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Abstract—Modern power systems are becoming increasingly
decentralized, with a greater degree of observability provided
through a network of sensors and local controllers in addition
to existing centralized supervisory control and data acquisi-
tion platforms. However, the interconnectivity between sensors
and controllers creates potential vulnerabilities which can be
exploited by a cyber-attack. The majority of components installed
on the grid were designed with little or no consideration for
aspects of cyber-security and therefore leaving the network at risk
of economic loss, asset damage or widespread blackouts. Present
research in cyber-attack events and electrical grid resilience, often
treats these in isolation. Furthermore, the ICT infrastructure in
modern electrical networks is not tested as rigorously in terms
of reliability and security as the physical assets. Therefore, an
integrated approach is needed for the analysis of cyber-threats
against power systems, linking the attack mechanisms in the ICT
layer and the physical impacts at the electrical layer. This paper
introduces a method of self-organizing communication architec-
tures that for the first time has been applied to the problem of
mitigating the negative impacts of denial of service cyber-attacks
in the smart grid and demonstrates the benefits of this in a novel
integrated environment connecting power system modeling and
communication layer simulation. This paper demonstrates and
quantifies the advantages of self-organization in terms of com-
putational burden and voltage control in a distribution network
experiencing multiple attack formats and increasing numbers of
attackers.

Index Terms—Smart grid, self-organizing systems, multi-agent
systems, cyber-security, voltage control.

I. INTRODUCTION

I
T IS widely accepted that modern energy networks are

gravitating towards greater integration of smarter technolo-

gies. These technologies are intended to deliver increased

observability and distributed control for the purposes of

implementing more advanced smarter grids. This evolution is

driven by numerous factors including distributed generation,
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energy storage and demand side response. Such advance-

ments rely on a sophisticated Information and Communication

technology (ICT) which bring more intelligence into the

grid by tranceiving sensor measurements and control sig-

nals. However, this reliance on interconnected systems creates

vulnerabilities which can be exploited through cyber-attacks.

Additionally, cyber-interdependency of the smart grid cre-

ates vulnerabilities for the electrical grid. Smart Grid cyber

interdependency exists because the state of the physical infras-

tructure depends on the information transmitted through the

ICT infrastructure [1]. In the United States 170 electrical out-

ages have been triggered by cyber-related causes [2]. Due

to minimal post-event, digital forensics specific information

on the set of attack strategies used is not available, but this

demonstrates that damaging the ICT infrastructure can trig-

ger physical power outages. Vulnerabilities in the ICT layer

can also be triggered by hardware failures or through mali-

cious intent in a targeted cyber-attack [3], [4]. The risk of

cyber-attack is also a consequence of legacy systems in opera-

tion within the electrical grid. Several Supervisory Control and

Data Acquisition (SCADA) systems were initially developed

without cyber-security considerations [5], these intelligent

monitoring systems provides the communication infrastruc-

ture across the electrical grid from 11 kV to 132 kV. Even

present ICT systems lack the strenuous testing regimes applied

to physical network assets [6].

Present research indicates that the methods of modeling

cyber-attacks and those evaluating power system vulnerabili-

ties are considered separately, not in an integrated manner [7].

Additionally, research into cyber-security fail to sufficiently

model the physical power system. Instead focusing on smart-

grid measurement data and communication protocols [8].

Firstly, this limits the degree which the impacts of a cyber-

attack can be assessed and quantified, subsequently leading to

inaccurate or inconclusive assessments of the value and prior-

itization of defense mechanisms. Secondly as an attack event

can vary in scale, duration and format is it important that the

physical system – i.e., the electrical network is studied as the

attack develops.

Consequently, this calls for integrated cyber-physical

modeling approaches. Vellaithurai et al. [9] explicitly state

that a combined cyber-physical analysis is required to estab-

lish the impacts of a cyber-attack event on the physical

system. Such analysis methods can enable the development
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of methods to mitigate the physical impacts based on pro-

cedures carried out in the cyber-layer. Methods which are

complimentary to other defensive mechanisms such as physi-

cal security, data validation and encryption. Reconfiguration

through self-organization has been demonstrated in several

research domains for a variety of problems such as under-

water sensor networks [10] and wireless communications [11]

and traffic management [12]. Self-organization has also been

applied with respect to power-system applications as presented

by Zhang et al. [13] and Lin et al. [14]. However, these exam-

ples do not take account the influence of an attack in the form

of a Denial of Service (DoS). Cohen [15] indicate that few

defensive mechanisms exist to counter a DoS attack within

the context of a smart-grid environment.

