
Using Segmented Right-Deep Trees for the Execution of Pipelined

Hash Joins

Ming-Syan Chen, Mingling Lo*, Philip S. Yu and Honesty C. Young+

IBM T. J. Watson Research Ctr. EECS Department* IBM Almaden Research Ctrt

P.O.Box 704 University of Michigan 650 Harry Road

Yorktown, NY 10598 Ann Arbor, MI 48109 San Jose, CA 95120

Abstract

In this paper, we explore the execution of pipelined
hash joins in a multiprocessor-based database system.
To improve the query execution, an innovative ap-
proach on query execution tree selection is proposed
to exploit segmented right-deep trees, which are bushy
trees of right-deep subtrees. We first derive an analyt-

ical model for the execution of a pipeline segment, and
then, in light of the model, develop heuristic schemes

to determine the query execution plan based on a seg-
mented right-deep tree so that the query can be ef-
ficiently executed. As shown by our simulation, the
proposed approach, without incurring additional over-

head on plan execution, possesses more flexibility in
query plan generation, and leads to query plans of sig-
nificantly better performance than those achievable by
the previous schemes using right-deep trees.

1 Introduction

In relational database systems, joins are the most

expensive operations to execute, especially with the

increases in database size and query complexity [13]
[15] [26]. Several applications involving decision sup-
port and complex objects usually have to specify their
desired results in terms of multi-join queries, and some

complex queries for such applications may take hours
or even days to complete, thus degrading the system
performance. As a result, parallelism has been rec-
ognized as the solution for the efficient execution of

multi-join queries for future database management [2]

PI [71 P31 WA.
Intra-operator parallelism, which occurs when sev-

eral processors work in parallel on a single two-way
join operation, was the focus of most prior studies
on exploiting parallelism for database operations [l]

[5] [lo] [14] 1161 [18] [20]. In addition, inter-operator
parallelism allows that several joins within a query

be executed in parallel. Despite its importance, inber-
operator parallelism did not attract as much attention
as intra-operator parallelism. This can be in part ex-
plained by the reasons that in the past the power/size
of a multiprocessor system was limited, and the query
structure used to be too simple to require further par-
allelizing in the inter-operator level. Notice, however,

that those two limiting factors have been phased out
by the rapid increase in the capacity of multiprocessors

and the trend for queries to become more complicated
nowadays, thus justifying the necessity of exploiting
inter-operator parallelism [4] [9] [ll] [17] [21].

Similarly to the study on intra-operator parallelism,
to explore inter-operator parallelism, one has to con-
sider the join methods employed. Among various join

methods, the hash join has been elaborated upon by
much research effort and reported to have superior
performance to others [5] [14] [24]. Moreover, for ex-
ploiting inter-operator parallelism, hash joins provide
the feasibility of pipelining. Using hash joins, multi-
ple joins can be pipelined so that the early resulting

tuples from a join, before the whole join is completed,
can be sent to the next join for processing. A detailed
description of pipelined hash joins and their advan-
tages can be found in Section 2. Though pipelining

has been shown to be very effective in reducing the
query execution time, as will be described later, prior
approaches on the implementation of pipelined hash
joins are usually confined to a linear order of rela-

tions involved, thus not fully exploiting the flexibility

on query plan generation. Consequently, in response
to the increasing demand for a better performance of
database operations, to study and improve the execu-
tion of pipelined hash joins for multi-join queries in a
multiprocessor system is taken as the objective of this

paper.

15

0 final resulting relations

0 outer relations

0 inner relations

(a) left-deep tree
(b) tlghtdeep tree

(c)bushy tree

Figure 1: Illustration of different query trees.

The execution of a query can be denoted by three
forms of query execution trees: left-deep trees, right-

deep trees, and bushy trees. In a query tree, a leaf
node represents an input relation and an internal node
represents the resulting relation from joining the two
relations with its two child nodes, and the query tree
is executed in a manner of bottom up. In the context
of hash joins the left and right child nodes of an in-
ternal node denote, respectively, the inner and outer

relations of a join [19], where, as explained in Section
2, the inner relation is the relation used to build the
hash table and the outer relation is the one whose tu-
pies are applied to probe the hash table. Examples of
the three forms of query trees are shown in Figure 1,

where the inner and outer relations are indicated for
illustration. It can be seen that both right-deep and
bushy trees allow the implementation of pipelining.
Schneider and Dewitt are among the first to study
the effect of pipelining [19] [21], where the focus was

on the use of right-deep trees due mainly to the sim-
plicity of right-deep trees and the uncertainty for the

improvement achievable by using bushy trees. Clearly,
for a given query, the number of right-deep trees to
be considered is significantly less than that of bushy

trees, and simple heuristics can be applied with little
overhead to generate a right-deep query plan. For ex-
ample, a right-deep tree can be obtained by first con-
structing a left-deep tree by some greedy methods and
then taking a mirror image of the resulting left-deep
tree [19]. However, right-deep trees might suffer from

the drawback of less flexibility on structure, which in
turn implies a limitation on performance. Moreover,
since the amount of memory is usually not enough to
accommodate hash tables of all inner relations, spe-
cial provisions, such as static right-deep scheduling
and dynamic bottom-up scheduling [21], are needed to
deal with this problem. In both scheduling methods, a

right-deep tree is decomposed into disjoint segments in
such a way that for each segment the hash tables of its
inner relations can be fitted int,o memory.’ For these
methods, however, the execution of the whole query is
implemented in one pipeline and thus restricted to the
structure of a right-deep tree. An example right-deep
tree which is decomposed into three segments is shown
in Figure 2a, where one hash join is called a pipeline

