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Abstract

Large organizations need to exchange information among many separately-developed sys-

tems. In order for this exchange to be useful, the individual systems must agree on the meaning

of their exchanged data. That is, the organization must ensure semantic interoperability. This

paper provides a theory of semantic values as a unit of exchange that facilitates semantic in-

teroperability between heterogeneous information systems. We show how semantic values can

either be stored explicitly or defined by environments. A system architecture is presented that

allows autonomous components to share semantic values. The key component in this architec-

ture is called the context mediator, whose job is to identify and construct the semantic values

being sent, determine when the exchange is meaningful, and convert the semantic values to the

form required by the receiver.

Our theory is then applied to the relational model. We provide an interpretation of standard

SQL queries in which context conversions and manipulations are transparent to the user. We

also introduce an extension of SQL, called Context-SQL (C-SQL), in which the context of a

semantic value can be explicitly accessed and updated. Finally, we describe the implementation

of a prototype context mediator for a relational C-SQL system.
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- Data translation; H.2.4 [Database Management]: Systems - Distributed Systems; H.2.3
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1 Introduction

Large organizations need to exchange information among many separately-developed systems. In

order for this exchange to be useful, the individual systems must agree on the meaning of their

exchanged data. That is, the organization must ensure semantic interoperability.

Obtaining and maintaining semantic interoperability is not easy. Over time, new data sources

or applications may need to be added to an already heterogeneous mix. In addition, existing data

sources may change the specifications of the data they provide and applications may change the

requirements for the data they receive. A resulting semantic conflict, if undetected, can produce

disastrous results in even the simplest information system (such as source-receiver [18]). However,

the information needed to detect semantic conflicts is often buried deep in system manuals or

users' minds, and the routines to resolve semantic conflicts, if existing, are buried in code. Imagine

the organizational and technical problems that occur when a large organization with hundreds of

applications and data sources determines that the meaning of some data has changed (e.g., unem-

ployment numbers now include military personnel, or stock prices are now reported as latest trade

prices rather than latest closing prices, or currencies are changed from French Francs to ECU's).

How does it identify the impact of these changes on its applications? What does it take to adapt

the application to the addition of new data sources? Currently these problems are handled manu-

ally, resulting in the reduced availability and reliability of current information systems, increased

requirements for training new workers, and a proliferation of anarchistic processes for determining

when, where, and how information systems are affected by changes in the meaning of data.

In order to solve these problems, an information system must be able to ensure semantic inter-

operability. This is the goal of our research. We believe that in order for this goal to be achieved,

context information must be an active component of information systems. We define the context of

a piece of data to be the metadata relating to its meaning, properties (such as its source, quality,

and precision), and organization. For example, consider the trade price of a financial instrument,

which might be reported as a number such as 101.25. The context of this number would be in-

formation such as its currency, source, precision, accuracy, scale factor, and status (e.g., is it the

latest price or closing price?). A data value is exchanged from one system to another by converting

it from its source context to its receiving context.

We have found numerous examples where explicit context specification would improve informa-

tion systems in government, finance, and manufacturing. Context information can be quite varied,

including information such as units specifications (e.g., currency, length), enumerated data tags

(e.g., trade price status), data or quality information (e.g., accuracy, source), data format (e.g.,

date format, scale factor), assumptions used in deriving or computing data (e.g., whether a write-

off for a pension plan was excluded), methods (e.g., spline vs. other interpolation strategies) or

formula definition (e.g., Return on Equity defined to be Return/Equity, where Return is defined

to be income and Equity is defined to be the number of shares times the share price on the close

of the statement date) [9, 24]. When such context information is explicitly available, a database

system can determine automatically whether data interchange is meaningful and identify effective



means for converting data. The explicit context knowledge reduces errors and frees applications

from being concerned with conversions. It also documents the differences among the environments

of each system, making it possible to understand the impact of semantic changes to the data.

The foundation of our results is the concept of a semantic value, which is defined to be a piece

of data together with its associated context. Section 2 presents a data-model-independent theory

of semantic values. In it we show how conversion functions can be used to convert a semantic value

from one context to another. We then use conversion to define what it means for two semantic

values to be compared, as well as the meaning of some arithmetic operators on semantic values.

Conventional information system components (such as applications and database management

systems) are designed for the exchange of simple values. Because semantic values, not simple

values, more closely fulfill the requirements for information exchange, new system architectures

must be developed. Whether this exchange involves one application calling another through a

remote procedure call or an application requesting data from a data source, conventional systems

must be enhanced with the ability to exchange semantic values. We call this new ability context

mediation, and the system component responsible for context mediation the context mediator. In

Section 3 we discuss this new architecture and the general requirements for context mediation. One

important requirement is that a context mediator must be able to determine, given a simple value

from the data source, the value's intended context in the data source as well as the value's expected

context at the data receiver. This information is obtained by examining the data environments of

the source and receiver. A data environment specifies the context of data values, and may involve

mappings, lookup tables, rules, predicates, or other knowledge representations.

Section 4 applies our theory to the relational model. We show how a semantic value can be

modelled as several attribute values having a special relationship. For example, a relation may

contain the two attributes TradePrice and Currency, with the value of Currency providing part of

the context of TradePrice. We say that Currency is a meta-attribute of TradePrice. This information

is specified in the data environment of the database. For example, the data environment could

specify that TradePrice has Currency as one of its meta-attributes, and that the value of Currency

in all tuples is 'USdollars'. We show how a context mediator can use these environments to derive

appropriate meta-attribute values for database tuples. Because derived meta-attribute values need

not be stored, a traditional relational database can be treated as if it contains semantic values

simply by associating with it a data environment that specifies values for all of its meta-attributes.

We then examine how relations in our extended model are manipulated. In Section 5 we

introduce an extension of SQL, called Context-SQL (C-SQL), that allows access, manipulation,

and update capabilities for semantic values and their contexts. In C-SQL, context becomes a first

class construct. Thus queries that before could only be determined by reviewing manuals or asking

fellow users can now be answered in C-SQL. Moreover, users see context information only when

they wish to. A user posing a standard SQL query will not be aware of contexts and conversions,

although these things may be involved in the evaluation of the query. For example, suppose a

user poses an SQL query that compares two values of TradePrice. This query will be evaluated by

converting these values to a common context and comparing the resulting values, transparently to

the user.

Section 5 also considers the effect of associating data environments with applications and user

queries. We show how such data environments generalize the Application Semantic Views of [18],

allowing users to access the data as if it actually had the context specified by the environment. For



example, an application's data environment might specify that all currencies in a relation are to be

in Yen. In this case, any SQL query on this relation could legitimately assume a single currency for

all tuples and all attributes, even though the data in the underlying base relation involved multiple

currencies. The conversion between currencies would be handled automatically and transparently

by the context mediator. Update requests also take advantage of application data environments.

For example, differences in the meaning of the data in the environment of an update and the

environment of the data store can cause undetected data entry errors in conventional systems.

These errors cannot happen if the update occurs through a semantic view. The system will ensure

that the specified update values will be converted to the appropriate context before storing.

Section 6 considers implementation issues, describing a prototype context mediator for our

extended relational model. This prototype is in the process of being developed at MIT.

Our work enforces an important trend towards decoupling of applications from other applica-

tions and data sources, thus simplifying the interface among system components. This decoupling

is accomplished by defining semantic values as the unit of data interchange, allowing context to be

specified both explicitly and implicitly, and providing an architecture that uses context mediators

to interface with semantically heterogeneous systems. In Section 7 we summarize by examining the

use of this approach in multidatabase systems and provide a description of future research plans.

2 Semantic Values

In this section we provide the foundation for a theory of semantic values. Section 2.1 defines

semantic values and motivates their use. Sections 2.2 and 2.3 discuss the idea of conversions, and

show how a semantic value can be converted to other semantic values. Section 2.4 shows how these

conversions can be used to define semantic comparability and semantic arithmetic, and Section 2.5

examines some of the complexities in doing semantic comparisons in our current approach.

2.1 Properties and Contexts

A simple value is an instance of a type. The semantics of a simple value is determined solely by

its type. That is, if 3 is of type dollars then it denotes 3 dollars, and cannot be compared with

instances of type Yen or meters.

Although typing provides some useful semantics to values [17], it is inadequate when semantics

have multiple dimensions. The main problem is that a different type is needed for every possible

semantics; for example, an application manipulating currencies can have a different type for each

kind of currency. Suppose for example that values can also be scaled; that is, 3 with a scaling factor

of 1,000 should denote 3,000. We could encode this semantics by defining the types thousands,

millions, etc., one type for each possible scaling factor. But then how do we combine currencies

with scaling factors - what type do we assign to 3 so that it denotes 3,000 Yen? Defining types

such as thousandYen is both awkward and impractical.

In order to increase the semantics of values, we turn to LISP's idea of property lists. In LISP,

an atom has an associated list of properties. For example, a LISP atom might have the properties

Currency and ScaleFactor; if the value of the atom is 3, the value of its Currency property is 'Yen',

and the value of its ScaleFactor property is 1000, then the atom denotes 3,000 Yen.



Formally, we define a semantic value to be the association of a context with a simple value.

We define a context to be a set; each element of the set is an assignment of a semantic value to

a property. Note that this definition is recursive. That is, the value of a property can have a

non-empty context. Simple values are defined to be equivalent to semantic values having an empty

context.