The work presented in this paper illustrates the value

of a novel implementation of a self-organizing architecture

through an integrated modeling approach to mitigate the

impacts of a series of DoS attacks. Where the attack objective

is to compromise voltage control availability within a multi-

agent smart-grid distribution network. Previously indicated

work [13] and [14] does not consider attack mitigation in

the presence of an active control problem and where com-

ponents responsible for delivering control are under attack.

Attack detection, recovery, and self-organizing communication

routing are important factors in maintaining system operation.

Maintaining controllability remains equally as imperative and

has a measurable impact on the physical components under

the jurisdiction of the IT network.

Section II of this paper discusses the general cyber-security

concerns of the smart-grid, threats posed by them, and how

would they affect the grid. Also, this section discusses the

importance of a DoS attack. Section III outlines the support-

ing research and the implementation of the SOA. Section IV

documents the approach to evaluating the SOA, including

the problem scenario, attack modeling and integrated test

platform involved. Section V illustrates the results of com-

paring the SOA with a typical static smart grid architec-

ture. Finally, Section VI offers conclusions and avenues for

further work.

II. IMPORTANCE OF THE PROBLEM DOMAIN

Currently, the power grid suffers from lack of techni-

cal or operational solutions to prevent or withstand cyber-

attacks [16]. Utilities could benefit from investigating and

identifying a number of cyber-security goals and their respec-

tive attack scenarios, using modeling techniques to understand

the effects of an attack, and the ability of the grid to withstand

them.

National Institute of Standards and Technology (NIST) has

defined three cyber-security goals for Smart Grids, which are

availability, integrity, and confidentiality. Although data con-

fidentiality has the highest importance for any IT system it is

not an immediate threat to the power grid. Availability, fol-

lowed by integrity in terms of prioritization is more critical

for Smart Grids.

A confidentiality attack refers to an attack which aims to

gain unauthorized access to sensitive customer or measurement

data, an example attack vector being social engineering. Such

an attack strategy would not necessarily have a physical impact

on the electrical grid, but can be a preparatory step to a more

damaging attack. It could be used to steal access credentials or

rights from operators. For example, a social engineering mech-

anism called spear-phishing was employed in cyber-attack on

Ukrainian power grid [17]. This was used to steal access cre-

dentials to the system to facilitate easier installation of remote

access tools, handing control of the system over to the adver-

sary. Counteracting this attack is difficult from a technical

point of view, as it targets a human controller, rather than

a machine controller.

An Integrity attack refers to confirming that information in

transit between various elements of the grid are trusted, accu-

rate, and have not been manipulated or fabricated. A false

data injection is one of the attack vectors that could com-

promise integrity of the Smart Grid [18]–[21]. This data tam-

pering can take place in many formats, from misrepresenting

sensor data to trick state estimation systems [22] or falsify

network topologies [23]. Data tampering attacks can trigger

controllers to make incorrect decisions resulting in economic

losses and operational issues [24]. Researchers have investi-

gated the vulnerability of state estimation under data tampering

attack, such that false data is accepted by the estimator bypass-

ing bad data filtration processes [22], [24], and [25]. Although

these systems contain contingency techniques such as filtering

and/or removing bad data, the attackers continually develop

new methodologies to evade error detection solutions to inject

false data into state estimators. This attack would affect the

grid by reducing the awareness of component failure and

leading to incorrect decision-making. Another data tamper-

ing attack strategy involves misleading the control center by

forging network topology information [23]. This attack vec-

tor exploits the lack of authentication between terminals and

the control center, thus convincing the control center that

the network is operating under a different topology. False

data injection for forging network topology would affect the

grid by concealing the network stress and preventing control

actions being initiated to relieve those stresses.

Availability refers to confirming that information is avail-

able in a timely manner. Accordingly, this paper focuses on

this cyber security goal. In conventional grids, utilities estimate

meter readings with limited information. Thus unavailability

of meter data was of little threat to the system. However,

in a smart grid context, smart meter readings with sensi-

tive information and control signals are being exchanged

between several entities. Therefore, availability, especially in

the case of delivering control signals is crucial within the

smart grid.

The importance of availability in the smart grid are

most evident in networks where Advanced Metering

Infrastructure (AMI) is implemented, and where traffic loads

can compromise the availability of the overall system. In

a system where the AMI is responsible for transmitting out-

age alarms and managing distributed generation, distribution

automation or other critical functions, it is important to facil-

itate the timely movement of data, even when the network is

flooded with data or under attack [26].



