not only the right-deep trees generated by greedy 

methods but also the optimal right-deep tree that has 
the shortest execution time among all right-deep trees. 
This fact strongly suggests that to efficiently execute 

pipelined hash joins for years to come, instead of im- 
proving the heuristics on generating right-deep trees, 
one has to exploit the methods utilizing the bushy 
trees, such as the one proposed in this paper. The 
effect of processor allocation for the execution of each 

join is also investigat,ed by simulation. 

Preliminaries are given in Section 2. The execution 

model for a pipeline segment is derived in Section 3.1, 
and heuristics for relation selection are developed in 
Section 3.2. Performance of these heuristic schemes is 
evaluated by simulation in Section 4, followed by the 
conclusion in Section 5. 

2 Preliminaries 

We assume that a query is of the form of conjunc- 
tions of equi-join predicates. A join query graph can 

be denoted by a graph G = (V, E), where V is the 
set of nodes and E is the set of edges. Each node in a 
join query graph represents a relat.ion. Two nodes are 

connected by an edge if there exists a join predicate 

on some attribute of the two corresponding relations. 
We use ]Ri] to denote the cardinality of a relation Ri 
and (Al to denote the cardinality of the domain of an 
attribute A. As in most prior work on the execution 
of database operations, we assume that the execution 
time incurred is the primary cost measure for the pro- 

cessing of database operations. Also, we focus on the 

execution of complex queries [23], i.e., queries involv- 
ing many relations. Notice that such complex queries 

can become frequent in real applications due to the use 
of views [26]. The architecture assumed is a multipro- 
cessor system with distributed memories and shared 
disks. Each processing node, or processor, in the sys- 

tem has its own memory and address space, and com- 
munication between nodes is done by message passing. 

The amount of memory available to execute a join is 
assumed to be in proportion to the number of proces- 
sors involved. In addition, we assume for simplicity 

that the values of attributes are uniformly distributed 
over all tuples in a relation and that the values of one 
attribute are independent of those in another. Thus, 

when the heuristics derived in Section 3.2 are applied, 
the cardinalities of resulting relations of joins can be 
estimated according to the formula used in prior work 
[3] that is given in the Appendix for reference2. In the 
presence of data skew [25], we only have to modify the 

corresponding formula accordingly [8]. For ease of ex- 
posing the concept of segmented right-deep trees, we 

assume the aggregate memory in the system can ac- 
commodate a few entire relations for pipelining. Note 
that in the case that the aggregate memory is not 

2This formula is employed to be consistent with the gen- 
eration of each output tuple of a join under our simulation in 
Section 4. Note that this offers a more sophisticatedmodel than 
the one baaed on the foreign key assumption. 
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Table 1: Notation for 
ment . 

the execution of a pipeline seg- 

large enough to load some ent.ire relations, one can 

still utilize the structure of segmented right-deep trees 
for more flexibility on plan generation, and employ the 
techniques, such as right,-deep hybrid scheduling [19], 
to resolve the memory constraint and implement one 
pipeline segment at a time to exploit pipelining. 

The execution of a hash join consists of two phases: 
the table-building phase and the tuple-probing phase. 

In the table-building phase, the hash table of the in- 
ner relation is built according to the hash function 
of the join attribute, and in the tuple-probing phase 

each tuple of the outer relation is applied by the hash 
function and used to probe the hash table of the in- 

ner relation for matches. In the context of hash joins, 
the left and right child nodes of an internal node in 

a query execution tree denote, respectively, the inner 
and outer relations of a join. It can be seen that in 
a left-deep tree, the result of a join is used to build 

the hash table for the next join, and several hash joins 
thus need to be executed sequentially. In contrast, in 

a right deep tree all the hash tables are built from the 
original input relations, and the resulting relation of 

a join is input into the next join as an outer relation. 
The tuples of the outer relation can thus go through 
the whole right-deep tree in a manner of pipelining. 