We write semantic values by placing the context of a simple value next to it, using parentheses

instead of set brackets. For example, the following semantic value might appear in a stock market

application:

1. 25(Periodicity= 'quarterly'(FirstIssueDate ='Jan. 15'), Currency='USdollars')

Here, the value 1.25 has two properties: Periodicity and Currency. The value of the former property

is also a semantic value having the property FirstIssueDate. The semantics of 1.25 can thus be

interpreted as a quarterly dividend of 1.25 US dollars with a beginning cycle of January 15th.

2.2 Conversion Functions

Attaching a context to a simple value helps to more accurately specify the value's semantics. One

consequence of making context explicit is that two syntactically different semantic values can have

the same meaning - e.g., 4(Length Unit='feet') and 48(Length Unit='inches'). Intuitively, these

semantic values are equivalent because there exist conversions between them. In this subsection we

discuss conversions between semantic values having a single property. The next subsection extends

these results to arbitrary semantic values.

Let P be a property. A conversion function for P is a function which converts a simple value

from one value of P to another. For example, if cvtLengthUnit is a conversion function for Length-

Unit, then cvtLengthUnit (4, 'feet' 'inches') returns the simple value 48. A conversion function may

be implemented in any programming language, and may involve table lookup (e.g., for currency

conversion), consulting on-line data sources (e.g., for timely currency conversion), or logical rules.

It is possible for a property to have more than one conversion function defined for it. For

example, consider the property PriceStatus, whose possible values include 'latestTradePrice', 'lat-

estNominalPrice', and 'latestClosingPrice'. There is no universal interpretation of these values.

One application might have a complex formula that estimates the latest closing price given a

latest trade price (e.g., as a function of the S&P 500 index); another application might ignore

the differences between the two PriceStatus values, so that a semantic value such as 3(PriceSta-

tus='latestTradePrice') can be converted to 3(PriceStatus ='latest ClosingPrice') and back again;

yet another application might not allow any conversions, treating the different kinds of price status

as being incomparable. These different choices are all reasonable, and simply depend on how an

application intends to use its data.

Conversion functions can be defined by the system, or by any of the databases or applications

that are part of the system. The conversion functions are stored in one or more conversion li-

braries. In Section 3 we discuss the general case, in which the context mediator must determine

the appropriate conversion function to use in a given situation. However, for simplicity we assume

in this paper that all properties P have a single conversion function, which is called cvtP.

A conversion function may have characteristics that are useful for semantic comparison, as

we shall see in Section 2.4. In particular, a conversion function may be total, lossless, or order-



preserving. A total conversion function is one that is defined for all arguments. The function

cvtLengthUnit is an example of a total conversion function, because it is possible to convert any

value from any unit to any other unit. Not all conversion functions are total; for example, it

might not be possible to convert from one currency to another. For another example of a non-

total conversion function, consider semantic values denoting locations of companies. Assume that

locations are represented as character strings, such as 'Boston', 'Paris', 'Alaska', or 'Spain'. This

set of location values can be thought of as forming a hierarchy; for example, 'Paris' is less general

than 'France'. We introduce the property LocationGranularity to encode the granularity of the

location, whose conversion function cvtLocationGranularity converts strings from one granularity

to another. Thus 'France' = cvtLocationGranularity('Paris', 'city', 'country'). This conversion

function is not total, because it is not possible to convert from a coarse granularity to a finer one.

A lossless function is one for which it makes no difference whether a value is converted from one

property value to another directly or in a sequence of steps. Formally, cvtP is a lossless conversion

function if cvtP(a, p1, p1) = a and cvtP(a, P1, P3) = cvtP(cvtP(a, p1, P2), P2, P3) for any values of

a, p1, P2, and p3. For example, cvtLength Unit is a lossless conversion function, because by starting

with a value in a particular unit and performing an arbitrary number of conversions on it, the

resulting value is always the same as what would result from converting it directly to the final unit.

Note that a special case of this definition occurs when pi = p3; in this case, the definition asserts

that converting from one property value to another and back again results in what you started

with.

Examples of lossy (i.e. non-lossless) conversion functions include those that convert between

different geometric formats (line-segment representations vs. spline representations) or different

discrete representations of continuous data, as well as those that perform lossy data compression.

For another example of a lossy conversion function, consider semantic values denoting text strings

containing embedded formatting commands. A semantic value such as s(FormatType='LaTex')

indicates that string s contains embedded LATEX commands. Assume that the function call cvt-

Format Type(s, 'LaTex', 'unformatted') returns a string s' in which the embedded commands are

removed, whereas the call cvtFormat Type (s', 'unformatted', 'LaTex') returns a string in which a

default set of formatting commands is added to s'. Clearly this function is not lossless, because if

you take a LATEX string, convert it to unformatted and then back to LATEX, you may get something

different from what you started with.

We say that a conversion function for property P is order-preserving if for any values p and

p' of P, ai < a2 implies that cvtP(ai, p, p') < cvtP(a2, p, p'). Intuitively, a conversion function is

order-preserving if the simple values associated with two semantic values do not change their order

when they are converted to another context. Again, the function cvtLength Unit is order preserving

- the semantic value for 3 inches will always be less than the one for 4 inches, no matter what

units they are converted to. For an example of a non-order-preserving property, consider the

property Code Type, which documents whether an integer corresponds to a character in either the

ASCII or EBCDIC code. For example, 48(Code Type='ascii') and 240(Code Type='e bcdic ') both

correspond to the character '0'. Similarly, the character 'A'is represented by the semantic values

65(CodeType='ascii') and 193(CodeType='ebcdic'). Thus the conversion function cvtCodeType is

not order-preserving, because cvtCodeType(48, 'ascii', 'ebcdic') > cvtCodeType(65, 'ascii', 'ebcdic'),

even though 48 < 65.

Each conversion function has an associated cost function, which estimates the cost of a given



conversion. For example, conversions involving consulting on-line sources will have a higher cost

than conversions involving a simple arithmetic calculation. Knowledge about conversion costs is

important for query processing, as we shall see in Section 3.2. Conversions which are not possible are

assigned an arbitrarily high cost. In addition, conversions that lose information can be discouraged

through a higher cost.

One final issue to discuss is the treatment of conversions between property values that have

their own context. For example, Section 2.1 introduced the property Periodicity, the values for

which contained bindings for the property FirstIssueDate. A sample call to the conversion function

would thus be:

cvtPeriodicity(6, 'quarterly'(FirstIssueDate ='Jan. 15'), 'annually'(FirstlssueDate='June 1'))

Note that the interpretation of the property FirstlssueDate is hidden inside the conversion function

cotPeriodicity. This conversion function has several possible options. It can ignore the context of

its arguments; it can require that the contexts be identical; it can call the conversion function

cvtFirstlssueDate; and it can perform internal calculations based on the context values. Although

our theory allows for property values to contain other properties, the best way to use such properties

is unclear, and is the subject of future research.

2.3 Converting Arbitrary Contexts

In this subsection we discuss conversions among semantic values having more than one property.

Let v be an arbitrary semantic value, and let C be a context containing values for a subset of the

properties in the context of v. Then we define the function cvtVal(v, C) to return the semantic

value that results from converting v to context C. For example,

cvt Val(4 0 (Length Unit='feet', scaleFactor=1), {Length Unit='inches', ScaleFactor=10 })

returns the semantic value 48(Length Unit='inches', ScaleFactor=1 0).

The function call cvt Val(v, C) returns a semantic value. The context of this return value is C,

and its simple value is obtained by composing conversion functions. In particular, let C be the

context {P 1 = Pi, ... , Pn = pn}, let p' be the value of Pi in the context of v, and let a be the

simple value of v. Then the simple value of the semantic value returned by the function call is

cvtPn(--. cotP2 (cotP1 (a, p',7p1),p'2,p 2) -,pn ipn)

Note that any property values appearing in the context of v but not in C are ignored in the

conversion.

In the above example involving cvt Val, the order in which the conversion functions cvtLength Unit

and cvtScaleFactor are composed does not matter; both orderings produce the same value. We say

that these conversion functions commute. Conversion functions may not commute in general. For

example, a function that performs units conversion will not commute with a function that converts

between encrypted and unencrypted values. In such cases we need a way to specify the order in

which the conversion functions are to be composed. We therefore require that a priority be specified

with each conversion function. The order in which conversion functions are composed in the above

definition is determined by their priority - in particular, functions having a higher priority are

evaluated first. Conversion functions that commute can be given equal priority, in which case the

system is free to choose any ordering.



2.4 Semantic Comparability

We now turn to the issue of what it means to compare two semantic values. In general, the

result of a comparison is a relative thing. For example, consider the semantic values 4(Cur-

rency = 'USdollars') and 300(Currency = 'Pesetas'), and suppose that currency conversion is

not lossless. In particular, suppose that cvtCurrency(4, 'USdollars', 'Pesetas') = 300 but cvtCur-

rency(300,'Pesetas', 'USdollars') = 3. Then the above two semantic values should be considered

equal if we are interested in their worth in Pesetas but not if we are interested in their worth in US

dollars. For another example, consider the semantic values 'Paris'(LocationGranularity = 'city')

and 'France'(LocationGranularity = 'country'). Here, the locations should be considered equivalent

if we are interested in whether they denote the same country, but should be inequivalent if we are

interested in whether they denote the same city. The intuition behind these examples leads to the

following definition.

Let vi and v2 be two semantic values and C be a context, and suppose that cvtVal(vi, C)

a1(C) and cvtVal(v2, C) = a2(C). Let 0 be a comparison operator, such as =, f, <,

and so on. Then we say that vi 0 V2 with respect to C if al 0 a2.

That is, two semantic values must be compared with respect to a context. This context is called

the target context of the comparison. The value of the comparison is defined by converting both

semantic values to the target context and comparing the associated simple values of the results.