3012 IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 3, MAY 2019

Fig. 1. Attack Description.

Additionally, data availability can affect all layers of Internet

protocol stack (called TCP/IP), which also defines the impor-

tance of data availability as a high priority requirement of

a smart grid communication network. For example, availabil-

ity can be affected by device tampering in the physical layer

of the protocol stack, by traffic manipulation in data link

layer, by false routing in network layer, and by flooding in

transport layer. Data availability and integrity can be com-

promised through several means: worms, viruses, malware,

phishing, and denial of service (DoS) attacks. DoS can be car-

ried out by data flooding the nodes or resources in a network to

prevent genuine requests from being processed. In this paper

we investigate DoS because this attack can be applied to all

the layers of the TCP/IP protocol stack, therefore making it

an important threat to the system. Additionally, there has been

growing reports of a DoS attack format being used against

power systems. The two most notable cyber-attacks reported

in recent years are Stuxnet [27] and Ukrainian [17] events,

where in both cases attackers used a DoS attack strategy to dis-

turb the power grid. Other research such as presented in [28]

also supports the assumption that DoS is amongst the most

dangerous security threats to the smart grid.

The impacts of such DoS attacks on the power system have

significant consequences for performing control and poten-

tially lead to physical component damage, financial losses and

outages, triggered by control signal loss. This paper discusses

the DoS attack modeling in detail and examines a number of

different DoS attack scenarios, in the form of Burst, Sequential

and Continuous Low Rate DoS formats. Additionally, each for-

mat follows both an Adaptive and a Static attack approach. To

illustrate the contribution of this research Fig. 1, is presented,

documenting the global view of cyber attacks in order of pri-

ority, focusing on availability. Due to the widespread influence

of data availability, all layers of the TCP/IP stack can be influ-

enced by a DoS event as depicted in Fig. 1. For example as

DoS attacks can affect the application layer through produc-

ing a large number of seemingly legitimate data. The transport

layer is vulnerable to IP spoofing and excessive transmission of

synchronization packets. The network layer can be influenced

by large volumes of traffic which can delay control responses.

Finally, the physical layer can be affected by a DoS attack

through physically damaging, disconnecting or powering down

a network asset. It is believed [15] that the cyber-physical

network has few options in defensive approaches in the face

of a denial of service attack other than purchasing additional

bandwidth.

This paper describes a novel integrated environment which

implements and evaluates a self-organizing multi-agent archi-

tecture through cyber-physical simulation. Previous work by

the authors presented in [29], supported by literature indicates

the applicability of self-organizing approaches in relation to

providing adaptability to smart-grid systems. The previous

work evaluated a set of static architectural configurations

in relation to performance objectives including data conges-

tion, voltage control performance and communication response

times.

These examinations demonstrated that across differing

agent population sizes and topologies no single configuration

delivered optimum performance. Therefore, demonstrating the

need for greater flexibility in the form of self-organization.

This work serves as an extension to the previous publication

whereby the implemented architecture is applied as a defensive

mechanism with respect to mitigating the impacts of a Denial

of Service (DoS) attack.

III. A SELF-ORGANIZING ARCHITECTURE

The previous research indicated the potential value of

a SOA, however the work presented in this paper examines the

feasibility of developing such an architecture. Furthermore

the work provides additional contributions in demonstrating

the SOA with continuous performance monitoring, decision-

making and an initial configuration stage. The SOA is then

demonstrated with respect to a cyber-security threat illustrat-

ing value in addition to that suggested in previous work, within

an integrated test platform.

A. Current Architectures

Given the wide research interest in smart grid imple-

mentations there are a range of control and communication

architectures in use. As illustrated in [30]–[32] smart grid

IT architecture deployments are predominantly hierarchical in

nature which in turn correlates to the structure of the power

system under observation. Furthermore, there is a trend in

applying local control to smaller sub-sections of the moni-

tored network as documented in [33]–[35]. This local control

approach increases decentralization and removes the threat

presented by a single point of failure. Architectures presented
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in literature display a trend for three core component tiers.

The lowest tier contains customer level entities, typically in the

form of smart meters, and distributed generation. The interme-

diary layer is composed of local controllers and data collection

components, while the highest tier contains a central server for

processing global data and control objectives.