The bushy tree, on the other hand, is not restricted to 
a linear form, meaning that the resulting relation of 
a join in the bushy tree does not have to be immedi- 
ately used in the next join. The resulting relation of a 

join can in fact be used as either an inner or an outer 
relation for subsequent joins. 

Recall that a segmented right-deep tree is a bushy 
tree of right-deep subtrees. Each right-deep subtree is 
a pipeline segment comprising of a number of pipeline 
stages (joins). Also, q is the number of relations in 
a query, m is the number of segments in a segmented 

right-deep tree, and N is the total number of process- 
ing nodes in the multiprocessor system. The analyt- 

ical model to be derived is for one pipeline segment 
where L- is used to denote the number of stages in the 

segment, and ni is the number of nodes allocated to 
stage i. In what follows, S represents the outer rela- 
tion of the segment. h!h, and li denote, respectively, 
the inner relation and the intermediate resulting rela- 
tion at stage i, where the value of l1il can be obtained 

by the formula in the Appendix. These symbols are 

summarized in Table 1. The table-building phase and 
the tuple-probing phase of the execution of a pipeline 

segment are described below. 

Table-building phase In this phase, the hash ta- 
bles of all stages are built. If more than one node is 
allocated to a stage, the hash table for that stage is 

hashed into many partitions using a partition function 
in such a way that one processing node deals with one 
partition of the hash table. The tuples in each parti- 

tion are then hashed and built into a hash subtable. 
This phase is composed of the following two steps. 

1. All the nodes read inner relations Rh,, for i = 
1 ..7 k, from disks. When a node reads one block 
oi’relation Rh, from a disk, that node uses the 

partition function of stage i to hash the tuples in 
the block into a number of partitions. The par- 

titioned tuples are then sent to their destination 
nodes in stage i. 

2. Each node in stage i, for i = 1,. . . , k, receives the 
tuples of its corresponding partition, hashes those 
tuples with the hash function of the stage (join) 
and inserts these tuples into the hash subtable. 

Tuple-probing phase After the table-building 
phase, the pipeline segment starts tuple probing as 
described below. 

1. The blocks of the outer relation S are read from 

disks, partitioned with the partition function of 
stage 1 and routed to the corresponding nodes in 
stage 1. The tuples are sent to their destination 
nodes whenever there are enough tuples to form 
a communication packet. 

2. For each node in stage i, where i = 1,. . . , k - 1, 

whenever a packet of input tuples is received, 
those tuples are probed, one by one, against the 
subtable using the hash function of stage i. If 
there are matches, the intermediate resulting tu- 
ples are generated. These intermediate tuples are 
then partitioned with the partition function of the 
next stage, i.e. stage i + 1. When the number of 
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Figure 3: Execution of one pipeline segment. 

tuples in the output queue to a certain node in 
the next stage is enough to form a packet, that 
packet is sent to its destination node. 

The nodes in stage li receive their input tuples, 
probe them against the subtables and generate 

the resulting tuples when there are matches. Note 
that the resulting relation of this stage is the re- 
sulting relation of the whole segment. The re- 
sulting tuples are written back to disks block by 

block. 

Pipelining has the following two advantages. First, 
the disk I/O cost is significantly reduced since the in- 
termediate relations between stages in a segment need 
not be written back to disks. Second, the first tu- 
ples of the resulting relation of a pipeline segment can 

be produced earlier, not only reducing the perceived 
response time by an end user, but also enabling an ap- 
plication program to start processing the result earlier. 
The execution of the first pipeline segment of the seg- 

mented right-deep tree in Figure 2b is shown in Figure 
n 

3 Pipelined Hash Joins for SRD Trees 

3.1 Model of a Pipeline Segment 

We now analyze the cost and elapsed time in both 

the table-building phase and the tuple-probing phase 
for a pipeline segment. Various timing parameters ref- 
erenced in this analysis are given in Table 2. Recall 

that the table-building phase consists of two steps. In 
the first step, all nodes read from the disks the inner 