We call this kind of comparison relative comparison, because the truth value of the comparison

depends on the target context.

The target context may be different from the contexts of either of the compared values. For

example, 'Paris'(LocationGranularity = 'city') = 'Nice'(LocationGranularity = 'city') with respect

to the context {Location Granularity = 'country'}. The target context also may have different

properties than either of the compared values. The only restriction is that the properties of the

target context be contained in the intersection of the property sets of the compared values; this

restriction arises from the definition of cvtVal. In the case that the target context is empty, no

conversion need be done, and semantic equality reduces to equality on the simple values. For

example, let v1 be 4 (Length Unit='feet', ScaleFactor=10) and let v2 be 40(Length Unit='meters',

ScaleFactor=1). Then v= v2 with respect to the context {ScaleFactor=17} (or any other context

involving just ScaleFactor) because the differences in units are ignored; similarly, vi < v2 with

respect to the empty context because all properties are ignored.

Arithmetic operators such as addition and subtraction can also be performed on semantic val-

ues. In general, these operations must be evaluated in a context, and the result of an operation

will be a semantic value having the target context. For example, the result returned by the opera-

tion 3(Currency ='USdollars') +300(Currency='Pesetas') depends on the currency we wish to see.

Formally, suppose that cvtVal(vi, C) = ai(C) and cvtVal(v2, C) = a2(C) for semantic values vi

and v2. Then v 1 + v2 = a3 (C) with respect to C if a1 + a2 = a3 -

When two semantic values are being compared, it is often the case that only the properties

belonging to the target context need be specified; all choices of values for these properties re-

sult in the same answer. For example, let vi = 6(LengthUnit='inches', ScaleFactor=10) and

V2= 5(LengthUnit='feet', ScaleFactor=l). Then vi = v2 not only with respect to the context

{LengthUnit='meters', ScaleFactor=35}, but with respect to any context involving the properties



Length Unit and ScaleFactor.

Formally, let vi and v2 be arbitrary semantic values, and let S = {Pi, Pn } be a set of

properties. If vi = v2 for any context involving the properties in S, then we say that they are

absolutely equal with respect to S. Absolute inequality, greater-than, less-than, and so on are

defined similarly.

Let S = {P 1 , ... , Pn } be a set of properties. We can show that if every P is total and lossless,

then any semantic comparison with respect to S involving = or $ will be absolute. We shall outline

the proof by considering the special case of equality where S contains a single property P; the proofs

of the general cases for equality and inequality are similar. So suppose that ai(P = pi) = a2(P =

P2) with respect to {P = p}. Then by definition, cvtP(ai, pi, p) = cvtP(a2, P2, p). Let a be the

value returned by the calls to cvtP. Then the fact that cvtP is total implies that cvtP(a, p, p') is

defined for any p'. The fact that cvtP is lossless implies that cvtP(a, p, p') = cvtP(ai, pi, p') =

cvtP(a2, P2, p'). Thus ai(P = pi) = a2(P = P2) with respect to {P = p'} as well.

In order for two semantic values to be absolutely comparable via greater-than or less-than,

the properties in the target context must also be order-preserving; this restriction ensures that

when the semantic values are converted to p', they do not change their relative order. The proof

of this claim is straightforward, and is similar to the one above for equality. As an example,

cvtScaleFactor is order preserving, and thus 6(ScaleFactor=10) < 4(ScaleFactor=100) absolutely

with respect to {ScaleFactor}. On the other hand, we have seen that the function cvtCode Type

is not order-preserving. This lack of order preservation makes any definition of absolute less-

than meaningless in this domain. For example, 65(Code Type='ascii') > 24 0(Code Type= 'ebcdic')

with respect to { Code Type='ebcdic'}, but the opposite is true if the comparison is with respect to

{ Code Type= 'ascii '}.

2.5 Resolvable and Non-Resolvable Properties

In the previous subsection we assumed that two semantic values could be compared by converting

them to the same context and then comparing the simple values. This assumption, however, is not

always true. For example, consider the property Precision, which encodes information about the ac-

curacy of a number. That is, the semantic value vi = 3.01 (Precision=0. 1) denotes a number whose

value is known to be between 3.11 and 2.91. Now consider the value V2 = 2.99(Precision=0.1). Our

definitions imply that vi > v2 , but this result is not intuitive. In fact, an application may reasonably

want to treat these numbers as equal. Consequently, we distinguish between two kinds of proper-

ties: resolvable and non-resolvable properties. Formally, let P be a property, let vi = a1(P = p)

and V2 = a2(P = p) be two semantic values having context {P = p}, and let 0 be a comparison

operator. Then we say that P is a resolvable property if for any values of ai, a2, p and 9, ai 0 a2

implies that vi 0 v2 with respect to context {P = p}.

Intuitively, a resolvable property is one for which semantic comparison can always be reduced

to the comparison of simple values. If a property is not resolvable, then the only way to per-

form semantic comparison is for the application to supply a specific comparison function for each

comparison operator. For example, the only way to test whether 3.01(Precision=0.1) > 2.99(Pre-

cision=0.4) is to feed these semantic values directly to the appropriate comparison function for

Precision; conversion in this case is not sufficient.

Data quality metrics [23] such as accuracy and precision are good examples of non-resolvable



properties. Each application is likely to have a specific approach to semantic comparison and

semantic arithmetic for such properties. The theory developed in the previous subsections applies

only to resolvable properties. All examples encountered in previous subsections are resolvable, and

we shall consider only resolvable properties in the rest of this paper. It is an interesting open

problem to extend our results to non-resolvable properties.

3 An Architecture for Exchanging Semantic Values

Conventional information system components (e.g., applications and database management sys-

tems) are designed for the exchange of simple values. However, this form of information exchange

does not extend to real world systems where the meaning of exchanged values can change. Semantic

values, not simple values, more closely fulfill the requirements for information exchange. However,

current applications and data sources are not equipped to send or receive data as semantic values

as they cannot evaluate properties, determine semantic comparability, select target contexts, and

resolve conflicts.

A new system architecture is needed to facilitate the exchange of semantic values among its

component information systems. In this section we propose such a system architecture, which

provides a general solution to semantic interoperability and accommodates existing component

systems and data models. Sections 4 to 6 then describe how our system architecture can be applied

to the relational model.

3.1 The Architecture's Components

Our proposed architecture contains five kinds of components: information systems, data envi-

ronments, context mediators, conversion libraries, and shared ontologies. Figure 1 depicts this

architecture for a source-receiver model [18], in which there are two component information sys-

tems (the data source and the data receiver) and a single context mediator. A discussion of how

this architecture extends to a generalized client/server model appears in [21].

The central component of this architecture is the context mediator. The context mediator is

the agent that directs the exchange of values from one component information system to another,

and provides services such as inter-system attribute mapping, property evaluation, and conversion.

All data exchange goes through the context mediator. A context mediator is designed to function

between specific component system interfaces (e.g., SQL or remote procedure calls), and is modified

only when the interface is modified. The context mediator is an example of the mediator concept

of [25]. This approach has two advantages: First, it is non-intrusive, in the sense that there is no

constraint on the data models used by the component information systems. Second, it limits the

number of interfaces required of each system component. The workings of the context mediator

are described in more detail in Section 3.2.

Each information system component may have an associated data environment. A data envi-

ronment contains two parts: Its semantic value schema specifies attributes and their properties,

and its semantic value specification specifies values for some or all of these properties. The context

mediator uses the data environments to determine whether a requested data exchange is possible

and if so, what conversions are necessary. Details of this process are in Section 3.3.
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Figure 1: An Architecture for the Semantic Interoperability using Semantic Values

The shared ontology component specifies terminology mappings. These mappings describe nam-

ing equivalences among the component information system, so that references to attributes (e.g.

Exchange or CompanyName), properties (e.g. Currency), and their values (e.g.'USdollar') in one

information system can be translated to the equivalent names in another. The development and

implementation of an ontology is a complex problem, and is part of a basic goal in enterprise

modeling at both a technical [2, 10] and organizational level.

The final kind of component is the conversion library. A conversion library contains conversion

functions; there is a global conversion library, as well as a local conversion library for each informa-

tion system component. A property may have conversion functions in several libraries, and a library

may have multiple conversion functions for a given property. For example, consider the property

Currency. The global conversion library may contain a large number of conversion functions for

this property, according to different dates and locations.

Because our proposed system architecture is modular, it is easily extensible. New information

system components can be added, with their associated data environments. An existing data envi-

ronment may change to incorporate the addition of new properties or changes in the values assigned

to existing properties. Conversion functions can be added or removed from conversion libraries.

Additional context mediators will be needed only when components with different interfaces are

added or an interface between existing components is modified.

3.2 Context Mediation

We model the exchange of data values as follows. The receiver information system sends a query

to the context mediator, requesting some semantic values from the source information system and

providing a target context for the result. The context mediator then sends this query (possibly

transformed) to the data source, and receives the resulting values. The context mediator then



converts these values to the given target context, and sends the result to the receiver. This process

implies several requirements for the context mediator.

First, the context mediator must be able to analyze the query and determine the most appropri-

ate strategy for performing conversions. This strategy may involve composing intermediate queries

and creating temporary relations and views. For example, suppose the receiver requests the names

of those companies whose trade price is greater than 50 US dollars. If the context mediator can

determine that currencies in the data source are always in Yen,' then it may choose to transform

the query into one that mentions the amount of Yen equivalent to 50 US dollars. On the other

hand, if such a determination is not possible then the context mediator might choose to convert all

of the source values to US dollars before applying the query. That is, the context mediator could

choose the following strategy: First, it would send a query to the source requesting all companies

and their trade prices; next, it would convert the retrieved trade prices to US dollars and save the

resulting values temporarily at the source; finally, it would request from this temporary relation

the names of the companies having trade price values of more than 50, sending the results to the

receiver. This latter strategy is adopted by our prototype context mediator of Section 6.

