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Abstract Tree breeders must often consider the conservation
of genetic diversity, while at the same time, maximizing
response to selection. In the case of seed orchards, the buyer
of seed wants maximum performance, while satisfying a
restriction, sometimes legislated, on the diversity deployed
to the forest. Optimal selection will not completely avoid
kinship but rather maximize gain while imposing a constraint
on average relatedness. Here, we present the application of
semidefinite programming (SDP) as a flexible approach to
optimize the deployment of genotypes to a clonal seed or-
chard. We formulate the selection problem as an SDP, where
average breeding value is to be maximized, while imposing
constraints on relatedness, as well as maximum and minimum
contributions from each candidate. An open-source solver,
SDPA, was embedded into a tool designed to make the opti-
mization of seed orchards by SDP simple and flexible. Case
studies optimizing seed orchards for Scots pine and loblolly
pine illustrate how this flexibility can be used to impose

additional constraints on the scion material available from
some candidate genotypes and optimize selection even when
related candidates have varying degrees of coancestry among
them. Additional situations where SDP can be employed are
discussed.

Keywords Semidefinite programming . Optimization .
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Introduction

It is common in tree breeding that selection of populations
must consider conservation of genetic diversity, while at the
same time attempting to maximize response to selection. It is
generally recognized that one cannot simply select the “best”
trees, without also taking into account the degree of related-
ness among them. To ignore relatedness would result in a
rapid loss of diversity in breeding populations, reducing the
long-term gains possible through recurrent selection and ac-
cumulating high levels of inbreeding (Robertson 1960, 1961).
Managing relatedness among selections becomes complicated
as early as the first cycle of breeding, when parents, siblings,
and other close relatives have similar ranks. Historically, tree
breeders have often imposed rules of thumb on how many
selections can be accepted from a family or other group of
relatives (e.g., Jarvis et al. 1995), as well as subdivision or
“sublining” of breeding populations to avoid relatedness
among sublines, even as it accumulates rapidly within (e.g.,
McKeand and Bridgwater 1998). Such rules may be success-
ful in regulating the accumulation of relatedness but are un-
likely to result in optimal solutions that maximize gain.

The issue of how to truly optimize the balance between
gain and relatedness can be approached in several ways. An
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optimal solution will not completely avoid kinship but rather
find the set of selections that maximizes gain while imposing
an overall constraint on average relatedness. In the context of
tree breeding, the problem was formulated by Lindgren and
Mullin (1997) who expressed “group merit” of a selected
population as a function of average genetic value, penalized
by a weight on relatedness among individuals, as expressed by
their “group coancestry” sensu Cockerham (1967). While
they provided a way to maximize group merit for a fixed
number of selections with equal representation (“Group-Merit
Selection”), the constraint on relatedness is applied indirectly
so that achieving a specified level when selecting breeding
populations requires a trial-and-error approach, typically with
many iterations, and optimizing unequal numbers of ramets
deployed to seed orchards is not possible.

The special case of optimizing deployment of genotypes to
a seed orchard was explored by Lindgren and Matheson
(1986) and Lindgren et al. (1989) who suggested that the
optimum relationship between candidate breeding value and
their contribution to the population would be linear. The
application of “linear deployment” is only possible when the
candidates are unrelated as might be the case when selecting
“backward” on progeny tested plus tree candidates. If the
candidate pool includes relatives, Bondesson and Lindgren
(1993) suggested that a more complex formulation would be
required, perhaps using a LaGrange function. In more recent
work, Lindgren's group used the Microsoft Excel add-in tool,
“Solver”, to maximize gain by linear programming under a
LaGrange equality constraint on relatedness (Danusevičius
and Lindgren 2008; Lindgren et al. 2009).

The quadratic object function was introduced by
Meuwissen (1997) as the basis for seeking an optimal balance
between genetic merit and relatedness by simultaneous selec-
tion of parents and calculation of their respective mating
proportions. Meuwissen's algorithm is based on LaGrangian
multipliers (LM) and has been used in both theoretical and
practical applications to optimize breeding programs, mainly
in an animal-breeding framework (e.g., Grundy et al. 1998;
Avendaño et al. 2004; Hinrichs et al. 2006; Villanueva et al.
2006; Woolliams 2007; Hinrichs and Meuwissen 2011). The
LM method was recommended for application to forest trees
by Kerr et al. (1998) and subsequently demonstrated in the
management of breeding (Hallander and Waldmann 2009a)
and in the optimal selection of Scots pine (Pinus sylvestris L.)
parents for a seed orchard with unequal numbers of ramets
(Hallander and Waldmann 2009b). A general assumption
made by LM is that the optimal solution should occur when
the restriction on relatedness is exactly achieved, i.e., the
optimal solution is found at the boundary of all possible
solutions. After a primary solution is obtained, some candi-
dates will obtain negative contributions as there is no restric-
tion on the minimum (or maximum) contribution of the selec-
tion candidates. By removing negatively contributing

candidates from the selection process, either all simultaneous-
ly or one-by-one, and resolving the optimization, a final set of
candidates and their respective contributions is obtained.