Table 2: A list of timing parameters. 

relations, partition and send them to the destination 

nodes according to the partitioning functions of the 
corresponding join attributes. The total amount of 

work in this step is cf=, I&, 1 . (tread + tpart + tsend), 

and the amount of work by the nj nodes of stage j is 

thus & I&,I.(tread-ttparl +tsend). 3. In the sec- 
ond step, the nodes in each stage receive the tuples of 

the corresponding inner relation, hash them, and build 
hash subtables for these tuples. The total amount of 

work in this step is xi”=, I%,( .(trec +thath +tinsert). 

Since the nodes of stage j are only associated with the 
work related to Rhj, the amount of work by the nodes 
of stages j can be expressed as I&,] . (tr,, + thash + 
I!. tnseri). Denote the total work by all the nodes in the 
table building phase as WB. Then, 

WB = (cl + c2) 2 IRh, 1, 

i=l 

where Ci and C2 are system dependent parameters 
given in Table 2. The amount of work performed by 
the nodes of stage j in the table-building phase is 

Denote the table-building time at stage j as TBj. 

Then, 

TB- = Cl Xi”=, IRhtI + C21RhjI 
3 N 

-. 
% 
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The elapsed time in the table-building phase TB can 
then be approximated by the maximum of all TBj. 

Thus, we have, TB = mast/j TBj. 

Next, the total amount of work in the tuple-probing 
phase, WP, can be derived similarly from the descrip- 
tion in Section 2. We get, 

k-l 

wp = (cl + c3)lsl + (c3 + c.4) c l&l + CSlrkt, 

i=l 

where C’s, Cd and Cs are system dependent parameters 
given in Table 2. The amount of work by the nodes 

of stage j in the tuple-probing phase can be expressed 

aS: 

i 

cllsl~n, 
WPj = CII!l-nl 

+ C311j-II+ C4lIjl if j # k, 

N + C3)Ij-I[+ C5lljl if j = rl-. 

Note that the processing time of the tuple-probing 
phase for each stage in the pipeline includes three 
parts. The first part is the time to set up the pipeline, 
the second part is the steady state processing time, 
and the third part is the pipeline depletion time. For 

large relations, it can be seen that all stages spend 
most of their time in steady state processing. Also, 

note that in the steady state, in addition to process- 
ing inputs and producing outputs, a node could be 
idling due to the following scenarios. First, since only 
a finite amount of communication buffer space is avail- 

able in each node, if, at any instant, the input buffer of 
a certain node is full, any processing in the preceding 
stage to produce further input to that node needs to 

stall to avoid loss of information. On the other hand, 
when the input buffer of a node is empty, that node, 
since it has completed the processing for all prior tu- 
ples, will be starved and waiting for inputs from nodes 
in the preceding stage to proceed. It can be seen that 

these scenarios, resulting from the burst effects of hash 
joins, are very dependent on the characteristic of each 

individual query, and believed to be very difficult, if 

not impossible, to have a general model to capture. 

Therefore, we shall only model the non-idling steady 
state processing time below. The burst effects of hash 
joins will be captured via simulation in Section 4. De- 

note the non-idling steady state processing time of a 

stage i as TPi. Then, we have, 

CllSl + C31~,--1l+C4l~rl 
TPi = &I cII’I--liftcbIf~l 

ifi#Ic, 

++ n, 
if i = Ic 

Denote the processing time of the tuple-probing phase 
as TP. Since the pipeline set-up and depletion times 

are negligible as compared to the steady state pro- 
cessing time, the processing time of the tuple-probing 
phase TP can be approximated as: TP = maxvi TPi. 