This ability to develop a strategy for performing conversions is also needed to support semantic

comparison. Here the receiver is requesting the result of comparing two source values. In general,

the context mediator will have different possible strategies for choosing the target contexts of each

semantic comparison. At one extreme, it may choose to perform comparisons in the context of

the source as much as possible, converting only the final return values to the target context of the

receiver. At the other extreme, it could choose to convert all values in the source to the target

context, evaluating the comparisons at that point. The extent to which it chooses one extreme or

the other is a query optimization issue.

Second, the context mediator must be able to compare the context of the resulting semantic

values with the target context, in order to ensure that the exchange is meaningful. In particular,

the context mediator must verify that the properties of the target context are a subset of the prop-

erties of each semantic value's context, so that cvtVal will be used properly (recall Section 2.3). In

performing this comparison, the context mediator may need to access the terminology mappings in

the shared ontology component. For example, suppose that the data source returns the semantic

value 30(Currency='Yen', PriceStatus='latest TradePrice') and the target context of the receiver

is { Trade Currency='USdollars'}. The context mediator would use the terminology mappings to

note that Currency and TradeCurrency are different names for the same property. It then would

note that the target context is a subset of the source context, and therefore conversion is meaning-

ful. On the other hand, suppose that the source returns the semantic value 30(Currency='Yen')

and the target context is { Trade Currency='USdollars', PriceStatus='latest TradePrice'}. Then the

context mediator would determine that the conversion is not possible because there is no value for

PriceStatus in the source context, and therefore the request for data fails.

Third, the context mediator must be able to locate the appropriate conversion functions. A

conversion function is located by first searching the conversion library of the receiver for the desired

conversion functions; the global conversion library is searched to find those conversion functions not

in the local library. If a library has more than one conversion function for a property, the context

mediator must choose one of them. This choice can be based on system defaults (such as by

'Such a determination can be made by examining the data environment of the source; see Section 3.3.



choosing the most recent function), or specifications appearing in the receiver's data environment,

or by interactively requesting information at run-time. For example, in a query involving currency

conversion the receiver may indicate the effective time, date, and location for the conversion in its

data environment.

Fourth, the context mediator must perform the appropriate conversion on each resulting se-

mantic value v. In order to determine the best conversion plan, the mediator must examine the

properties, cost, and characteristics (i.e., lossless, total, or order-preserving) of the relevant conver-

sion functions, and thereby determine the best evaluation sequence for the expression cvtVal(v, C).

In more complex examples the mediator must distinguish between resolvable and non-resolvable

properties and evaluate context-based arithmetic and comparison expressions.

The fifth and final requirement is for the context mediator to provide the results to the receiver.

In the simplest case the context mediator will pass the values returned by cvtVal to the receiver.

However, if some conversions are not possible, the context mediator must decide whether to abort

the query and return an appropriate error message, or to pass a partial result to the receiver with

an explanation of the semantic conflicts [18]. If a partial result is returned, the context mediator

must provide a way to inform the receiver that these results are due to a modification that limited

the scope of the query.

3.3 Data Environments

In the previous subsection we assumed that the context mediator interfaces with the source and

receiver by means of semantic values. However, this is not necessarily true; existing systems are

designed to manipulate simple values only. Consequently, we introduce data environments as a way

for the context mediator to turn the simple value provided by the source into a semantic value that

can be exchanged.

Formally, a data environment has two parts: a semantic value schema and a semantic value

specification. The semantic value schema declares the properties associated with each semantic

value, and the semantic value specification specifies values for some or all of these properties for a

given simple value. Semantic value specifications can be declared in many ways:

* by rules [18];

* by predicates in a logic [2, 15];

" by functional expressions;

" by tables (including virtual tables);

" by tagged attribute properties (such as source, quality, and security) [24].

In Section 4.2 we give examples of data environment specifications using rules and predicates in

the relational model.

Data environments are also associated with the receiver. If the receiver does not explicitly

specify a target context, then the context mediator can use the receiver's data environment to

determine the target context of the exchange. If the receiver does not handle semantic values, then

the context mediator converts the source value to the target context and then passes the simple

value only to the receiver. Examples of this process appear in Sections 5 and 6.



4 Relational Databases as Information Sources

In our proposed system architecture, each information source has an associated data environment

which assists the context mediator in its exchange of semantic values. In this section we consider

the case where the information source is a relational database. We discuss the meaning of semantic

values in the relational model, the declaration of a data environment's semantic value schema and

semantic value specification, and the role of context mediation in query processing.

4.1 Semantic Value Schemas

In the relational model, a relation schema is defined to be a set of attributes, each of which has

a specified type. A relation is a set of tuples; a tuple contains a value for each attribute in the

relation schema. Attribute values in the relational model are simple values. Conceptually, however,

a database needs to supply semantic values to the context mediator. We resolve this problem by

modelling a semantic value as a subtuple of simple values, with each property of the semantic value

corresponding to an attribute. Attributes corresponding to properties are called meta-attributes;

the other attributes are called base attributes. Note that both base attributes and meta-attributes

may have associated meta-attributes.

The semantic value schema is the place where attributes and their meta-attributes are de-

clared. Figure 2 gives a semantic value schema for a financial database containing the two relations

TRADES and FINANCES. The syntax of the semantic value schema declaration is an extension of

the SQL syntax for declaring relation schemas; the difference is that the semantic value schema spec-

ifies the association between each attribute and its meta-attributes. This association is achieved by

placing the declaration of a meta-attribute after its associated attribute within nested parentheses.

In Figure 2, the TRADES relation has the five base attributes CompanyName, InstrumentType,

Exchange, TradePrice, and Volume; each tuple in this relation records the trading of a financial

instrument (such as a company's stock) on an exchange. The FINANCES relation has the five base

attributes CompanyName, Location, Revenues, Expenses, and Dividend; each tuple in this relation

records some of the financial information about a company. Sample domain values for some of

these base attributes and meta-attributes appear in Figure 3.

Several attributes may define a meta-attribute having the same name. For example, a meta-

attribute named Currency is defined in four places in Figure 2. Consequently, meta-attributes are

identified by qualifying their name with the name of their associated attribute. For example, the

meta-attributes of TradePrice are TradePrice.PriceStatus and TradePrice. Currency. The meta-

attribute of Dividend. Periodicity is called Dividend.Periodicity. FirstIssueDate.

Meta-attributes, because they correspond to properties, may have conversion functions asso-

ciated with them. These conversion functions are stored in conversion libraries, as discussed in

Section 3.1. As before, we assume that the conversion function for meta-attribute P is called

cvtP. In addition, we assume for the rest of this paper that all conversion functions on ordered

properties are order-preserving, and the only conversion function which is not lossless and total is

cvtLocationGranularity, which behaves as described in Section 2.2.



create table TRADES

(CompanyName char(50),

InstrumentType char(10),

Exchange char(20),

TradePrice float4

(PriceStatus char(20),

Currency char(15)),

Volume int

(Scalefactor int,

VolumeStatus char(15)))

create table FINANCES

(CompanyName char(50),

Location char(40)

(LocationGranularity char(15)),

Revenues float4

(Scalefactor int,

Currency char(15)),

Expenses float4

(Scalefactor int,

Currency char(15)),

Dividend float4

(Periodicity char(10)

(FirstIssueDate date),

Currency char(15)))

Figure 2: A Semantic Value Schema

domain(InstrumentType) = {'equity', 'warrant', 'future'}

domain(Exchange) = {'nyse', 'madrid'}

domain (TradePrice. Currency) = {'USdollars', 'FrenchFrancs', 'Pesetas', 'Yen'}

domain (TradePrice. PriceStatus) = {'latestTradePrice', 'latestNominalPrice', 'latestClosingPrice'}

domain (Volume.VolumeStatus) = {'latestVolume', 'closingVolume'}

Figure 3: Examples of Some Attribute and Meta-Attribute Domains



create scene for TRADES by rules

if InstrumentType = 'equity' and Exchange = 'madrid'

then TradePrice.PriceStatus - 'latestClosingPrice' and

TradePrice.Currency = 'Pesetas';

if InstrumentType = 'equity' and Exchange = 'nyse'

then TradePrice.PriceStatus = 'latestTradePrice' and

TradePrice.Currency = 'USdollars';

if InstrumentType = 'future'

then TradePrice.PriceStatus = 'latestClosingPrice' and

Currency = 'USdollars';

if InstrumentType = 'equity'

then Volume.VolumeStatus = 'latestVolume' and

Volume.Scalefactor = 1;

if InstrumentType = 'future'

then Volume.VolumeStatus = 'closingVolume' and

Volume.Scalefactor = 1000;

create scene for TRADES, FINANCES by predicate

Currency = 'USdollars' and ScaleFactor = 1

Figure 4: A Semantic Value Specification with Two Scenes

4.2 Semantic Value Specifications

The meta-attributes defined for a relation are real attributes, in the sense that their values can

be accessed by queries. However, this does not mean that meta-attributes must be explicitly

stored; indeed, there are many times when this is undesirable. Meta-attribute values in a relation

or database often have a regular, well-defined pattern. This regularity might be a consequence

of behavior in the real world (e.g. "All US companies report earnings in US dollars"), business

rules (e.g. "Dividends are always issued quarterly"), or characteristics of the database chosen by

its DBA (e.g. "All Volume values are stored with a scale factor of 1000"). A database is often

subject to standards and regulations that restrict the possible meta-attribute values. It is therefore

desirable for the value of such meta-attributes to be computed instead of stored. Such computation

is specified in the semantic value specification of the database.