stage and several stages form a pipeline segment. The

pipeline segments are executed one by one in a manner
of bottom up with all resources in the system devoting
to one segment at a time. Those joins whose resulting

relations need to be written back to disks are marked
black in Figure 2a for illustration. The bushy tree, on

the other hand, offers more flexibility on query plan

generation at the cost of searching a larger space. It
has been shown that for sort-merge joins, the execu-
tion of bushy trees can outperform that of linear trees,
especially when the number of relations in a query is
large [4]. However, as far as the hash join is concerned,
the scheduling for an execution plan of a bushy tree

structure is much more complicated than that of a
right-deep tree structure. Particularly, it is very diffi-
cult, if not impossible, to achieve the synchronization

required for the execution of bushy trees such that the
effect of pipelining can be fully utilized. This is the
very reason that most prior studies on pipelined hash
joins focused on the use of right-deep trees.

As an effort to improve the execution of pipelined
hash joins, one would naturally like to develop effi-

cient schemes to generate effective query plans that
fully exploit the advantage of pipelining while avoid-
ing the above mentioned deficiencies of the bushy and
right-deep trees. Consequently, we propose in this pa-
per the approach based on segmented right-deep trees

for the execution of pipelined hash joins. A segmented

right-deep tree is a bushy tree which is composed of
a set of right-deep subtrees. An example of a seg-

mented right-deep tree of 3 pipeline segments can be

found in Figure 2b. A segmented right-deep tree is
similar to a conventional right-deep tree in that all
processing nodes execute one pipeline segment at a
time, hence not incurring additional overhead on plan
execution, but differs from the latter in that the re-
sulting relation of a pipeline segment in the former
can be either an inner relation or the outer relation of

any of the subsequent segments, thus possessing the

l While the static right-deep scheduling decomposes the
right-deep tree into segments off-line and loads hash tables of
a segment into memory in parallel, the dynamic bottom-up
scheduling loads one hash table into memory at a time and
determines the break points of segments dynamically according
to the memory constraint.

16

pipeline segment

(4 (W

Figure 2: (a) a conventional right-deep tree, and (b)

a segmented right-deep tree.

flesibility of a bushy tree. Note that unlike the gen-
eration of right-deep trees that can resort to the sim-
ilar heuristics for generating left-deep trees, to sched-
ule a pipelined hash joins based on segmented right-
deep trees, we have to develop new heuristic schemes.

Specifically, we shall first estimate the number of seg-
ments to be employed in a query plan, and then de-

termine the relations that participate in each pipeline
segment. Clearly, this problem is much more compli-
cated than the one to select a pair of joining relations
at a time in building a linear tree, since both a subset
of relations and their join order have to be determined.
To deal with this, we shall derive an analytical model

for the execution of a segmented right-deep tree, and
then, in light of the model, develop efficient heuris-
tics for relation selection for each pipeline segment. It

will be seen that under the execution of a segmented
right-deep tree not only is the synchronization prob-

lem completely resolved, but also processor fragmen-
tation [4] is avoided. As evaluated by our simulation
that simulates the action of each individual tuple to go
through the pipeline, the proposed approach on seg-

mented right-deep trees, without incurring additional

overhead on plan execution, possesses more flexibility
in query plan generation, and is favorably compared
with not only the right-deep trees generated by greedy

methods but also the optimal right-deep tree that has
the shortest execution time among all right-deep trees.
This fact strongly suggests that to efficiently execute

pipelined hash joins for years to come, instead of im-
proving the heuristics on generating right-deep trees,
one has to exploit the methods utilizing the bushy
trees, such as the one proposed in this paper. The
effect of processor allocation for the execution of each

join is also investigat,ed by simulation.

Preliminaries are given in Section 2. The execution

model for a pipeline segment is derived in Section 3.1,
and heuristics for relation selection are developed in
Section 3.2. Performance of these heuristic schemes is
evaluated by simulation in Section 4, followed by the
conclusion in Section 5.

2 Preliminaries

We assume that a query is of the form of conjunc-
tions of equi-join predicates. A join query graph can

be denoted by a graph G = (V, E), where V is the
set of nodes and E is the set of edges. Each node in a
join query graph represents a relat.ion. Two nodes are

connected by an edge if there exists a join predicate

on some attribute of the two corresponding relations.
We use]Ri] to denote the cardinality of a relation Ri
and (Al to denote the cardinality of the domain of an
attribute A. As in most prior work on the execution
of database operations, we assume that the execution
time incurred is the primary cost measure for the pro-

cessing of database operations. Also, we focus on the

execution of complex queries [23], i.e., queries involv-
ing many relations. Notice that such complex queries

can become frequent in real applications due to the use
of views [26]. The architecture assumed is a multipro-
cessor system with distributed memories and shared
disks. Each processing node, or processor, in the sys-

tem has its own memory and address space, and com-
munication between nodes is done by message passing.

The amount of memory available to execute a join is
assumed to be in proportion to the number of proces-
sors involved. In addition, we assume for simplicity

that the values of attributes are uniformly distributed
over all tuples in a relation and that the values of one
attribute are independent of those in another. Thus,

when the heuristics derived in Section 3.2 are applied,
the cardinalities of resulting relations of joins can be
estimated according to the formula used in prior work
[3] that is given in the Appendix for reference2. In the
presence of data skew [25], we only have to modify the

corresponding formula accordingly [8]. For ease of ex-
posing the concept of segmented right-deep trees, we

assume the aggregate memory in the system can ac-
commodate a few entire relations for pipelining. Note
that in the case that the aggregate memory is not

2This formula is employed to be consistent with the gen-
eration of each output tuple of a join under our simulation in
Section 4. Note that this offers a more sophisticatedmodel than
the one baaed on the foreign key assumption.