Consequently, the tot,al processing time for a pipeline 
segment TS can be expressed by the sum of the pro- 
cessing times in the table-building and the tuple- 
probing phases: 

TS = TBi-TP 

= rnVFy T Bi + rnVTx TPi (1) 

The total processing time for a query TQ is the sum 
of the processing times of all its segments. Thus, 

TQ = gTSj, 
j=l 

where m is the number of pipeline segments, and TSj 
is the processing time of the jth segment. 

3.2 Plan Generation for SRD Trees 

As pointed out earlier, unlike the generation of 
right-deep t.rees which can use the similar heuristics 
for generating left-deep trees, new heuristics need to 

be developed to build effective segmented right-deep 

trees. Specifically, we shall first estimate the num- 
ber of pipeline segments, and then select the imler 
and outer relations for each pipeline segment so as 
to minimize the query execution time. The size of 
all relations and that of the total memory need to be 

considered in estimating the number of segments re- 
quired. It is shown by our experiments that too many 
segments can result in worse performance. This can 
be explained by the reason that for each pipeline seg- 
ment, there are overheads of setting up hash tables, 
filling and depleting the pipeline segment, and writing 
the resulting relation of the segment back to disks. 
These overheads usually outweigh the possible advan- 

tages we can gain from the flexibility of having more 
segments. Thus, the estimated number of segments, 

m, is chosen to be close to the number of segments 

enough to hold all the relations, i.e., m = ( 
c;-, PaI 

N,IC, 1, 
where M is the memory size of each processing node. 
After the number of segments is estimated, we set an 

upper bound, k, for the projected number of relations 
in each segment by 12 = [$I. Note that m and k are 
projected numbers to be used in our heuristic schemes 
below, and might be different from those in the final 
plans generated. Such a projection avoids making the 
memory in the early stages always fully loaded, and 
usually leads to a better performance due to a better 
load balancing. 
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Selecting relations for a pipeline segment amounts 
to selecting a subset of relations, and is more compli- 

cated than selecting a pair of relations in building a 
right-deep tree. To cope wit,h this, we propose greedy 
approaches to handle the problem of relation selection 
for each segment. The relations are selected one by 
one until either all the k relations in the segment are 
determined or the tot.al size of inner relations becomes 
greater than that. of the total memory ava.ilable. In 

the segmented right-deep tree generated, the interme- 

diate relation resulting from each segment can appear 
as either an inner or the outer relation of any of the 
subsequent segments, whereas in a conventional right- 

deep tree the resulting relation from a segment can 
only be used as the outer relation in the next seg- 
ment. Based on the model derived in Section 3.1, we 
propose the following two heuristics, namely, the mini- 
mal work (MW) and the balanced consideration (BC), 
to determine the segmented right-deep tree. 

3.2.1 Heuristic on minimal work 

The objective of MW is to select relations in the seg- 

ment so that the total amount of work involved in its 
stages is minimized. Specifically, given a set of rela- 
tions and the number (1-, we determine a sequence of 

up to k inner relations and one outer relation so as to 
minimize the total work W. Note that, 

w= WB+WP 

= (Cl+c2)~l~h,I+(cl+C3lS, 
i=l 

k-l 

+(c3 + c4) c l&l + CSllkl, 

i=l 

is a linear combination of ISI, I&, 1, and IZil, for i = 
l,..., k. Therefore, we can decompose W into groups 
of terms related to relations S, Z&, Z&, . . ., and Rhl,. 

When determining an inner or the outer relation, we 

select a relation that minimizes the sum of the terms 
related to itself and the intermediate relation resulted 

by this selection. For example, when selecting the 
relation for the second stage, Z&, we choose a relation 
to minimize the terms in W that are related to Rh2 

and Zz, since 12 is determined by the selection of Rh, . 
Relations are selected in the order of Rhl -) S --f 

Rhz + Rh3 + . . . + Rhk. The sum of those terms 
to be minimized when selecting a certain relation is 
called the greedy ftinc2ion of that relation. Under MW, 
a list of greedy functions of all relations is derived 
and given in Table 3. It can be seen that the greedy 

Table 3: The greedy function of each relation for 
heuristics MW and BC. 

functions are determined according to the selection 
order of relations. Note that the criteria for selecting 

different relations are different, which agrees with our 
intuition since these relations play different roles in 

a pipeline segment and have different influences on 
performance. The complexity of heuristic MW can be 
shown to be O(q2), where q is the number of relations 
in the query. 