B. Self-Organization

A self-organizing system can be defined as one that can

satisfy the requirements of: scalability, robustness, flexibil-

ity and adaptability [36]. Research by Serugendo et al. [37]

add further properties including the ability to form struc-

tures automatically, and the ability to perform self-monitoring.

SOAs have been applied to multiple research sectors, and

in each case the drivers for restructuring and reconfigura-

tion mechanisms are tailored to the problem domain. This

demonstrates the universality of a self-organizing solution

and therefore its applicability to a smart grid scenario. Some

systems apply self-organization in terms of agent roles and

behaviors, while others apply mechanisms for the restructuring

of connections within the architecture. Given the universality

of self-organizing systems, they have numerous applications

within the smart grid research domain – Srivastava et al. [38]

implement self-organization to increase network resilience in

the event of agent failure through passing roles to agents in

a different hierarchical tier.

In addition to accounting for physical entity failure the

smart grid research community has applied self-organization

for further elements of network resilience in the form of miti-

gation against cyber-threats as presented by Lin et al. [14]. The

work describes a self-healing mechanism surrounding phasor

measurement units, whereby is a node becomes compromised

by an attack it is disconnected. After an attack data and

communication is re-routed via surviving nodes to maintain

observability. This work differs from the proposed method-

ology in the sense that nodes under attack do not provide

control response and therefore these nodes are less critical

because retaining observability rather than controllability is

the core objective A further example of self-organization in the

smart grid domain refers to a communication network which

responds to data congestion management and reconfiguring the

architecture in response as presented by Zhang et al. [13].

The work documents a pathing methodology for dynami-

cally routing messages through the architecture. However as

in the previous example, control functions are not considered,

nor is there an assessment of the self-organizing approach from

the perspective of a cyber-physical evaluation. The research

presented by the authors of this paper differs in its applica-

tion of self-organization through the involvement of a physical

control problem and the application of analysis through the

medium of an integrated cyber-physical evaluation framework.

C. Implementation

The proposed SOA is composed of three operational stages:

Initialization, Performance Monitoring and Decision Making.

The SOA is formed from a series of java based agents via the

JADE agent platform connected to a distribution network

Fig. 2. Network Diagram.

model in Matpower. Both elements of the simulation are

connected through interactions managed by a Gateway Agent.

The modeled distribution network consists of 340 domes-

tic smart-metered customers and 4 10MW PV installations

across four radial LV feeders. The agent population forming

the SOA contains a range of agent classifications: Customer

and Generation agents (CAs and GAs respectively) are respon-

sible for monitoring demand and generation and performing

local voltage monitoring. All CAs and GAs publish updates

to a layer of Aggregation Agents (AAs). The AAs aggregate

data from CAs and GAs they are connected to, and respond

to control requests from the CAs. Each of the AAs trans-

mits aggregated demand and generation to a central Observer

Agent which builds a global view of the network data. Further

agents include an Architect Agent which is responsible for

processing performance monitoring data and hosts the fuzzy

decision-making engine. Finally a Gateway Agent orchestrates

the connection to the power system model in Matpower, coor-

dinating the information exchange between both aspects of

the integrated platform. Fig. 2 presents the structure of the

distribution network and illustrates the placement of agents in

relation to the physical layer of the simulation. Connections

are not depicted between agents as they are not predetermined

and are a factor of the initialization stage.

1) Initialization: Stage one of SOA operation involves

forming connections between the CAs/GAs and the AAs. To

determine a preferred connection, each CA and GA ranks

potential connections based on how quickly each AA responds

to a discovery message. This uses a method similar to the

mechanism applied by Ojha et al. [11].

Each AA has limited connection capacity, if all AAs can-

not accept further connections remaining CAs and GAs will

be declared isolated. Isolated agents appeal to the Architect

agent to request additional AA resource through either acti-

vating dormant AAs or promoting CAs into aggregation roles.

A further element of the initialization stage is the assignment

of substitute agents; a substitute agent is a CA selected by an

AA which can be called upon to replace it if the AA becomes

unresponsive or fails. Substitutes are selected once all CAs and

GAs are connected, and is based on the concept presented by

Climent et al. [10]. An AA will select a substitute agent by

choosing the connected CA with the lowest volume of commu-

nication traffic. CAs are initially developed with the internal

functions and data structures to assume AA responsibilities.