17

notation I meaning

Table 1: Notation for
ment .

the execution of a pipeline seg-

large enough to load some ent.ire relations, one can

still utilize the structure of segmented right-deep trees
for more flexibility on plan generation, and employ the
techniques, such as right,-deep hybrid scheduling [19],
to resolve the memory constraint and implement one
pipeline segment at a time to exploit pipelining.

The execution of a hash join consists of two phases:
the table-building phase and the tuple-probing phase.

In the table-building phase, the hash table of the in-
ner relation is built according to the hash function
of the join attribute, and in the tuple-probing phase

each tuple of the outer relation is applied by the hash
function and used to probe the hash table of the in-

ner relation for matches. In the context of hash joins,
the left and right child nodes of an internal node in

a query execution tree denote, respectively, the inner
and outer relations of a join. It can be seen that in
a left-deep tree, the result of a join is used to build

the hash table for the next join, and several hash joins
thus need to be executed sequentially. In contrast, in

a right deep tree all the hash tables are built from the
original input relations, and the resulting relation of

a join is input into the next join as an outer relation.
The tuples of the outer relation can thus go through
the whole right-deep tree in a manner of pipelining.

The bushy tree, on the other hand, is not restricted to
a linear form, meaning that the resulting relation of
a join in the bushy tree does not have to be immedi-
ately used in the next join. The resulting relation of a

join can in fact be used as either an inner or an outer
relation for subsequent joins.

Recall that a segmented right-deep tree is a bushy
tree of right-deep subtrees. Each right-deep subtree is
a pipeline segment comprising of a number of pipeline
stages (joins). Also, q is the number of relations in
a query, m is the number of segments in a segmented

right-deep tree, and N is the total number of process-
ing nodes in the multiprocessor system. The analyt-

ical model to be derived is for one pipeline segment
where L- is used to denote the number of stages in the

segment, and ni is the number of nodes allocated to
stage i. In what follows, S represents the outer rela-
tion of the segment. h!h, and li denote, respectively,
the inner relation and the intermediate resulting rela-
tion at stage i, where the value of l1il can be obtained

by the formula in the Appendix. These symbols are

summarized in Table 1. The table-building phase and
the tuple-probing phase of the execution of a pipeline

segment are described below.

Table-building phase In this phase, the hash ta-
bles of all stages are built. If more than one node is
allocated to a stage, the hash table for that stage is

hashed into many partitions using a partition function
in such a way that one processing node deals with one
partition of the hash table. The tuples in each parti-

tion are then hashed and built into a hash subtable.
This phase is composed of the following two steps.

1. All the nodes read inner relations Rh,, for i =
1 ..7 k, from disks. When a node reads one block
oi’relation Rh, from a disk, that node uses the

partition function of stage i to hash the tuples in
the block into a number of partitions. The par-

titioned tuples are then sent to their destination
nodes in stage i.

2. Each node in stage i, for i = 1,. . . , k, receives the
tuples of its corresponding partition, hashes those
tuples with the hash function of the stage (join)
and inserts these tuples into the hash subtable.

Tuple-probing phase After the table-building
phase, the pipeline segment starts tuple probing as
described below.

1. The blocks of the outer relation S are read from

disks, partitioned with the partition function of
stage 1 and routed to the corresponding nodes in
stage 1. The tuples are sent to their destination
nodes whenever there are enough tuples to form
a communication packet.

2. For each node in stage i, where i = 1,. . . , k - 1,

whenever a packet of input tuples is received,
those tuples are probed, one by one, against the
subtable using the hash function of stage i. If
there are matches, the intermediate resulting tu-
ples are generated. These intermediate tuples are
then partitioned with the partition function of the
next stage, i.e. stage i + 1. When the number of

18

3.

h,=2

h,=l

h,=3

stage 2

0 processing nodes

0 packets

R3

stage 1 I- I __----

stage 3

Figure 3: Execution of one pipeline segment.

tuples in the output queue to a certain node in
the next stage is enough to form a packet, that
packet is sent to its destination node.

The nodes in stage li receive their input tuples,
probe them against the subtables and generate

the resulting tuples when there are matches. Note
that the resulting relation of this stage is the re-
sulting relation of the whole segment. The re-
sulting tuples are written back to disks block by

block.

Pipelining has the following two advantages. First,
the disk I/O cost is significantly reduced since the in-
termediate relations between stages in a segment need
not be written back to disks. Second, the first tu-
ples of the resulting relation of a pipeline segment can

be produced earlier, not only reducing the perceived
response time by an end user, but also enabling an ap-
plication program to start processing the result earlier.
The execution of the first pipeline segment of the seg-

mented right-deep tree in Figure 2b is shown in Figure
n

3 Pipelined Hash Joins for SRD Trees

3.1 Model of a Pipeline Segment

We now analyze the cost and elapsed time in both

the table-building phase and the tuple-probing phase
for a pipeline segment. Various timing parameters ref-
erenced in this analysis are given in Table 2. Recall

that the table-building phase consists of two steps. In
the first step, all nodes read from the disks the inner

Table 2: A list of timing parameters.

relations, partition and send them to the destination

nodes according to the partitioning functions of the
corresponding join attributes. The total amount of

work in this step is cf=, I&, 1 . (tread + tpart + tsend),

and the amount of work by the nj nodes of stage j is

thus & I&,I.(tread-ttparl +tsend). 3. In the sec-
ond step, the nodes in each stage receive the tuples of

the corresponding inner relation, hash them, and build
hash subtables for these tuples. The total amount of

work in this step is xi”=, I%,(.(trec +thath +tinsert).