To illustrate heuristic MW, consider an example 

query of ‘7 relations whose profile is given in Figure 
4 and Table 4. We assume a multiprocessor system 
of eight nodes is employed, where each node has 64K 

byte memory and the size of each tuple is assumed to 
be 100 bytes3. The query plans generated by a right- 
deep tree approach and MW are shown in Figure 5a 
and Figure 5b, respectively. For this example query, 
the right-deep heuristic builds a six stage pipeline first, 
and then divides this pipeline into three segments ac- 
cording to the memory constraint as shown in Figure 

5a. Heuristic MW, on the other hand, is able to use 
the resulting relations of earlier segments as hash ta- 

bles for later segments. For instance, in the query plan 
in Figure 5b, the resulting relation of the first segment 
(of 397 tuples) is used as the inner relation of the first 
stage of the next segment due to its relatively small 
size, whereas that in Figure 5a is used as the outer re- 

lation of the next segment. It can be verified that the 
total size of hash tables for the segmented right-deep 
tree in Figure 5b is smaller than that of the right- 
deep tree in Figure 5a. Note that a smaller hash table 

size usually leads to a shorter query execution time for 
pipelined hash joins. Simulation, conducted in Section 
4, shows that for the query in Figure 4, the processing 

3The reason to scale down the memory size is explained in 
Section 4. The assumption for the fixed tuple size is for ease of 
exposition, and not essential for the improvement achieved by 
the proposed schemes. 
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Ri 1 RI Rz 1 R3 1 Rq Rs Rs R7 Figure 5: The resulting query execution trees: (a) 

card. 1 1137 802 1 1840 1 1633 884 1426 1251 
right-deep tree plan, (b) MW, and (c) BC. 

(a). Cardinalities of relations. 

attr. 1 A I B C 1 D I E 1 F I C are selected in such a way that the objective function 

card. 1 I494 I I943 I646 I I651 ) 1478 I 1028 / I325 Y = P - w . B is minimized, where w is a weighting 
factor. Since the relations that give larger reduction (b). Cardinalities of attributes. 
on relation size are not necessarily those smaller re- 

lations, balanced consideration on both benefit and 
penalty avoids the tendency of selecting all small re- 
lations for the first few segments. Determining the 
weight w in the objective function Y represents an- 
other degree of freedom for tuning the heuristic. In 
the simulation in Section 4, w = Ci + C’s is used for it,s 
reasonably good performance, and the coefficient for 

ISI in objective function Y is thus zero. The greedy 
functions for heuristic BC are derived and given in 

Table 3. Eliminating the terms involving ISI from the 

objective function means that “small relation size” it- 
self will not be taken as the factor in selecting the 
outer relation S. Note that in a hash join, using the 
smaller of the two joining relations as the inner re- 
lation usually results in better performance. For the 

example query in Figure 4, the resulting query tree by 
BC is given in Figure 5c. The query trees generated 
by MW and BC for this query have the same shape, 

but different join orders of relations. It is obtained 

by simulation that the processing time for this query 
under BC in Figure 5c is 47.06 msec. Performance of 
these heuristic schemes is assessed in Section 4. 

Table 4: The profile of the example query in Figure 4. 

time under the right-deep tree in Figure 5a is 74.59 

msec, and that under MW in Figure 5b is 48.46 msec. 