In the relational model, a semantic value specification consists of one or more parts, with each

part applying to some set of relations. We call each part a scene. Figure 4 presents syntax for a

semantic value specification containing two parts: a scene for TRADES and one for { TRADES,

FINANCES}. The former scene is defined by rules, whereas the latter scene is defined by a

predicate. Note that meta-attributes need not be prefixed by attribute names. The meaning

of the term "Currency = 'USdollars"' in the latter scene of Figure 4 is that the value for the meta-

attribute Currency, in every appropriate attribute of all relations in the group, will be USdollars.

A meta-attribute whose value is defined by a semantic value specification is called a derived



meta-attribute. If more than one scene defines values for the same meta-attribute, then a conflict-

resolution heuristic similar to standard single inheritance is used. In particular, we say that scene

Si has higher priority than scene S 2 if the set of associated relations of S1 forms a subset of the

associated relations of S2. If there is a highest-priority scene that assigns a value to a given meta-

attribute then that scene is used; if there is no such scene, then an error occurs. For example,

suppose that tuple t has just been inserted into relation TRADES. If the scene for TRADES can

be used to determine a value of the meta-attribute ScaleFactor, then that value is used. Otherwise,

the scene for { TRADES, FINANCES} is used, and the value of ScaleFactor is set to 1.

The value of a derived meta-attribute is fixed by the semantic value specification and cannot

be overridden. Consequently, if a tuple is inserted into a relation, then its derived meta-attributes

must have the values indicated by the semantic value specification. If a user specifies a meta-

attribute value that is different from what it should be, then the tuple will have to be converted

appropriately before it is stored. The details of this process appear in Section 5.2.

Every information system makes some tacit assumptions about the data it contains. When a

database is used in a wider setting than originally anticipated, its assumptions need to be made

more explicit. This is one of the fundamental requirements for interoperability in heterogeneous

database systems, and it can be achieved by means of derived meta-attributes in semantic value

specifications. In particular, we note that derived meta-attributes need not be physically stored

in a relation because their values for a given tuple can always be calculated. A semantic value

specification in which all meta-attributes are derived was called a Database Metadata Dictionary

(DMD) in [18]. Consequently an existing relation need not be changed in order to include meta-

attributes; all that is necessary is for a scene to be declared for it.

The presence of derived meta-attributes also allows the context mediator to reason about the

contents of these meta-attributes without accessing the database. This ability can be used for query

optimization, as we shall see in Section 6.

5 Relational Applications as Information Receivers

In the previous section we considered relational information sources. We now consider information

receivers in the relational model.

An information receiver can be an application program or an interactive user. We assume

that a receiver accesses an information source by formulating a query in some data manipulation

language. In this section we use C-SQL as that language. C-SQL is our extension of SQL that

provides the capability for queries to take greater advantage of the presence of meta-attributes.

The semantics of C-SQL is illustrated by means of numerous example queries. All of these queries

refer to the source database of Section 4, which has the semantic value schema shown in Figure 2

and the semantic value specification shown in Figure 4. We begin this section by assuming that the

receiver issuing these queries has the same data environment as the source database. In Section 5.4

we consider the case when the receiver has a different semantic value specification from the source.

The results of this section extend the preliminary ideas of [14].



5.1 Queries

We begin by considering the meaning of a standard SQL query in the presence of data environments.

For example, suppose that the receiver submits the following query:

select t1.CompanyName, ti.Location

from FINANCES t1 t2

where t2.CompanyName = 'IBM' and t1.Expenses > t2.Expenses

Intuitively, this query requests the source to retrieve the name and location of those companies

having expenses greater than those of IBM. However, the use of semantic values as the unit of

exchange affects the meaning of the query in two ways. First, the values appearing in the output

tuples are composed of semantic values. That is, not only is the location of the company retrieved,

but its granularity as well. Second, all comparisons in the where clause are semantic comparisons.

Semantic comparison requires a target context. Because SQL has no means for specifying such

a context, we adopt conventions to infer the context from the query. In particular, we use the

intersection of the meta-attributes of the values being compared to determine the meta-attributes

of the target context. If the comparison is absolute, then this is all that is needed; the system may

choose any values for these meta-attributes without affecting the truth value of the comparison. If

the comparison is relative, then values for these meta-attributes must be the same; if the values

are not the same, then there is no obvious target context for the system to choose, and the query is

aborted. In Section 5.4 we show how this apparent difficulty can be avoided by an appropriate use

of semantic value specifications in queries. Until then, we shall consider only absolute comparisons

in our examples.

There are two comparisons in the above query. The first comparison is t2.CompanyName

'IBM'. Inasmuch as CompanyName has no meta-attributes, the target context is empty, and the

semantic equality reduces to simple equality. The second comparison is t1.Expenses > t2.Expenses.

The attribute Expenses has the two meta-attributes Currency and ScaleFactor, both of which

have lossless, total, and order-preserving conversion functions; thus absolute semantic comparison

is possible. Each semantic value for tl.Expenses will be compared with each semantic value for

t2.Expenses using semantic greater-than.

Note the advantage that semantic comparison brings to this query: Even though the tuples

bound to t1 and t2 may be in different currencies and have different scale factors, they will be

compared correctly. In particular, the context mediator will choose values for Currency and Scale-

Factor, convert tl.Expenses and t2.Expenses to this context, and compare the simple values of the

results.

For another example, the following query retrieves the names of those companies trading on the

NY stock exchange whose trade price is less than ten times its dividend:

select t.CompanyName

from TRADES t, FINANCES f

where t.Exchange = 'nyse' and

t.TradePrice < 10 * f.Dividend and

f.CompanyName = t.CompanyName



Here, the interesting comparison is between t. TradePrice and f.Dividend. The intersection of the

meta-attributes of these two values is { Currency}. Because cvtCurrency is total, lossless, and order-

preserving, the comparison is absolute. Thus the context mediator is free to choose a currency in

which to convert the two values before comparing them.

The use of semantic comparison extends directly to all aggregation functions in C-SQL. For

example, the aggregate operator min in C-SQL differs from the traditional one only in that it uses

semantic less-than. Thus in the following query:

select CompanyName

from FINANCES

where Expenses = (select min(Expenses)

from FINANCES)

the names of the company having the smallest expenses is returned.

Constants in standard SQL queries have no specified context, and thus the context of a com-

parison involving a constant is empty. Similarly, if an attribute has no meta-attributes, the context

of any comparison involving it is also empty. Consequently, such semantic comparisons involve no

conversion and are the same as standard (syntactic) comparison in SQL. For example, consider the

following query:

select CompanyName

from TRADES

where TradePrice > 50

Because the context of the comparison is empty, the query retrieves the names of those companies

trading higher than 50, regardless of the currency involved. This is rarely the desired effect. If the

user wishes to retrieve companies whose trade price has a value greater than 50 US dollars, then a

context must be associated with the constant. A natural way to specify this association is to use

explicit semantic values; consequently, C-SQL extends SQL so that semantic values can be used as

constants. In particular, the appropriate C-SQL query is the following:

select CompanyName

from TRADES

where TradePrice > 50(Currency = 'USdollars')

Here the intersection of the context attributes in the comparison is { Currency}, and so semantic

comparison gives the desired answer.

C-SQL also extends SQL in that meta-attributes can be accessed directly using an extended dot

notation. For example, the following query retrieves the company name and trade price (including

context) of all stock transactions having a volume of over 56,000 shares whose trades are conducted

in Yen:

select t.CompanyName, t.TradePrice

from TRADES t

where t.InstrumentType = 'equity' and

t.Volume > 56(ScaleFactor = 1000) and

t.TradePrice.Currency = 'Yen'



Note that the comparison on t. TradePrice. Currency does not invoke any conversion; only tuples

whose value for this attribute is 'Yen' can appear in the answer.

Our stated convention is that the target context of a comparison is determined by taking

the intersection of the meta-attributes of the items being compared. The rationale behind this

convention is that the intersection most closely resembles the generalization of the two items. For

example, consider again the comparison of t. TradePrice with f.Dividend, which appeared in the

second query of this section. Intuitively, the generalization of a trade price with a dividend is a

money value, which has Currency as its single meta-attribute. 2 If this convention is not appropriate,
then C-SQL provides syntax that allows the user to indicate the target context meta-attributes

explicitly. In particular, if E is an attribute reference in any part of the query, then E[A 1 , . . . , An)
specifies that all meta-attributes apart from the Ai should be projected out of the semantic value.

If n = 0 then all meta-attributes are omitted. For example, suppose that s1 and s2 are bound

to tuples from TRADES. Then the expression s1. TradePrice[Currency] > s2. TradePrice[Currency]

ignores the price status of the trade prices in the comparison. Such a capability is important

for applications that want to eliminate non-resolvable or non-convertible properties before doing

semantic comparison.

The ability to project away meta-attributes also allows a user to specifically omit meta-attributes

from the context of attributes in the select clause. For example, consider the following query:

select Revenues[], Dividend[Periodicity[]]

from FINANCES

where CompanyName = 'IBM'

This query retrieves IBM's revenues without meta-attributes, and IBM's dividend with only the

meta-attribute Periodicity.