Since the nodes of stage j are only associated with the
work related to Rhj, the amount of work by the nodes
of stages j can be expressed as I&,] . (tr,, + thash +
I!. tnseri). Denote the total work by all the nodes in the
table building phase as WB. Then,

WB = (cl + c2) 2 IRh, 1,

i=l

where Ci and C2 are system dependent parameters
given in Table 2. The amount of work performed by
the nodes of stage j in the table-building phase is

Denote the table-building time at stage j as TBj.

Then,

TB- = Cl Xi”=, IRhtI + C21RhjI
3 N

-.
%

19

The elapsed time in the table-building phase TB can
then be approximated by the maximum of all TBj.

Thus, we have, TB = mast/j TBj.

Next, the total amount of work in the tuple-probing
phase, WP, can be derived similarly from the descrip-
tion in Section 2. We get,

k-l

wp = (cl + c3)lsl + (c3 + c.4) c l&l + CSlrkt,

i=l

where C’s, Cd and Cs are system dependent parameters
given in Table 2. The amount of work by the nodes

of stage j in the tuple-probing phase can be expressed

aS:

i

cllsl~n,
WPj = CII!l-nl

+ C311j-II+ C4lIjl if j # k,

N + C3)Ij-I[+ C5lljl if j = rl-.

Note that the processing time of the tuple-probing
phase for each stage in the pipeline includes three
parts. The first part is the time to set up the pipeline,
the second part is the steady state processing time,
and the third part is the pipeline depletion time. For

large relations, it can be seen that all stages spend
most of their time in steady state processing. Also,

note that in the steady state, in addition to process-
ing inputs and producing outputs, a node could be
idling due to the following scenarios. First, since only
a finite amount of communication buffer space is avail-

able in each node, if, at any instant, the input buffer of
a certain node is full, any processing in the preceding
stage to produce further input to that node needs to

stall to avoid loss of information. On the other hand,
when the input buffer of a node is empty, that node,
since it has completed the processing for all prior tu-
ples, will be starved and waiting for inputs from nodes
in the preceding stage to proceed. It can be seen that

these scenarios, resulting from the burst effects of hash
joins, are very dependent on the characteristic of each

individual query, and believed to be very difficult, if

not impossible, to have a general model to capture.

Therefore, we shall only model the non-idling steady
state processing time below. The burst effects of hash
joins will be captured via simulation in Section 4. De-

note the non-idling steady state processing time of a

stage i as TPi. Then, we have,

CllSl + C31~,--1l+C4l~rl
TPi = &I cII’I--liftcbIf~l

ifi#Ic,

++ n,
if i = Ic

Denote the processing time of the tuple-probing phase
as TP. Since the pipeline set-up and depletion times

are negligible as compared to the steady state pro-
cessing time, the processing time of the tuple-probing
phase TP can be approximated as: TP = maxvi TPi.

Consequently, the tot,al processing time for a pipeline
segment TS can be expressed by the sum of the pro-
cessing times in the table-building and the tuple-
probing phases:

TS = TBi-TP

= rnVFy T Bi + rnVTx TPi (1)

The total processing time for a query TQ is the sum
of the processing times of all its segments. Thus,

TQ = gTSj,
j=l

where m is the number of pipeline segments, and TSj
is the processing time of the jth segment.

3.2 Plan Generation for SRD Trees

As pointed out earlier, unlike the generation of
right-deep t.rees which can use the similar heuristics
for generating left-deep trees, new heuristics need to

be developed to build effective segmented right-deep

trees. Specifically, we shall first estimate the num-
ber of pipeline segments, and then select the imler
and outer relations for each pipeline segment so as
to minimize the query execution time. The size of
all relations and that of the total memory need to be

considered in estimating the number of segments re-
quired. It is shown by our experiments that too many
segments can result in worse performance. This can
be explained by the reason that for each pipeline seg-
ment, there are overheads of setting up hash tables,
filling and depleting the pipeline segment, and writing
the resulting relation of the segment back to disks.
These overheads usually outweigh the possible advan-

tages we can gain from the flexibility of having more
segments. Thus, the estimated number of segments,

m, is chosen to be close to the number of segments

enough to hold all the relations, i.e., m = (
c;-, PaI

N,IC, 1,
where M is the memory size of each processing node.
After the number of segments is estimated, we set an

upper bound, k, for the projected number of relations
in each segment by 12 = [$I. Note that m and k are
projected numbers to be used in our heuristic schemes
below, and might be different from those in the final
plans generated. Such a projection avoids making the
memory in the early stages always fully loaded, and
usually leads to a better performance due to a better
load balancing.

20

Selecting relations for a pipeline segment amounts
to selecting a subset of relations, and is more compli-

cated than selecting a pair of relations in building a
right-deep tree. To cope wit,h this, we propose greedy
approaches to handle the problem of relation selection
for each segment. The relations are selected one by
one until either all the k relations in the segment are
determined or the tot.al size of inner relations becomes
greater than that. of the total memory ava.ilable. In

the segmented right-deep tree generated, the interme-

diate relation resulting from each segment can appear
as either an inner or the outer relation of any of the
subsequent segments, whereas in a conventional right-

deep tree the resulting relation from a segment can
only be used as the outer relation in the next seg-
ment. Based on the model derived in Section 3.1, we
propose the following two heuristics, namely, the mini-
mal work (MW) and the balanced consideration (BC),
to determine the segmented right-deep tree.