As indicated by the simulation in Section 4, per- 

formance of MW is reasonably good but not always 

stable. This is due to the fact that MW tends to se- 
lect smaller relations first for early segments. This 
may lead to two disadvantages. First, because those 
relations selected for later segments have larger sizes, 
it might happen that the total memory available is not 
enough to hold all inner relations, so that additional 
segments are required, leading to more segments than 
projected and a longer query execution time. Second, 
the first few segments have smaller relations, which 

might result in under-utilization of memory. Such 

scenarios are more likely to occur when the sizes of 
relations vary drastically. 

3.2.2 Heuristic on balanced consideration 

To eliminate this instability of MW, we propose 

heuristic BC which avoids the tendency of selecting 
small relations for the first few segments. In BC, a 
penalty P and a benefit B are defined for each seg- 
ment. The penalty is defined as the work in the seg- 
ment, i.e., WP+ WB, and the benefit is defined as the 
size reduction after the execution of this segment, i.e., 

(ISI+IRhll+lRh21+...+IRh*l)-ll~l. Therelations 

Clearly, it is possible to further improve the above 
query processing during actual implementation. For 

instance, during the first step of the table-building 
phase, we can assign those nodes at stage i to read 
the blocks of relation Rh, so as to reduce the number 
of tuples to be transferred over the network. In ad- 
dition, the work in the first step of the tuple-probing 
phase could be dynamically assigned to the nodes that 
have the lowest load at that instant. Optimization on 
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these issues is rather system dependent, and thus not 
addressed in this paper. 

4 Simulation 

4.1 Description of Simulation Model 

Extensive simulations were performed to evaluate 
the heuristic schemes for query plan generation. In the 
simulation program, which was coded in C, the action 

for each individual tuple to go through all stages in a 
pipeline was simulated. Input queries were generated 
as follows. The number of relations in a query was pre- 

determined. The occurrence of an edge between two 

relations in the query graph was determined accord- 
ing to a given probability, denoted by prob. Without 
loss of generality, only queries with connected query 
graphs were deemed valid and used for our study. To 
determine the cardinalities of relations and attributes, 
we referenced a workload recently generated from the 
work at a Canadian insurance company. To make the 

simulation able to be feasibly conducted in a tuple- 
by-tuple manner, we scaled the average number of tu- 
ples in a relation down from one million to two thou- 

sand. The cardinalities of attributes and the memory 
size of each processing node were also scaled down ac- 
cordingly so that the ratio of the relation size to the 
memory size could still reflect the reality. Based on 
the above, the cardinalities of relations and attributes 

were randomly generated from a uniform distribution 
within some reasonable ranges. In the simulation pro- 
gram, for each query we generated query trees of two 
styles, i.e., static right-deep trees and segmented right- 
deep trees. For the static right-deep tree, both the 
greedy right-deep tree that is constructed by a greedy 

method and the optimal right-deep tree were evalu- 
ated. The greedy method used is to first construct 

a left-deep tree by the heuristic on minimal result- 
ing relation [3] and then take the mirror image of the 

left-deep tree to form a right-deep tree. Both right- 
deep trees were decomposed according to the static 
right-deep scheduling described in Section 1. Recall 

that the optimal right-deep tree is the right-deep tree 
that has the shortest processing time among all right- 
deep trees, whose identification is of exponential time 

complexity. For the segmented right-deep tree, both 
heuristics MW and BC were employed. To allocate 
processors to the execution of both right-deep and 
segmented right-deep trees, we consider two alterna- 
tives. The first approach is to allocate to each stage 
the number of nodes enough to hold the hash table, 
and then distribute the remaining nodes uniformly to 

Table 5: CPU costs used in simulation. 

each stage. The second approach is to minimize the 
formula TS = TB + TP in Eq.(l) for each pipeline 
segment, which can be done by using a typical dy- 
namic programming technique4. It can be seen that 

fragmentation of processors is avoided since all nodes 
in the system are employed to implement one pipeline 
segment at a time. 