Such functions are disabled unless activated by an instruction

from the Architect agent.
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TABLE I
PERFORMANCE METRIC THRESHOLDS

It is possible for an initialization stage to fail to be exe-

cuted successfully or to take too long to complete. The self

organizing system has some contingencies built into it which

mitigate this risk. One of the causes for a failure to initial-

ize the system could be a lack of sufficient aggregational

capacity. If this occurs the isolated agents contact the GA and

request an increase in aggregational capacity. Fig. 4 provides

an indication of how the scale of the multi agent architec-

ture, number of CAs, affects the ability of the system to

successfully initialize in an appropriate period of time. The

voltage control scheme waits for 180 seconds after a voltage

excursion before to ensure the problem is sustained before

taking action. Therefore 180 seconds can be taken as an

upper bound on the time permitted for initialization. It can

be seen in Fig. 4 that when the customer agent population

reaches 2300 there is a risk that initialization takes longer

than would be acceptable. Therefore an area of network with

more than 2300 participating customers would need to be con-

trolled by multiple MAS clusters with distinct initialization

groupings.

2) Performance Monitoring: After completing initializa-

tion, the SOA enters a performance monitoring stage. Each

agent measures a set of local parameters including control

performance, message congestion, data flow, unresponsive-

ness and response times. Each parameter is accompanied by

a threshold value to determine if the agent is experiencing

performance degradation; these thresholds are documented in

Table I. All thresholds were determined through a combina-

tion of experimental results, expert knowledge and smart meter

specification data. If an agent observes a performance metric

operating outside of the threshold, an error report is submit-

ted to the Architect Agent. Each error report contains the

location of the violation, its severity with respect to the thresh-

old, along with further details documenting the nature of the

error. The Architect agent is responsible for collating all the

error reports and calculating the computational burden indica-

tor. Computational burden is calculated using equations 1-3.

Where sum of the error severities for each aggregate (1−n) is

divided by the number of aggregates, the same process applies

for customer agent (c1 − cn). This is process is applied for all

error types (et1 − etn) to define an overall system wide burden

indicator.

As the burden indicator is a combination of several

performance metrics it therefore is represented as a dimension-

less quantity The rate of change of the burden indicator is also

calculated as a method of assessing whether the error state is

improving or deteriorating. If the burden indicator determines

that the error state of the network is significant and that rate of

change indicates it is a persistent event, the decision-making

engine is triggered.

BAggregate =

∑Agg1

Aggn
(Error Severity)

Number of Aggregates
(1)

BurdenCust =

∑C1

Cn
(Error Severity)

Number of Customers
(2)

BOverall =

∑et1
etn

(

Bcust + BAggregate

)

Number of Error Types
. (3)

3) Decision Making Engine: Decision Making in the

SOA is centered on a fuzzy based decision-making engine

supported by decision tree analysis. A fuzzy system has been

implemented due to its applicability in non-linear systems

of high uncertainty such as in the case of a cyber-attack

event involving a human adversary who can behave unpre-

dictably. Furthermore the ambiguity present in the calculation

of a computational burden indicator across multiple metrics

with multiple units and thresholds is more applicable to a fuzzy

centered application.

The fuzzy element of the decision-making engine computes

a recommendation for an architectural transition based on the

following stages:

Stage 1 (Connection Balancing): A stage 1 transition rebal-

ances connections, AAs with a high number of connections are

asked to transfer connections to those with fewer connections.

The aim of the transition is to evenly distribute communication

between the AAs.

Stage 2 (Agent Substitution): Each AA selects a substitute

during the initialization stage.

A stage 2 transition is a predominantly localized event,

where a targeted AA is replaced by its designated substitu-

tion. If the error state is not localized the Architect will activate

a single dormant AA or promote one CA into an aggregation

role.

Stage 3 (Dormant Agents): A finite number of dormant

AAs are included in the architecture at start-up. These AAs

have no active role in the architecture but listen for activa-

tion messages. In stage 3, all available dormant agents are

activated.

Stage 4 (Agent Promotion): A stage 4 transition involves

creating a second AA tier, a number of AAs in the original

tier are promoted up to a higher AA tier, those promoted AAs

are then replaced by promoted CAs.

Three computational burden levels were discerned based

on experimental date and expert knowledge of the system,

a similar approach was applied to the rate of change of bur-

den. The membership functions are detailed through the use

of equation (4), where x1 refers to the computational bur-

den membership function and x2 relates to the rate of change

equivalent. F refers to the fuzzy sets with parameters a-d as

documented in Table II, the equation also applies to sets with
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TABLE II
FUZZY INPUT AND OUTPUT DATASET

TABLE III
DECISION MAKING ENGINE RULE SET

the notation G. Equation (5) documents illustrates rule firing,

equation (6) defines the aggregation process where yT refers

to the transition recommendation. Finally equation (7) defines

the defuzzification stage. Table III presents the rule set for the

decision-making engine.