3.2.1 Heuristic on minimal work

The objective of MW is to select relations in the seg-

ment so that the total amount of work involved in its
stages is minimized. Specifically, given a set of rela-
tions and the number (1-, we determine a sequence of

up to k inner relations and one outer relation so as to
minimize the total work W. Note that,

w= WB+WP

= (Cl+c2)~l~h,I+(cl+C3lS,
i=l

k-l

+(c3 + c4) c l&l + CSllkl,

i=l

is a linear combination of ISI, I&, 1, and IZil, for i =
l,..., k. Therefore, we can decompose W into groups
of terms related to relations S, Z&, Z&, . . ., and Rhl,.

When determining an inner or the outer relation, we

select a relation that minimizes the sum of the terms
related to itself and the intermediate relation resulted

by this selection. For example, when selecting the
relation for the second stage, Z&, we choose a relation
to minimize the terms in W that are related to Rh2

and Zz, since 12 is determined by the selection of Rh, .
Relations are selected in the order of Rhl -) S --f

Rhz + Rh3 + . . . + Rhk. The sum of those terms
to be minimized when selecting a certain relation is
called the greedy ftinc2ion of that relation. Under MW,
a list of greedy functions of all relations is derived
and given in Table 3. It can be seen that the greedy

Table 3: The greedy function of each relation for
heuristics MW and BC.

functions are determined according to the selection
order of relations. Note that the criteria for selecting

different relations are different, which agrees with our
intuition since these relations play different roles in

a pipeline segment and have different influences on
performance. The complexity of heuristic MW can be
shown to be O(q2), where q is the number of relations
in the query.

To illustrate heuristic MW, consider an example

query of ‘7 relations whose profile is given in Figure
4 and Table 4. We assume a multiprocessor system
of eight nodes is employed, where each node has 64K

byte memory and the size of each tuple is assumed to
be 100 bytes3. The query plans generated by a right-
deep tree approach and MW are shown in Figure 5a
and Figure 5b, respectively. For this example query,
the right-deep heuristic builds a six stage pipeline first,
and then divides this pipeline into three segments ac-
cording to the memory constraint as shown in Figure

5a. Heuristic MW, on the other hand, is able to use
the resulting relations of earlier segments as hash ta-

bles for later segments. For instance, in the query plan
in Figure 5b, the resulting relation of the first segment
(of 397 tuples) is used as the inner relation of the first
stage of the next segment due to its relatively small
size, whereas that in Figure 5a is used as the outer re-

lation of the next segment. It can be verified that the
total size of hash tables for the segmented right-deep
tree in Figure 5b is smaller than that of the right-
deep tree in Figure 5a. Note that a smaller hash table

size usually leads to a shorter query execution time for
pipelined hash joins. Simulation, conducted in Section
4, shows that for the query in Figure 4, the processing

3The reason to scale down the memory size is explained in
Section 4. The assumption for the fixed tuple size is for ease of
exposition, and not essential for the improvement achieved by
the proposed schemes.

21

RI3
G

R5
R, R2

F A

E il B D

f34 0 3 c
4

Figure 4: An example query with 7 relations

(4 (W

Ri 1 RI Rz 1 R3 1 Rq Rs Rs R7 Figure 5: The resulting query execution trees: (a)

card. 1 1137 802 1 1840 1 1633 884 1426 1251
right-deep tree plan, (b) MW, and (c) BC.

(a). Cardinalities of relations.

attr. 1 A I B C 1 D I E 1 F I C are selected in such a way that the objective function

card. 1 I494 I I943 I646 I I651) 1478 I 1028 / I325 Y = P - w . B is minimized, where w is a weighting
factor. Since the relations that give larger reduction (b). Cardinalities of attributes.
on relation size are not necessarily those smaller re-

lations, balanced consideration on both benefit and
penalty avoids the tendency of selecting all small re-
lations for the first few segments. Determining the
weight w in the objective function Y represents an-
other degree of freedom for tuning the heuristic. In
the simulation in Section 4, w = Ci + C’s is used for it,s
reasonably good performance, and the coefficient for

ISI in objective function Y is thus zero. The greedy
functions for heuristic BC are derived and given in

Table 3. Eliminating the terms involving ISI from the

objective function means that “small relation size” it-
self will not be taken as the factor in selecting the
outer relation S. Note that in a hash join, using the
smaller of the two joining relations as the inner re-
lation usually results in better performance. For the

example query in Figure 4, the resulting query tree by
BC is given in Figure 5c. The query trees generated
by MW and BC for this query have the same shape,

but different join orders of relations. It is obtained

by simulation that the processing time for this query
under BC in Figure 5c is 47.06 msec. Performance of
these heuristic schemes is assessed in Section 4.

Table 4: The profile of the example query in Figure 4.

time under the right-deep tree in Figure 5a is 74.59

msec, and that under MW in Figure 5b is 48.46 msec.

As indicated by the simulation in Section 4, per-

formance of MW is reasonably good but not always

stable. This is due to the fact that MW tends to se-
lect smaller relations first for early segments. This
may lead to two disadvantages. First, because those
relations selected for later segments have larger sizes,
it might happen that the total memory available is not
enough to hold all inner relations, so that additional
segments are required, leading to more segments than
projected and a longer query execution time. Second,
the first few segments have smaller relations, which

might result in under-utilization of memory. Such

scenarios are more likely to occur when the sizes of
relations vary drastically.