A query and an execution strategy are the inputs 
to the simulator. An execution strategy employed de- 
termines the number of segments, the inner and outer 
relations for each segment, and the number of nodes 
allocated to perform the hash join in each stage. In 
the table-building phase, the hash table for each stage 

was built in such a way that the corresponding inner 
relation was partitioned into subtables for those pro 
cessing nodes in that stage. When the probing phase 
started, a random number generator was used to de- 
termine which subtable (processing node) the probing 
tuple should be routed to. A zero/one random number 
generator, which was coded based on the join selectiv- 
ity, was then employed to determine the generation of 
resulting tuples, which were in turn, according to the 

next join attribute, sent to the subsequent stages for 
processing. To conduct the simulation, [14] and [19] 
were referenced to determine the values of the sys- 
tem parameters which are given in Table 5, and the 
network delay in sending a 2K byte packet, Dnet, is 
assumed to be 1 msec5. The behavior of pipelines can 
thus be predicted by the analytical model derived in 
Section 3.1. As pointed out in Section 3.1, due to 

‘Tuning the number of processors allocated to each stage has 
an impact on overall performance, whose discussion is beyond 
the scope of this paper. Interested readers are referred to [12]. 

5Note that tr,,d and t,,ite denote amortized CPU costs for 
processing one 100 byte tuple. Since asynchronous disk I/O 
is assumed, the I/O latency is not included in the model to 
facilitate our discussion. The packet size is chosen to be 2K 
byte to comply with the reduction of the memory size. 
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the nature of pipelining, there can be, resulting from 
the burst effects of ha.sh joins, various scenarios where 
processing nodes a.re sbarved for inputs or forced to 
stall because of the congestion in subsequent stages. 

These scenarios have an impact on the processing time 
and can only be observed by using the model which 
simulates the action of each tuple. This is the very 
reason that we, instead of relying upon the analytical 
model derived in Section 3.1, conducted the tuple-by- 

tuple simulation to reflect the complicated nature of 
pipelined hash joins and obtain more realistic results. 
Nevertheless, the analytical model derived was found 
to be useful in deriving heuristics for query plan gener- 
ation and also able to provide a reasonable prediction 
for the performance of a query plan. 

4.2 Simulation Results 

From our simulation, we first observed the execu- 

tion time for queries of four sizes, i.e., queries with 8, 
12, 16 and 20 relations, in a multiprocessor system of 
eight nodes. For each query size, 100 query graphs 
were generated and each query was simulated twice. 
Simulation results for the average execution times of 
plans generated by the greedy right-deep tree (RD), 
the optimal right-deep tree (opt. RD), heuristics MW 
and BC are shown in Figure 6 where the system has 8 
nodes and each node has 64K byte memory. It can be 

seen that MW and BC for segmented right-deep trees 

outperform both the greedy and the optimal right- 
deep trees. The improvement of MW and BC over 
both right-deep tree becomes even more significant as 
the number of relations in a query increases. As shown 
in Figure 6, the execution time of BC ranges from 56% 
(when q=20) to 66% (when q=8) of that of RD. 

Note that some join plans might result in extraor- 
dinarily long execution time, thus affecting the fair- 
ness of using the average execution time as a mea- 
sure for performance. To remedy this, we compared, 
for each query, the execution times resulted from the 
four schemes, and sorted them in an ascending order. 

Then, we assigned 0 to 3 points to each scheme in 

such a way that the number of points assigned to a 
scheme is the number of other schemes outperforming 

this scheme. Clearly, a scheme with fewer points per- 

forms better. Corresponding to Figure 6, the points 
assigned to each scheme are shown in Table 6. From 
Figure 6 and Table 6, it can be observed that MW 
performs rather close to BC while the latter is more 
stable in performance due to the balanced consider- 
ation on benefit and penalty, as described in Section 

3.2.2. In the case that n=20, it is noted that opt. RD, 

+a q=12 q=16 q=m 

q: the number of relations in a query 

Figure 6. Average execution time of plans 

generated by different schemes. 