µFi,l
(xi) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

xi−aFi,l

bFi,l
−cFi,l

if aFi,l
< xi < bFi,l

1 if bFi,l
≤ xi < cFi,l

dFi,l
−xi

dFi,l
−cFi,l

if cFi,B ≤ xi < dFi,l

0 otherwise

(4)

fl(x) =

p
∏

i=1

µFi,l
(xi) (5)

µB(yT) = max

⎛

⎝f1(x)

N
∏

j=1

µG1

(

yj

)

, f9(x)

N
∏

j=1

µG9

(

yj

)

⎞

⎠ (6)

yc(x) =

∑N
j=1 yTµB(yT)

∑N
j=1 µB(yT)

(7)

As previously indicated the values in Table II were attained

through experimentation combined with expert knowledge

arising from previous work in MAS development. Therefore,

this is not considered to be an optimized fuzzy implemen-

tation, and further improvements could be attained through

undergoing optimization and function tuning techniques. The

architect has the power to over-ride a recommendation made

by the decision-making engine if it is not feasible based on

the location and/or the distribution of the error reports. In

which case the Architect will perform an alternative transi-

tion. For example if the decision-making engine recommended

a stage 2 transition and the Architect determines that the issue

is more widespread replacing an AA would be ineffective.

Therefore, a single dormant agent will be activated or a single

CA promoted if no dormant AAs are available. Each transition

decision is independent to its predecessor, and do not neces-

sarily have to be completed in sequence. For example a stage

four transition may be followed by a lower stage transition

depending on the impact the previous decision had on the

computational burden indicator. Equally a stage four transition

may be the first recommendation from the decision-making

engine based on the severity of the attack event. It should

be noted that a transition event is a response to an emerging

state within the SOA and therefore does not aim to produce

an optimal configuration. The aim is to maintain system func-

tionality and react to the decisions made by an attacker which

cannot be pre-determined. For example the configuration cre-

ated following a stage four transition, includes multiple agents

performing functions beyond their initial responsibilities – i.e.,

CAs acting as AAs. These therefore will experience additional

computational load and the potential for component failure.

Consequently preemptively launching the SOA in a post

stage four configuration for persistent operation may be more

damaging. Following a completed transition, the Architect

enters a stand-off period within which no further transitions

are triggered. Lower stage transitions result in shorter stand-

off times whereas higher stage transitions are given a longer

period. The purpose of the stand-time is to reduce the possi-

bility of the attacker exploiting the properties of the SOA. For

example, a Reduction of Quality (RoQ) attack [41], aims to

trigger continuous restructuring actions which would disrupt

the data collection and control objectives of the SOA.

Error reports are still collected during the stand-off period,

but no further architectural transitions will take place. The

Architect also clears error expired error reports to prevent them

from factoring in future decisions.

IV. EVALUATION METHOD

To evaluate the effectiveness of the SOA, it was relevant

to compare its resilience to an attack event in comparison

to a static architecture. The selected static architecture rep-

resents the typical design approaches present in literature,

a three tier structure with customer/generation agents on the

bottom tier, local controllers assigned at one per feeder on

the central tier, and a local control centre responsible for the

network under observation. The objective of the evaluation

was twofold, firstly to examine the ability of the SOA to per-

form the control objective under the pressure of a denial of

service attack. Secondly to reduce the computational impact

of the attack and illustrate the wider applicability of the SOA.

A. Network Conditions

The distribution network – as presented in Fig. 2 – is heav-

ily loaded with limited available local generation, therefore is

vulnerable to under-voltage states. Control is provided through

demand side response in the form of customer load shed-

ding. Approximately 25% of total demand is controllable.

Upon observing a persistent voltage deviation exceeding 180s,
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Fig. 3. Integrated Test Platform Structure.

a CA would contact its associated AA with a control request.