3.2.2 Heuristic on balanced consideration

To eliminate this instability of MW, we propose

heuristic BC which avoids the tendency of selecting
small relations for the first few segments. In BC, a
penalty P and a benefit B are defined for each seg-
ment. The penalty is defined as the work in the seg-
ment, i.e., WP+ WB, and the benefit is defined as the
size reduction after the execution of this segment, i.e.,

(ISI+IRhll+lRh21+...+IRh*l)-ll~l. Therelations

Clearly, it is possible to further improve the above
query processing during actual implementation. For

instance, during the first step of the table-building
phase, we can assign those nodes at stage i to read
the blocks of relation Rh, so as to reduce the number
of tuples to be transferred over the network. In ad-
dition, the work in the first step of the tuple-probing
phase could be dynamically assigned to the nodes that
have the lowest load at that instant. Optimization on

22

these issues is rather system dependent, and thus not
addressed in this paper.

4 Simulation

4.1 Description of Simulation Model

Extensive simulations were performed to evaluate
the heuristic schemes for query plan generation. In the
simulation program, which was coded in C, the action

for each individual tuple to go through all stages in a
pipeline was simulated. Input queries were generated
as follows. The number of relations in a query was pre-

determined. The occurrence of an edge between two

relations in the query graph was determined accord-
ing to a given probability, denoted by prob. Without
loss of generality, only queries with connected query
graphs were deemed valid and used for our study. To
determine the cardinalities of relations and attributes,
we referenced a workload recently generated from the
work at a Canadian insurance company. To make the

simulation able to be feasibly conducted in a tuple-
by-tuple manner, we scaled the average number of tu-
ples in a relation down from one million to two thou-

sand. The cardinalities of attributes and the memory
size of each processing node were also scaled down ac-
cordingly so that the ratio of the relation size to the
memory size could still reflect the reality. Based on
the above, the cardinalities of relations and attributes

were randomly generated from a uniform distribution
within some reasonable ranges. In the simulation pro-
gram, for each query we generated query trees of two
styles, i.e., static right-deep trees and segmented right-
deep trees. For the static right-deep tree, both the
greedy right-deep tree that is constructed by a greedy

method and the optimal right-deep tree were evalu-
ated. The greedy method used is to first construct

a left-deep tree by the heuristic on minimal result-
ing relation [3] and then take the mirror image of the

left-deep tree to form a right-deep tree. Both right-
deep trees were decomposed according to the static
right-deep scheduling described in Section 1. Recall

that the optimal right-deep tree is the right-deep tree
that has the shortest processing time among all right-
deep trees, whose identification is of exponential time

complexity. For the segmented right-deep tree, both
heuristics MW and BC were employed. To allocate
processors to the execution of both right-deep and
segmented right-deep trees, we consider two alterna-
tives. The first approach is to allocate to each stage
the number of nodes enough to hold the hash table,
and then distribute the remaining nodes uniformly to

Table 5: CPU costs used in simulation.

each stage. The second approach is to minimize the
formula TS = TB + TP in Eq.(l) for each pipeline
segment, which can be done by using a typical dy-
namic programming technique4. It can be seen that

fragmentation of processors is avoided since all nodes
in the system are employed to implement one pipeline
segment at a time.

A query and an execution strategy are the inputs
to the simulator. An execution strategy employed de-
termines the number of segments, the inner and outer
relations for each segment, and the number of nodes
allocated to perform the hash join in each stage. In
the table-building phase, the hash table for each stage

was built in such a way that the corresponding inner
relation was partitioned into subtables for those pro
cessing nodes in that stage. When the probing phase
started, a random number generator was used to de-
termine which subtable (processing node) the probing
tuple should be routed to. A zero/one random number
generator, which was coded based on the join selectiv-
ity, was then employed to determine the generation of
resulting tuples, which were in turn, according to the

next join attribute, sent to the subsequent stages for
processing. To conduct the simulation, [14] and [19]
were referenced to determine the values of the sys-
tem parameters which are given in Table 5, and the
network delay in sending a 2K byte packet, Dnet, is
assumed to be 1 msec5. The behavior of pipelines can
thus be predicted by the analytical model derived in
Section 3.1. As pointed out in Section 3.1, due to

‘Tuning the number of processors allocated to each stage has
an impact on overall performance, whose discussion is beyond
the scope of this paper. Interested readers are referred to [12].

5Note that tr,,d and t,,ite denote amortized CPU costs for
processing one 100 byte tuple. Since asynchronous disk I/O
is assumed, the I/O latency is not included in the model to
facilitate our discussion. The packet size is chosen to be 2K
byte to comply with the reduction of the memory size.

23

the nature of pipelining, there can be, resulting from
the burst effects of ha.sh joins, various scenarios where
processing nodes a.re sbarved for inputs or forced to
stall because of the congestion in subsequent stages.

These scenarios have an impact on the processing time
and can only be observed by using the model which
simulates the action of each tuple. This is the very
reason that we, instead of relying upon the analytical
model derived in Section 3.1, conducted the tuple-by-

tuple simulation to reflect the complicated nature of
pipelined hash joins and obtain more realistic results.
Nevertheless, the analytical model derived was found
to be useful in deriving heuristics for query plan gener-
ation and also able to provide a reasonable prediction
for the performance of a query plan.