5.2 Modifications to Relations

We now consider the treatment of modification commands in the presence of meta-attributes. We

begin with deletion. Consider the following command:

delete from TRADES
where TradePrice < 2(PriceStatus = 'latestTradePrice', Currency = 'USdollars')

The semantics of deletion in C-SQL is similar to those of standard SQL, except that semantic

comparison is used. Thus this command will delete those tuples from TRADES whose trade price

is convertible to a latest trade price of less than 2 US dollars.

As in SQL, insertions in C-SQL can be specified in two ways: the values of the new tuples can

be given explicitly (with an associated context if appropriate), or the new tuples can be defined by

a selection statement. The following insertion command is an example of the former case:

2One could also replace the intersection rule with the use of an explicit generalization hierar-

chy with properties. For example, the generalization of TradePrice(Currency, PriceStatus) and Divi-

dend(Periodicity(FirstIssueDate), Currency) could be defined as Money Value (Currency, Status). Then to compare a

TradePrice and a Dividend there must be mapping between the properties of Dividend and TradePrice to the property

Status. Such generalization hierarchies and mappings might be included in the shared ontology.



insert into TRADES

values ('IBM', 'equity', 'nyse', 1200(PriceStatus = 'latestTradePrice', Currency = 'Yen'),
2(ScaleFactor = 100, VolumeStatus = 'latestVolume'))

An example of the latter case is the following command, which inserts a warrant-instrument tuple

into TRADES for each traded equity and sets the TradePrice.PriceStatus-value of these tuples to

'latestTradePrice':

insert into TRADES

select t.CompanyName, 'warrant', t.Exchange,

t.TradePrice(PriceStatus = 'latestTradePrice', Currency = t.TradePrice.Currency)/ 10,

t.Volume

from TRADES t

where t.InstrumentType = 'equity'

The semantics of insertion in C-SQL differs from those of standard SQL in two ways. The first

difference is that semantic values and semantic comparisons are used, just as in queries and deletion.

The other difference appears when the updated relation contains derived meta-attributes. For

example, consider the first insertion command above. The semantic value specification of Figure 4

requires that the TradePrice-value of the new tuple be stored in US dollars. Consequently, the

semantic value 1200(PriceStatus = 'latestTradePrice', Currency = 'Yen') must be converted to the

proper currency before it is stored. Similarly, the value of Volume.ScaleFactor must be converted

to 1 before the tuple can be stored.

Intuitively, an insertion to relation R works as follows: First the candidate tuples to be inserted

are generated, either by explicit values or by a query; then these tuples are converted to the

environment of R and stored. This process has the following formalization. Let t be a tuple to

be inserted into relation R. For each attribute Ai of t, let CAi be the context of t.Ai. Let C'i
be the context that results when the meta-attribute values in CAi are changed as required by the

environment of R, and let VAi = cvtVal(t.Ai, C'). Then the tuple actually inserted into R is

< VA1, -- An '>. If some VAi does not exist (because a conversion was not possible), then the

insertion command is rejected3 .

In standard SQL, an update to relation R can be viewed as being a two-part process. First the

tuples to be updated are chosen, and then certain attribute values in each tuple are updated. The

second part of this process must be altered in C-SQL for exactly the same reasons as insertion. In

particular, after the updates specified in the set clause are performed, the appropriate attribute

values must be converted in order to satisfy the derived meta-attribute specifications for R. For

example, consider the following command:

update TRADES

set TradePrice = 9000(PriceStatus = 'latestTradePrice', Currency = 'Yen')

where CompanyName = 'IBM' and Exchange = 'nyse'

3
1t is important to note that definitions of operational semantics for C-SQL do not imply a plan for how or where

the conversion will be done. Similar to query evaluation, conversion may be done on the relation, the predicate, or

both. Decisions about conversion strategies will depend on the available routines, their cost, and acceptable orderings.

Conversion planning strategies will be examined in future research.



Here, the TradePrice-value for each tuple denoting a trade on the New York Stock Exchange

exchange of IBM is changed to 9000 Yen. However, the environment specifications of Figure 4

require that this value will be converted to US dollars in the replaced tuple. Thus the TradePrice

value stored is actually the US-dollar equivalent of 9000 Yen.

For another example, consider the following update command:

update TRADES

set TradePrice.Currency = 'Yen'

where CompanyName = 'IBM' and Exchange = 'nyse'

Let t be a tuple chosen for replacement, and suppose that t.TradePrice = 9000(PriceStatus =

'latest TradePrice', Currency = 'USdollars'). Then the update to of the Currency meta-attribute

causes the trade price of t to be interpreted as 9000 Yen. This value is then converted to US dollars

(because of the environment requirements) in the updated tuple.

The semantics of update are defined formally as follows. Let t be a tuple of R selected for update.

First the attributes of t (i.e. both base attributes and meta-attributes) are changed according to

the specifications in the set clause; then the tuple is converted back to the environment of R as

with insertions. In particular, for each attribute Ai of the updated tuple t, let CAi be the context

of t.Ai. Let C's be the context that results when the meta-attribute values in CAi are changed

as required by the environment of R, and let VAi = cvtVal(t.Ai, C'i). Then the final value of

the updated tuple is < vA1, ... , Vn >. If some VAi does not exist (because a conversion was not

possible), then the update command is rejected.

As a rule, updates to base attributes change attribute values, whereas updates to meta-attributes

change attribute meanings. Consider the following update command:

update TRADES

set Exchange = 'madrid'

where CompanyName = 'IBM' and Exchange = 'nyse'

Because the exchange has changed from 'nyse' to 'madrid', the environment requires that the trade

price be stored in Pesetas instead of US dollars. Consequently, the value of TradePrice will be

converted from US dollars to Pesetas when the updated tuple is stored; that is, the new value of

TradePrice is semantically equal to the previous one. Contrast that command with the following

one:

update TRADES

set Exchange = 'madrid', TradePrice.Currency = 'Pesetas'

where CompanyName = 'IBM' and Exchange = 'nyse'

Here the value of TradePrice. Currency is being changed explicitly, and so no conversion will be

done when the updated tuple is stored. That is, if the TradePrice value of a tuple was 35 US

dollars, then it will be changed to 35 Pesetas.

5.3 Derived Relations

One of the important features of the relational model is that the result of a query is a relation, and

can be stored as a snapshot relation or defined as a view. We call a snapshot or a view a derived



relation. The one complexity caused by the presence of meta-attributes is how the schema of the

derived relation is defined.

In standard SQL, the schema of a derived relation is determined by the attributes in the select

list. If a different attribute name is desired in the derived relation from the one appearing in the

select list, then the as keyword can be used to do the renaming. A similar capability exists in

C-SQL. In C-SQL, however, this usage is extended so that attributes can be renamed as meta-

attributes and vice versa, thereby allowing attributes in the select list to be restructured. For

example, consider the following:

create relation COMPANY-EXCHANGE as

select t.CompanyName as CompanyName,

f.Dividend.Currency as CompanyName.Currency,

t.Volume[] as Volume,

t.Volume.ScaleFactor as ScaleFactor

from TRADES t, FINANCES f

where f.CompanyName = t.CompanyName

The derived relation COMPANY-EXCHANGE has the three base attributes CompanyName, Vol-

ume, and ScaleFactor; there is also one meta-attribute, namely CompanyName. Currency. Note

that unlike in the underlying database, in the derived relation the attribute CompanyName has a

meta-attribute and ScaleFactor is a base attribute.

Derived relations can be included in the semantic value specification of an information system.

For a simple example, suppose that the source database defines the following view:

create view US-TRADES as

select *

from TRADES

and suppose that the semantic value specification of the source contains the following scene:

create scene for US-TRADES by predicate

Currency='USdollars' and ScaleFactor=1000

The derived relation US- TRADES contains the same tuples as TRADES; the only difference is that

the tuples have a different context. The benefit of such a view definition is that users accessing it

can assume that all tuples have the same currency (i.e., US dollars) and the same scale factor (i.e.,

1000); this regularity makes it easier to formulate queries. Intuitively, US-TRADES provides a

"semantic view" of the relation TRADES, in the sense that the user sees the same data but having

a different representation.

In general, the calculation of a derived relation V proceeds in two steps. First, any scenes for

V are ignored and the underlying query is executed, resulting in a temporary relation T. Second,

an empty relation for V is created, and the tuples of T are inserted into V; the scene V causes the

tuples to be converted appropriately, as we saw in Section 5.2.

For example, consider the following view definition:

create view SMALL-COMPANY as

select *



from FINANCES

where Revenues < 1000(Currency='USdollars', ScaleFactor=1000)

The view SMALL-COMPANYcontains those FINANCES tuples having revenues less than 1,000,000

US dollars. However, the tuples in the view still have their original currencies and scale factors,

and queries over the view would have to take that into consideration. Suppose, however, that we

also define the following environment for the view:

create scene for SMALL-COMPANY by predicate

Currency='Yen' and ScaleFactor=1

The effect of this scene specification is to ensure that all tuples in the view are seen in the speci-

fied contexts. That is, the view still contains those FINANCES tuples having revenues less than

1,000,000 US dollars; the values of the tuples are just seen as if they were all stored in Yen and

unscaled.

As in the standard relational model, derived relations are accessed just like base relations. In

particular, updates to views have the same restrictions as in the relational model. For example,

consider the following insertion:

insert into SMALL-COMPANY

values ('Batik Bali', 'Denpasar'(locationGranularity='city'),

300000(Currency='Indonesian Rupiah'),

260000(Currency='Indonesian Rupiah'), 0)

This new tuple asserts that the Batik Bali company has revenues of 300,000 Rupiah and expenses

of 260,000 Rupiah. Its insertion proceeds as follows. The currency values of the tuple are first

converted to Yen in order to insert it into SMALL-COMPANY. Then that converted tuple is

inserted into FINANCES; this tuple is then converted according to the data environment of that

relation, and finally stored.