Table 6: The points assigned to each scheme. 

for the 200 instances examined, is only better than ei- 
ther MW or BC for about 10 instances. (Note that 
the points which opt. RD received would be 400, if it 

was always ranked in the third place.) The fact that 
MW and BC outperform the approach using optimal 

right-deep trees indicates that to efficiently execute 
pipelined hash joins, instead of focusing on improv- 
ing the heuristics on generating right-deep trees, one 
should utilize the bushy tree structure. In fact, for 
the sizes of queries investigated here, the simulation 

times (including plan generation and execution) for 
the schemes on RD, MW and BC were very close to 
each other whereas that of opt. RD was larger than 
others by orders of magnitude. It is noted that these 
results were obtained by assigning prob, i.e., the prob- 

ability of the occurrence of each edge in a query graph, 
to be 0.26. The cases when prob=O.24 and probzz0.28 

were also simulated. It was shown that the relative 

performance of these schemes was not sensitive to the 

value of prob. Performance charts for different values 
of prob are thus not shown in the paper. 

As mentioned earlier, in light of the derivation in 
Section 3.1, the query execution time can be further 
improved by adjusting the number of processors allo- 
cated to each stage. This effect is shown in Figure 7, 
where a “*” is appended to the symbol of a scheme 
to mean the processor allocation was tuned to min- 
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q=8 q=12 qr16 q=20 

q: the number of relations in a query 

Figure 7. The effect of processor allocation. 

q=a q=12 q=16 -4-a 

q: the number of relations in a query 

Figure 8. Improvement of BC* over RD 

(different variances on input relation sizes). 

imize the TS in Eq.(l) according to a dynamic pro- 
gramming technique. It is indicated in Figure 7 that 

while processor allocation is important, the structure 
of query trees is still the major factor to minimize the 
query execution time. In addition, to realize the effect 

of variance on the input relation size, we compared 
performance of BC* and RD under different variances 
on the cardinalities of relations, and showed the re- 

sults in Figure 8, where the execution time of BC* 
was divided by that of RD for clarity. In Figure 8, the 

cardinalities of relations varied from 1800 to 2200 in 
the stable case, from 1400 to 2600 in the small vari- 

ance case, and from 800 to 3200 in the large variance 
case. They represent lo%, 30% and 60% variations, 
respectively, from a mean of 2000. Different query 

sizes with q=8, 12, 16 and 20 are considered. As can 
be seen in Figure 8, when the variance on relation car- 
dinality increases, the improvement of BC* over RD 
becomes more prominent. 

For the input queries simulated here, we had one to 
five relations in a segment and one to four segments 

for the execution of a query, and did not observe the 
necessity for executing more thaa one pipeline segment 
at a time. Clearly. when the number of processors 
is large, we might have to divide the multiprocessor 

system into several partitions. and use each partition 
to implement one pipeline segment to exploit multi- 
segment parallelism for a better performance. 

5 Conclusions 

We first derived an analytical model for the execu- 

tion of a pipeline segment, and then, developed heuris- 

tic schemes to build the segmented right-deep trees for 
efficient query execution. As shown by our simulation, 
the proposed approach, without incurring additional 
overhead on plan execution, possesses more flexibility 
in query plan generation, and leads to query plans of 
significantly better performance than those achievable 

by the previous schemes using right-deep trees. 
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Appendix 

Proposition: GB=(VB, ER) is a connected sub- 
graph of a join query graph G. Let RI, R2, . . ., Rp 
be the relations corresponding to nodes in VB, Al, 
AZ, . . ., A, be the distinct att,ributes associated with 
edges in Eg and ni be the number of different re- 
lations that edges with attribute Ai are incident to. 
Suppose R,vf is the relation resulting from joining all 
relations in GB, and NT(GB) is the expected number 
of tuples in RM. Then, 
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