4.2 Simulation Results

From our simulation, we first observed the execu-

tion time for queries of four sizes, i.e., queries with 8,
12, 16 and 20 relations, in a multiprocessor system of
eight nodes. For each query size, 100 query graphs
were generated and each query was simulated twice.
Simulation results for the average execution times of
plans generated by the greedy right-deep tree (RD),
the optimal right-deep tree (opt. RD), heuristics MW
and BC are shown in Figure 6 where the system has 8
nodes and each node has 64K byte memory. It can be

seen that MW and BC for segmented right-deep trees

outperform both the greedy and the optimal right-
deep trees. The improvement of MW and BC over
both right-deep tree becomes even more significant as
the number of relations in a query increases. As shown
in Figure 6, the execution time of BC ranges from 56%
(when q=20) to 66% (when q=8) of that of RD.

Note that some join plans might result in extraor-
dinarily long execution time, thus affecting the fair-
ness of using the average execution time as a mea-
sure for performance. To remedy this, we compared,
for each query, the execution times resulted from the
four schemes, and sorted them in an ascending order.

Then, we assigned 0 to 3 points to each scheme in

such a way that the number of points assigned to a
scheme is the number of other schemes outperforming

this scheme. Clearly, a scheme with fewer points per-

forms better. Corresponding to Figure 6, the points
assigned to each scheme are shown in Table 6. From
Figure 6 and Table 6, it can be observed that MW
performs rather close to BC while the latter is more
stable in performance due to the balanced consider-
ation on benefit and penalty, as described in Section

3.2.2. In the case that n=20, it is noted that opt. RD,

+a q=12 q=16 q=m

q: the number of relations in a query

Figure 6. Average execution time of plans

generated by different schemes.

Table 6: The points assigned to each scheme.

for the 200 instances examined, is only better than ei-
ther MW or BC for about 10 instances. (Note that
the points which opt. RD received would be 400, if it

was always ranked in the third place.) The fact that
MW and BC outperform the approach using optimal

right-deep trees indicates that to efficiently execute
pipelined hash joins, instead of focusing on improv-
ing the heuristics on generating right-deep trees, one
should utilize the bushy tree structure. In fact, for
the sizes of queries investigated here, the simulation

times (including plan generation and execution) for
the schemes on RD, MW and BC were very close to
each other whereas that of opt. RD was larger than
others by orders of magnitude. It is noted that these
results were obtained by assigning prob, i.e., the prob-

ability of the occurrence of each edge in a query graph,
to be 0.26. The cases when prob=O.24 and probzz0.28

were also simulated. It was shown that the relative

performance of these schemes was not sensitive to the

value of prob. Performance charts for different values
of prob are thus not shown in the paper.

As mentioned earlier, in light of the derivation in
Section 3.1, the query execution time can be further
improved by adjusting the number of processors allo-
cated to each stage. This effect is shown in Figure 7,
where a “*” is appended to the symbol of a scheme
to mean the processor allocation was tuned to min-

24

q=8 q=12 qr16 q=20

q: the number of relations in a query

Figure 7. The effect of processor allocation.

q=a q=12 q=16 -4-a

q: the number of relations in a query

Figure 8. Improvement of BC* over RD

(different variances on input relation sizes).

imize the TS in Eq.(l) according to a dynamic pro-
gramming technique. It is indicated in Figure 7 that

while processor allocation is important, the structure
of query trees is still the major factor to minimize the
query execution time. In addition, to realize the effect

of variance on the input relation size, we compared
performance of BC* and RD under different variances
on the cardinalities of relations, and showed the re-

sults in Figure 8, where the execution time of BC*
was divided by that of RD for clarity. In Figure 8, the

cardinalities of relations varied from 1800 to 2200 in
the stable case, from 1400 to 2600 in the small vari-

ance case, and from 800 to 3200 in the large variance
case. They represent lo%, 30% and 60% variations,
respectively, from a mean of 2000. Different query

sizes with q=8, 12, 16 and 20 are considered. As can
be seen in Figure 8, when the variance on relation car-
dinality increases, the improvement of BC* over RD
becomes more prominent.

For the input queries simulated here, we had one to
five relations in a segment and one to four segments

for the execution of a query, and did not observe the
necessity for executing more thaa one pipeline segment
at a time. Clearly. when the number of processors
is large, we might have to divide the multiprocessor

system into several partitions. and use each partition
to implement one pipeline segment to exploit multi-
segment parallelism for a better performance.

5 Conclusions

We first derived an analytical model for the execu-

tion of a pipeline segment, and then, developed heuris-

tic schemes to build the segmented right-deep trees for
efficient query execution. As shown by our simulation,
the proposed approach, without incurring additional
overhead on plan execution, possesses more flexibility
in query plan generation, and leads to query plans of
significantly better performance than those achievable

by the previous schemes using right-deep trees.

Acknowledgement

The authors would like to thank S. Lavenberg and
J. Chen at IBM for their comments and assistance on
improving the presentation of this paper.

References

PI

PI

131

PI

[51

C. K. Baru and 0. Frieder. Database operations
in a cube-connected multiprocessor system. IEEE
Trans. on Computers, 38(6):920-927, June 1989.

H. Boral, W. Alexander, et al. Prototyping
Bubba, a highly parallel database system. IEEE
Trans. on Knowledge and Data Eng., 2(1):4-24,
March 1990.

M.-S. Chen and P. S. Yu. Determining benefi-
cial semijoins for a join sequence in distributed
query processing. Proceedings of the 7th Intern’1
Conf. on Data Engineering, pages 50-58, April
1991. To appear in IEEE Trans. on Parallel and
Distributed Systems.

M.-S. Chen, P. S. Yu, and K.-L. Wu. Schedul-
ing and processor allocation for parallel execution
of multi-join queries. Proceedings of the 8th In-
tern’1 Conf. on Data Engineering, pages 58-67,
Feb. 1992.