As we have seen, the way to change the context of tuples in the database is to create a derived

relation to contain the tuples and associate a scene with it. Scenes can also be used to give val-

ues to new meta-attributes in derived relations. For example, consider again the derived relation

COMPANY-EXCHANGE introduced at the beginning of this subsection. The new meta-attribute

CompanyName. Currency was given the value of f.Dividend. Currency. Suppose now that the no-

tion of currency did not appear in either TRADES or FINANCES. Then it would still be possible

to give CompanyName. Currency a value by using a scene. In particular, the line for Company-

Name. Currency in the select clause of the snapshot definition would be changed to contain the

line "hull as CompanyName. Currency", and the following scene could be added:

create scene for COMPANY-EXCHANGE by predicate

CompanyName.Currency='USdollars'

5.4 The Receiver's Data Environment

We have been assuming that the data environment of the receiver is the same as the data environ-

ment of the source. In this subsection we consider the case where the semantic value specification



of the receiver differs from that of the source. In addition, we investigate the related problem of

how to associate environments with queries and updates.

A receiver does not see the source data directly; instead, all values are filtered through the

receiver's data environment. Formally, the receiver sees a view of each source relation. If the

semantic value specification of the receiver is the same as that of the source, as we had been

assuming, then the values seen by the receiver are the same as they appear in the source. If the

semantic value specification of the receiver is different from the source, then the view contains the

same values as the source, but the context of the values will be different. In particular, the receiver

implicitly defines a view for each source relation, and the scenes in the receiver's data environment

are interpreted as referring to these views instead of the source relations. For example, suppose

that the receiver contains the following semantic value specification in its data environment:

create scene for TRADES by predicate

Currency='USdollars' and ScaleFactor=1000

The effect of this scene is that the receiver implicitly defines a local view called TRADES, having

the same tuples as the source relation TRADES; the scene then applies to the view instead of the

source relation. Consequently, the relations TRADES and US- TRADES (as defined in the previous

subsection) look exactly the same to the receiver. This approach to modelling the receiver's data

environment extends [18], where these data environments are called Application Semantic Views.

Queries and updates are posed from within the receiver's data environment, and thus are affected

by it. It is also possible for a request to be made from a different perspective than what appears

in the receiver's data environment. In order to handle such a case we introduce into C-SQL a new

language construct, called the inContext clause, in which a scene is specified for an entire request.

For an example, suppose that a user wishes to retrieve all TRADES tuples having a latest trade

price of more than 15 US dollars, and to view their values in US dollars as well. Then one solution

would be to define a view of TRADES in which all currencies are converted to US dollars, and then

perform a query on the view. The following query uses the inContext clause to do the same thing

in a single step:

select *

from TRADES

inContext Currency = 'USdollars' and PriceStatus = 'latestTradePrice'

where TradePrice > 15

Formally, the inContext clause affects a query or update request in the following way. First,

a temporary (cartesian product) view is generated using the contents of the from clause. Second,

the inContext clause is used to define a scene for the view. Third, the where clause is evaluated

over the view. Thus in the above query, all trade prices are converted to latest trade prices in US

dollars in the temporary view; the predicate TradePrice > 15 therefore selects those tuples having

a latest trade price over 15 US dollars.

Queries can be nested, and each nested subquery can have its own scene. For example, the

following query returns the name and trade price in US dollars of all companies whose revenues are

more than 500,000 Yen:

select CompanyName, TradePrice



from TRADES

inContext Currency = 'USdollars'

where CompanyName in (select CompanyName

from FINANCES

inContext Currency = 'Yen' and ScaleFactor = 1000

where Revenues > 500)

We are now at a point where we can discuss relative semantic comparison. Recall from Sec-

tion 2.4 that relative semantic comparison is meaningful in C-SQL if the semantic values being

compared have exactly the same context. Although this condition is restrictive in general, a proper

use of the inContext clause makes relative semantic comparison straightforward. For example,

consider the following query:

select t1.CompanyName

from FINANCES t1 t2

inContext LocationGranularity = 'country'

where t1.Location = t2.Location and t2.CompanyName = 'IBM'

Here the non-total comparison involves Location. The scene of the query asserts that this compari-

son should be performed in the context LocationGranularity = 'country'; that is, the query retrieves

the names of those companies located in the same country as IBM. Note that the query is executed

in an environment in which LocationGranularity is assigned a specific value. Consequently, all se-

mantic values for Location will have the same context, and so relative semantic comparison will be

possible. In effect, the scene acts as the specification of the target context of the comparison.

We began this paper by developing a model-independent theory for the exchange of information

using semantic values. In this and the previous section, we showed how this theory can be applied

to the relational model. In the next section, we describe a prototype system that we are in the

process of developing that implements a subset of the capabilities described in this section.

6 Implementation of a Context Mediator

In this section we examine one particular implementation of a context mediator. Our discussion is

necessarily brief; a full discussion can be found in [8]. This context mediator assists in the exchange

of semantic values between a relational application as data receiver and a relational database as

data source, using a standard SQL interface and rule-based data environments. In such a system,

the representation and manipulation of semantic values remains transparent to the user.

There are several assumptions made in this implementation. First, we assume that the relations

provided by the database and viewed by the application have exactly the same base attributes -

the only difference between the relations is that different meta-attributes and meta-attribute values

may be specified by the database and application. Second, we assume that all meta-attributes are

derived and that data environments are rule-based, with the antecedent of each rule composed of

restrictions on base attributes and the consequent assigning values to meta-attributes; a detailed

discussion of the structure of rules appears in [8, 18]. Third, we assume that the database and

application agree on the meaning of attribute names, properties, and values, and so the terminology



create scene for TRADES by rules

if Exchange = 'madrid'

then TradePrice.PriceStatus = 'latestClosingPrice' and

TradePrice.Currency = 'US dollars';

if Exchange = 'nyse'

then TradePrice.PriceStatus = 'latestTradePrice' and

TradePrice.Currency = 'USdollars';

if TRUE

then Volume.VolumeStatus = 'closingVolume' and

Volume.Scalefactor = 1;

Figure 5: An Application's Data Environment

mappings of Section 3 are not needed. Finally, we assume that conversion functions follow the

naming conversions of this paper and are stored centrally with the context mediator. 4

As a running example, we assume that the semantic value schemas for both the application and

the database are the semantic values in the TRADES relation of Figure 2; the database uses the

data environment of Figure 4 and the application uses the data environment of Figure 5.

The context mediator's first step, before it examines any query, is to preprocess the data envi-

ronments of the database and the application. The purpose of this preprocessing stage is for the

context mediator to become aware of potential conflicts in queries, and to record the conversion

functions (if any) needed to remove the conflict. During this stage, the context mediator compares

each rule from the application with each rule in the database, looking for pairs of conflicting rules.

We say that two rules conflict if their antecedents have a non-empty intersection (i.e., it is possi-

ble for a single tuple to satisfy the conditions of both antecedents) and their consequents assign

different values to the same meta-attribute. The test for non-empty intersection of antecedents

is called subsumption, and is discussed in [8, 18]. The subsumption process also determines the

condition under which the conflict will occur. Information about conflicts are stored in the conflict

table. Each row in the conflict table describes the condition causing a conflict, the attribute and

meta-attribute involved, the conflicting values assigned to the meta-attribute, and the conversion

function (if any) required to resolve the conflict.

Consider the data environments in our running example. The first rules from both data en-

vironments have have a non-empty intersection, namely all equities traded on the Madrid Stock

Exchange; moreover, the consequents of these rules conflict, because the database rule assigns the

value of TradePrice. Currency to be in Pesetas whereas the application requires the currency to be

in US dollars. Thus these two rules conflict. There happen to be four conflicting rule pairs in this

4Relaxing these assumptions is possible [18], but significantly increases the complexity of implementation. For

example, if the database and application have different schemas, then an ontological component is needed to provide

the context mediator with terminology mappings. Moreover, it is often the case that such a restriction is reasonable

in practice. If the receiver mentions a meta-attribute that does not appear in the source, then semantic comparisons

involving that meta-attribute become unresolvable. For example, suppose that the receiver's environment defines

TradePrice with meta-attribute Currency but no such meta-attribute appears in the source's environment. Then

there may be no way to determine the currency of a source's value.



Constraint Attribute Meta-Attr DBValue AppValue conversionFn

InstrumentType='equity' TradePrice Currency 'Pesetas' 'USdollars' cvtCurrency

and Exchange='madrid'

InstrumentType='future' TradePrice PriceStatus 'latestClosingPrice' 'latestTradePrice' NONE

and Exchange='nyse'

InstrumentType='equity' Volume VolumeStatus 'latestVolume' 'closingVolume' NONE

InstrumentType='future' Volume ScaleFactor 1000 1 cvtScaleFactor

Figure 6: A Conflict Table

example, giving rise to the conflict table of Figure 6. Rule 3 of the database environment conflicts

with rule 2 of the application environment over the meta-attribute TradePrice.PriceStatus, giving

rise to the second row of the conflict table. The third row of the conflict table results from rule

4 of the database environment and rule 3 of the application environment, and the fourth row of

the conflict table results from rule 5 of the database environment and rule 3 of the application

environment.

Intuitively, each row of the conflict table describes how a tuple from the source database should

be converted to the context of the receiving application. In particular, let t be a source tuple.