In response, the AA would contact agents on the same feeder

as the deviation which it is associated with and issue a con-

trol signal. CAs performing load shedding periodically ask

their AA, if that shedding process is required. If no response

is received within 30 seconds, the CA assumes that control

is not required and cancels all shedding operations. To assess

the severity of the voltage deviation during an attack differ-

ence between the measured voltage and the nominal limit of

0.94pu was multiplied by the length of time that measurement

was valid. Repeated for each voltage measurement underneath

the threshold value as represented by equation (8). Where td
represents the timestamp of a measurement during the devia-

tion, Vn is the nominal minimum voltage and Va is the actual

measured voltage

td1
∑

tdn

(Vn − Va)(tt+1 − td) (8)

The maximum deviation references an instance when no

control actions are performed for voltage control, and each

deviation event recorded during a simulation is determined as

a percentage of the maximum deviation event.

B. Integrated Platform

A further contribution of the research was the development

of a test platform which connected the SOA represented in

JADE with an electrical model in Matpower as illustrated in

Fig. 3. An initial model file is supplied both Matpower and the

SOA detailing the starting state of the network, and the stat-

ing voltages are written to a results file.. During a simulation

the Gateway Agent (GWA) is supplied with demand and gen-

eration data from the agent population. The GWA maintains

a copy of the initial Matpower model file and updates it with

data retrieved from the agents. Periodically the GWA triggers

a Matpower load flow using the updated model file through

a command line script.

A MATLAB script creates a result file which contains an

updated set of bus voltages, which is read back into the

SOA via the GWA. This iterative process creates a cyber-

physical simulation of the network and the agents involved

in operating the SOA.

C. Attack Modeling

The DoS attack was deployed using compromised CAs

as attackers involving 6% to 24% of the CA population.

Fig. 4. Estimated Initialization Stage Completion Times.

As an attacker, the CA would transmit a volume of attack

traffic to its AA aiming to disrupt control signals. Because

CAs require continuous interaction between themselves and

the AA to maintain control, the attack aims to severe that

connection and trigger control deterioration. The DoS attack

differs from a generic congestion problem or network dis-

abling event similar to those indicated in [13] and [14] it

is a specifically targeted event. Additionally network conges-

tion through legitimate traffic can be forecasted at points of

peak load, whereas a DoS event is not predictable due to

the intent of the attacker. The examined attacks were based

on the DoS approaches as described by Luo et al. [42] and

Kuzmanovic and Knightly [43]. CAs are instructed to launch

the attack during the under-voltage event to specifically target

the control process.

The attack formats examined are as follows:

Burst Attack: A Low Rate attack acts as a DoS attack where

the attacker does not sustain the attack traffic. In this format

the attack is sustained for 250 seconds and is scheduled to take

place as the controllers are act to resolve the voltage deviation.

Sequential Attack: A sequence of each aiming to disrupt

the initial control action requests and subsequent periodic load

curtailment checks made by the CAs.

Continuous Low Rate Attack: This attack format presents

with continuous stream of attack traffic, the stream is triggered

at the point of performing voltage control and endures to the

end of the simulation.

Static Attack: Each of the previously listed attack formats

was firstly implemented in the form of a static attack. Where

the DoS attack performed by an adversary does not react to

reconfigurations triggered by the architect. A CA attacker will

transmit attack traffic to its original intended target regardless

of any reconfiguration actions.

Adaptive Attack: In contrast to the static attack, the adaptive

attack involves the attacker selecting an alternative target if an

architectural transition is imposed. The attacker listens for any

changes in the communication route for legitimate traffic and

redirects the attack traffic accordingly. The performance of

the SOA is evaluated with respect to control performance and

computational burden, to illustrate that the SOA can prevent

control deterioration which would be present under a static

architecture.

V. RESULTS

Several elements of the system performance have been eval-

uated in response to the core objectives of a self-organizing
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Fig. 5. Deviation Severity under Increasing Attack Strengths.

architecture. The first consideration is with respect to scal-

ability. While scalability can be notably influenced by the

evolution of an attack event the assessments have been made

in the context of the evaluation stage of operation. Fig. 4 doc-

uments estimated completion times of the initialization stage

extrapolated from measured data up to 340 customer agents.

The figures are scaled to the customer populations examined

in the previous work as referred to in [26]. The data indicates

that a fundamental element of the SOA, does not experience

exponential growth in computational time with an increasing

population and therefore the proposed system can be deemed

scalable. These results also align with performance evaluations

performed on the same MAS platform by Cortese et al. [44].

A second element of the performance criteria refers to the

resilience against the denial-of-service attack scenarios and

the effectiveness in comparison to multi-agent system with

a rigid communication architecture. This is considered to be

a static architecture. A series of continuous attacks hosted

by an increasing number of CA agents was performed with

and without the presence of the SOA. The voltage devia-

tion sensitivities during these attacks are presented in Fig. 5.