D. J. Dewitt and R. Gerber. Multiprocessor
hash-based join algorithms. Proceedings of the
11th Int’l Conf. on Very Large Data Bases, pages
151-162, Aug. 1985.

25

PI

171

181

PI

1111

WI

[I33

D41

[I51

WI

[I71

D. J. Dewitt, S. Ghandeharizadeh, D. A. Schnei-
der, A. Bricker, H.I. Hsiao, and R. Rasmussen.
The Gamma clat.abase machine project. IEEE
Trans. on Knowledge and Data Eng., 2(1):44-62,
March 1990.

D. J. DeWit,t and J. Gray. Parallel database sys-
tems: The fut.ure of high performance database
systems. Comm. of ACM, 35(6):85-98, June
1992.

D. Gardy and C. Puech. On the effect of join
operations on relation sizes. ACM Trans. on
Database Syst., 14(4):574-603, Dec. 1989.

G. Graefe. Rule-based query optimization in
extensible database systems. Technical Report
Tech. Rep. 724, Computer Science Department,
Univ. Wisconsin-Madison, Nov. 1987.

W. Hong and M. Stonebraker. Optimization of
parallel query execution plans in XPRS. Proceed-
ings of the 1st Conf. on Parallel and Distributed
Information Systems, pages 218-225, Dec. 1991.

Y. E. Ioannidis and Y. C. Kang. Left-deep
vs. bushy trees: An analysis of strategy spaces
and its implication for query optimization. Pro-
;;gdi;gs of ACM SIGMOD, pages 168-177, May

M.-L. Lo, M.-S. Chen, C. V. Ravishankar, and
P. S. Yu. Optimal processor allocation for the
execution of pipelined hash joins. IBM Research
Report, June 1992.

R. A. Lorie, J.-J. Daudenarde, J. W. Stamos, and
H. C. Young. Exploiting database parallelism in
a message-passing multiprocessor. IBM Journal
of Research and Development, 1992. To appear.
Also available as IBM RJ 8202, June, 1991.

H. Lu, .K. L. Tan, and M.-C. Shan. Hash-
based jom algorithms for multiprocessor comput-
ers with shared memory. Proceedings of the 16th
Int’l Conf. on Very Large Data Bases, pages 198-
209, Aug. 1990.

P. Mishra and M. H. Eich. Join processing in
relational databases. ACM Computing Surveys,
24(1):63-113, March 1992.

E. R. Omiecinski and E. T. Lin. Hash-based
and index-based join algorithms for cube and
ring connected multicomputers. IEEE Trans. on
Knowledge and Data Eng., 1(3):329-343, Sep.
1989.

H. Pirahesh, C. Mohan, J. Cheng, T. S. Liu,
and P. Selinger. Parallelism in relational data
base systems: Architectural issues and design ap-
proaches. Proceedings of the 2nd Intern’1 Symp.
on Databases in Parallel and Distributed Systems,
pages 4-29, July 1990.

K31

PI

PO1

WI

P‘JI

[231

[241

P51

J. Richardson, H. Lu, and K. hlikkilineni. De-
sign and evaluation of pa.rallel pipelined join al-
gorithms. I’roceedlngs of ACM SIGMOD, pages
399-409, hlay 198’7.

D. Schneider. Complex query processing in mul-
tiprocessor database machines. Technical Report
Tech. Rep. 965, Comput,cr Science Department,
Univ. FVisconsin-hIadison: Stlp. 1990.

D. Schneider and D. J. Dewitt. A perfor-
mance evaluation of four parallel join algorithms
in a shared-not,hing multiprocessor environment.
ACM Proceedings of SIGMOD, pages 110-121,
1989.

D. Schneider and D. J. Dewitt. Tradeoffs in pro-
cessing complex join queries via hashing in multi-
processor database machines. Proceedings of the
16th Int’l Conf. on Very Large Data Bases, pages
469-480, Aug. 1990.

M. Stonebraker, R. Katz, D. Patterson, and
J. Ousterhout. The design of XPRS. Proceed-
ings of the 14th Int’l Conf. on Very Large Data
Bases, pages 318-330, 1988.

A. Swami. Optimization of large join queries:
Combining heuristics with combinatorial tech-
niques. Proceedings of ACM SIGMOD, pages
367-376, 1989.

A. Wilschut and P. Apers. Dataflow query execu-
tion in parallel main-memory environment. Pro-
ceedings of the 1st Conf. on Parallel an.d Dis-
tributed Information Systems, pages 68-77, Dec.
1991.

J. L. Wolf, D. M. Dias, P. S. Yu, and J. Turek. An
effective algorithm for parallelizing hash joins in
the presence of data skew. Proceedings of the 7th
Intern’1 Conf. on Data Engineering, pages 200-
209, April 1991.

P. S. Yu, M.-S. Chen, H. Heiss, and S. H. Lee. On

i%T~~~~:F~F~~t~;~~ r;~t~y~$!t~~:
18(4):347-355, April 1992.

Appendix

Proposition: GB=(VB, ER) is a connected sub-
graph of a join query graph G. Let RI, R2, . . ., Rp
be the relations corresponding to nodes in VB, Al,
AZ, . . ., A, be the distinct att,ributes associated with
edges in Eg and ni be the number of different re-
lations that edges with attribute Ai are incident to.
Suppose R,vf is the relation resulting from joining all
relations in GB, and NT(GB) is the expected number
of tuples in RM. Then,

26