If t satisfies none of the constraints of the rows in the conflict table, then t can be passed to

the receiver without any conversions. If t satisfies one or more of the constraints, however, then

appropriate conversions must occur, according to the specified conversion functions. For example,

suppose that t has the values t.Instrument Type = 'equity' and t.Exchange = 'madrid'. Then t

satisfies the constraints of rows 1 and 3 of the conflict table, and so t. TradePrice must be converted

from Pesetas to US dollars and t. Volume must be converted from the latest volume to the closing

volume. However, note that t. Volume cannot be converted, because row 3 of the conflict table

has no associated conversion function. Thus for any tuple t satisfying the constraint of this row,

the value of the attribute t.Volume cannot be meaningfully sent to the receiver or used to answer

a query. The context mediator will either abort or return a partial answer if permitted by the

application.

After the pre-processing stage is finished, the context mediator is ready to process queries from

the application. Recall from Section 3.2 that a context mediator has the possibility of performing

semantic comparisons in a variety of contexts. Currently, our context mediator always applies

semantic comparisons in the context of the receiver (that is, the target context). When a query Q
is submitted to the context mediator, the first thing it does is place the predicate in the where

clause into conjunctive normal form (CNF). It then performs the following four steps:

The first step is to determine those attributes mentioned in Q whose values will need to be

converted; we call such attributes unsafe. The unsafe attributes are found by examining each row

of the conflict table. If a row's constraint overlaps with the predicate of Q's where clause and the

attribute associated with the row appears in Q, then that attribute is unsafe. A conjunct containing

an unsafe attribute is called an unsafe conjunct.

The second step is to create an intermediate query QR for each relation R in Q's from list. 5

5 More accurately, a query is created for each tuple variable in the query.



The purpose of these intermediate queries is to retrieve as small as possible portion of the database

to convert to the target context. The where clause of QR contains those safe conjuncts from Q
mentioning only attributes of R. The select clause of QR contains those attributes of R appearing

in Q's select list, those attributes of R mentioned in unsafe conjuncts or join conditions, and those

attributes of R needed to determine the context of its unsafe attributes using the conflict table.

The third step is to send each query QR to the source database. For each tuple returned, the

conflict table is used to determine the appropriate conversions and the converted tuple is saved in

a temporary relation R'. If one or more tuples cannot be converted, then the context mediator has

two courses of action, depending on the wishes of the application: it can abort the query, or it may

omit the non-convertible tuples from the result.

The final step is to evaluate the query Q' on the temporary relations, where Q' is constructed

as follows: the select clause of Q' contains the same attributes that of Q; the from clause of Q'
contains the same items as that of Q, except that each reference to R is replaced by R'; and the

where clause of Q' contains those conjuncts from Q that were omitted from all of the QR's (i.e.,

the unsafe conjuncts and join conditions). The tuples produced from this query are sent to the

receiver.

For an example of this process, suppose that the application poses the following query:

select CompanyName, TradePrice

from TRADES

where InstrumentType=z'equity' and TradePrice>100

Because the application uses the data environment of Figure 5, this query requests the name and

trade price of those equities having a latest closing price of more than 100 US dollars. Noting that

the query is already in CNF, the context mediator proceeds as follows.

In Step 1, the predicate "Instrument Type='equity' and TradePrice>100" is intersected with

the condition in each row of the conflict table, and a non-null intersection is found for rows 1 and

3. These two rows have corresponding attributes TradePrice and Volume; of these, only TradePrice

appears in the query, and thus is the only unsafe attribute. The following query QR is constructed

for Step 2:

select CompanyName, TradePrice, Exchange

from TRADES

where InstrumentType='equity'

Note that the attribute Exchange is selected, because it is needed to determine the context of

the relation's TradePrice values. In Step 3, query QR is sent to the database, and the received

tuples are converted. In particular, the TradePrice value of each tuple traded on the Madrid Stock

Exchange is converted from Pesetas to US dollars. Any tuples in QR having an Exchange value of

'nyse' cannot be converted. The converted tuples are stored in the temporary relation TRADES'.

Finally, the following query is evaluated in Step 4:

select CompanyName, TradePrice

from TRADES'

where TradePrice>100



and the resulting tuples are sent to the receiver.

In our implementation, Step 2 is refined further in order to improve the generation of conversion

plans. In particular, instead of constructing QR directly, the context mediator uses the conflict table

to determine a set of conditions that partition QR; each partition corresponds to a conversion plan.

A query is then generated for each of these partitions. The tuples returning from each of these

queries are converted in Step 3 according to the conversion plan for that query, and the union of

these converted relations is stored in the temporary relation R'. For example, the above example

query QR has two partitions, corresponding to the following queries:

select CompanyName, TradePrice

from TRADES

where InstrumentType='equity' and Exchange='madrid'

select CompanyName, TradePrice

from TRADES

where InstrumentType='equity' and Exchange = 'madrid'

Each tuple t from the first query will be converted so that t. TradePrice. Currency = 'USdollars';

tuples from the second query need no conversion.

One advantage of performing this partitioning is that the context mediator can generate a

conversion plan once and apply it in bulk. Another advantage is that impossible conversions can

be determined quickly, without having to go to the database. For example, the trade price for a

future traded on the NYSE could not be converted from the database context to the application

context because there is no conversion function for the PriceStatus meta-attribute.

This use of constraints to analyze a query resembles work in semantic query optimization [1,

4, 20, 26]. In general, the context mediator may (1) identify semantic comparisons that may never

be true, thus eliminating further analysis, (2) identify semantic comparisons that are always true,

thus reducing the need for run-time conversions, (3) resolve queries through contradiction, and (4)

make it possible to simplify queries enough that the data environment provides the answer to it.

As with semantic query optimization [1, 4, 11, 20, 26], this preprocessing can considerably reduce

query processing costs.

The steps described for the context mediator are not intended to define an optimal plan for

query processing using semantic values. Optimization issues in context mediation is being examined

as part of our current research effort. The existing context mediator runs under UNIX, is written in

C, and uses a relational database to store intermediate results. Current plans include adding a C-

SQL parser, building a context mediator for a C-SQL application possibly as part of a hierarchy of

cooperating mediators, and using more general data environments. We also are examining different

approaches to subsumption such as the use of a Datalog or logic processing [2, 15] engine.

7 Conclusions

This research has provided a model-independent theory for the exchange of data among heteroge-

neous information systems. Our approach is to use semantic values as the unit of exchange and

to have a context mediator to facilitate this exchange. We use data environments as a way for



the component information systems to describe the values of the properties of the semantic val-

ues they exchange. We then apply these ideas to the relational model, developing an SQL-based

data manipulation language, called C-SQL. Finally, we describe a prototype where rule-based data

environments are used to hide all context information from the application. Application requests

are expressed in SQL, and the context mediator guarantees the correct semantics for the result by

utilizing the application and database environments.

Much of the previous work in semantic interoperability has been developed for static systems

and has presented itself as monolithic; some have suggested a single integrated interface (i.e. global

schema) having a single environment [3, 6, 19, 22], others a single data model with multiple envi-

ronments [5, 7], and others a federated approach with each member of the federation working in

a different environment [16]. Our approach is more dynamic, expressive and extensible. It allows

for a component information system to change its environment, either for external reasons or as

a reaction to the change in the environment of another system. We believe that our approach is

complementary to these other approaches, and can be incorporated into any of them. For example

in the integrated approach, multiple component systems will share a combined view having a single

data environment; in the federated approach, the component systems may be accessed by explicitly

sharing the necessary semantic values. Current research efforts are investigating the integration our

architecture for context mediation with developing multidatabase architectures [12, 13] to address

issues in semantic interoperability including multidatabase query optimization [11].

We improve on current technology by allowing gradual, modular development of data descrip-

tions and conversion functions. Instead of requiring each pair of communicating systems to deter-

mine an interface, the context mediator compares environments and synthesizes the translations.

Context mediators are designed to be fixed components, changing only when the interface changes,
whereas the environments, ontologies, and conversion routines are expected to be evolutionary. The

ability to interchange can grow gradually, semantic value by semantic value, instead of in larger

steps requiring understanding of the systems performing the interchange.

Our work suggests several lines for future research. First, context information needs to be

attached to objects larger than single attributes; this may be easier in object-oriented models. Sec-

ond, we need to examine a large range of conversion functions from a wide variety of application

domains in order to verify the applicability of our theory. The properties of conversion functions

(e.g. losslessness) and the meaning of semantic comparison need to be defined in terms of imprecise

conversion. For example, in assuming the losslessness of cotCurrency and cvtLengthUnit, we have

ignored possible roundoff error from the conversion of values. Similarly, we need to examine repre-

sentation, comparison and conversion techniques for complex context information such as derived

data formulas. Temporal issues must also be considered, as historical databases are likely to have

context that changes over time. Third, we need to consider the possibility of using multiple, coop-

erating mediators. In addition, considerable research is needed to develop strategies for building

mediators [10]. It is necessary to define algorithms that the mediator can use to plan conversions;

this planning can be nontrivial when conversions' behavior is more complex than simply chang-

ing a meta-attribute from one value to another. Fourth, optimization techniques are needed for

planning the evaluation of queries; for example, we believe that many of the results in [18] can be

restated in our extended relational model as certain forms of semantic query optimization. Finally,
it is necessary to better understand the tools, architectures and organizational requirements that

would allow data administrators and application developers to cope with context interchange in



a large-scale environment (e.g., ontologies, conversion libraries, common knowledge representation

languages). We continue to develop the model-independent theory as this will simplify the use of

this approach to a range of data and system models.
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