The figure illustrates that for smaller numbers of compro-

mised smart-meters the strength of the attack is not significant

enough to exacerbate the voltage deviation. However with

stronger attacks the control capability becomes increasingly

compromised – with 24% of CAs transmitting attack traffic the

voltage deviation reaches 96% of the severity in the complete

absence of control. Therefore, indicating that the attack effec-

tively disables the voltage control capabilities of the MAS. In

comparison the SOA does not experience the same control

degradation at the same attack strength in either presence of

either a static or dynamic DoS attack. To examine the role of

the SOA in minimizing the extent of the voltage deviation it

is important to consider the actions of the decision -making

mechanism.

Fig. 6 presents the transition events triggered by the archi-

tect agent over the course of the simulation mapped against

the message response time data for each feeder. Without the

SOA the response times between feeders 1 and 2 and their

CA population raise to over 8 seconds 4 minutes into the

simulation – demonstrating the impact of the attack with-

out SOA intervention. This severance of the communication

between controller and customer is the source of the con-

trol loss identified in the previous figure. Contrastingly the

SOA initially performed a rebalancing action, followed by

Fig. 6. Decision Making during a Continuous Attack with 24%
CA Involvement.

Fig. 7. Deviation Severity during Sequential Attacks.

Fig. 8. Congestion Data during an Adaptive Sequential Attack with 24%
CA Involvement.

deploying the dormant AA population and finally a Stage 4

tiered promotion. Demonstrating that the SOA can continually

adapt to the attack situation through collecting performance

monitoring information and decision-making. As a result

response times were managed through a reduction in computa-

tional burden. A second example considered a set of sequential

attacks presented in Fig. 7, in contrast to the continuous attacks

the deviation severity across the same attack population is

less significant. Therefore, the potential improvements in con-

trol performance through the SOA are reduced – indicating

that the relevance of the SOA is dependent on the severity of

the attack and its disruptive potential. Attacks with less than

15% CA involvement utilizing a sequential strategy do not

significantly influence the control potential of the MAS and

therefore performing transitional events may be an overreac-

tion. Fig. 8 illustrates the data congestion present during the

most severe of the sequential attacks.

This indicates the source of both the improvements made

by the SOA and the differing consequences of a sequential

attack in comparison to a continuous event. Each peak in the

figure represents one of the bursts of attack traffic during the

attack, the time between bursts allows each controller to clear

its message queue and therefore deliver control messages to the
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CA population. The SOA is able to reduce the peak congestion

by over 3,500 messages reducing the computational burden

index by 64%. A final attack analysis on individual burst attack

events also found that they were significantly less disruptive

to the control objective. In addition to preventing control loss

and therefore minimizing the severity of the under-voltage

condition the SOA was also capable of reducing the com-

putational burden. On average across all examined DoS attack

strengths and strategies computational burden was lowered

by 86.49%. Consequently, indicating that the SOA can have

further applications within smart-grid network management.

VI. CONCLUSION AND FURTHER WORK

This paper presents a SOA as a solution to mitigate against

a series DoS attacks, which if unattended can compromise

data availability and by extension result in control degradation

and total control loss. As a DoS attack can be considered one

of the most dangerous threats to a power system and a strategy

which can influence each layer of the TCP/IP protocol stack,

the SOA mechanism represents a valuable contribution.

The developed SOA was able to reduce the control degra-

dation created by the DoS attacks in events involving up to

24% of the customer population. Use of the SOA improved

response times between the AA and CA layers by up to

8.2 seconds and reduced congestion by up to 16,000 stored

messages. Therefore, the SOA was able to reduce the overall

computational burden indicator by 89.6% on average.

Based on the results obtained it can be concluded that

the developed SOA and its decision-making engine were

functional and effective being capable of maintaining control-

lability during a DoS attack event. The results demonstrated

that the SOA was able to reduce the computational bur-

den and revealed important correlations between correcting

issues within the communication layer and the resulting pos-

itive impacts on control performance. Reducing the burden

at the control layer prevented control deterioration experi-

enced by the static architecture and illustrated further potential

applications for the SOA.

The adopted approach leaves room for further research,

especially with respect to processing additional cyber-threats

which remains an interesting and expanding research topic and

where SOA could be one of the defensive tools used. Further

work will also examine additional attack strategies, control

algorithms and network scenarios. Current results could be

further enhanced through the application of machine learning

and self-tuning with the decision-making engine.
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