There are, as pointed out by Pong-Wong and Woolliams
(2007), some serious drawbacks with the LM method. First,
by removing candidates or fixing their contributions to zero
and re-optimizing with a new subset of candidates, it is pos-
sible that the true optimum solution is bypassed in the iterative
procedure. Second, there is no restriction on the maximum
allowed contribution of any particular candidate. This means
that ad hocmanipulations of the final solutionmay be required
to satisfy other operational constraints on its implementation.
For example, in forest tree breeding, one major constraint for
the establishment of grafted seed orchards is the number of
scions that can be collected from a given genotype.

In this paper, we examine the application of semidefinite
programming (SDP) to optimize selection for gain with a
quadratic constraint on relatedness as applied to typical situ-
ations in establishment and management of forest tree seed
orchards. SDP was introduced by Pong-Wong and Woolliams
(2007) as an alternative method for finding a solution to a
convex optimization problem in an animal-breeding frame-
work. They reported that in several examples, SDP found a
more optimal solution than did the LM approach. To our
knowledge, theirs is the only published study with a focus
on breeding that has utilized SDP to obtain optimal contribu-
tions although their comparisons of the SDP and LM ap-
proaches were limited to small “toy” examples. Here, we
apply SDP to two illustrative case studies: (1) a real Scots
pine (P. sylvestris L.) pedigree and associated breeding value
estimates to illustrate the performance and flexibility of the
method, while imposing additional operational constraints of
interest to orchard managers and (2) selection for an elite
orchard among clonally replicated loblolly pine (P. taeda
L.) in a publically available pedigree representing varying
degrees of relatedness among candidates.

Theoretical development and methods

Semidefinite programming

Semidefinite programming is an optimization method to min-
imize a linear objective function subject to the constraint that a
linear combination of symmetric matrices is positively
semidefinite (Vandenberghe and Boyd 1996). The constraint
is convex, which means that if two points satisfy the con-
straint, then any point on the segment between the two points
also satisfies the constraint. It is the convex nature of con-
straints that allows SDPs to be solved efficiently. The objec-
tive to find a minimum for a linear function over a linear
matrix inequality can be described by the general form:
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Minimize :
X

i¼1

Z

f ixi Subject to : Y0−
X

i¼1

Z

Yixi≥0

The input data are f1,f2,…,fZ∈R and Y0,Y1,…,YZ being
matrices of the same dimension, while the decision variable is
x ∈RZ. The notation Y ≥0 indicates that matrix Y is positive
semidefinite, i.e., all the eigenvalues of Y are non-negative.
SDP can be considered as an extension of linear programming
to the space of matrices.

The main advantage of SDP is that optimization theory
guarantees the optimum solution which is found in an efficient
and smooth way (Vandenberghe and Boyd 1996). SDP can be
efficiently solved using interior-point methods, which are well
understood and perform well in practice (Nesterov and Todd
1997; Kojima et al. 1997; Alizadeh et al. 1998). In addition,
interior-point methods have the ability to exploit the structure
of the optimization problem, such as the usage of sparse
equation solvers. Many computer programs based on
interior-point methods are available for solving SDPs, includ-
ing semidefinite programming algorithm (SDPA) (Yamashita
et al. 2003, 2010, 2012).

Object function formulation

To formulate the selection of genotypes with unequal numbers
of ramets to a grafted seed orchard as an SDP, we first consider
selecting a cohort from a complex pedigree, containing totally
Z genotypes that are to contribute their genes in optimal
proportions. The object is to maximize the expected genetic
merit of contributions from the selected cohort, given by cT g ,
where the estimated breeding values (EBV) for all pedigree
members are found in vector g , of size Z×1, and the contri-
bution of genes as a proportion is denoted c , also of size Z ×1.
In our problem, the decision variable is c , where 1≥c i≥0, and
the sum of all contributions from the selected cohort equals
unity (∑i=1

Z c i=1).
There are a number of constraints required to fully formu-

late the selection problem. First, we wish to impose a quadrat-
ic restriction on the relatedness or group coancestry, θ , of the
selected cohort, specified as θ ≥cTAc /2, where the additive or
numerator relationship matrix of the pedigree is denotedA , of
size Z ×Z . The maximum and minimum contributions that a
particular individual can make are denoted m and u , respec-
tively, and both vectors are of size Z ×1. Here, if pedigree
member i is not itself a candidate for selection (e.g., not
physically available for use), the corresponding maximum
contribution is set to zero (i.e., mi=0). Similarly, while the
minimum number of contributions for a genotype might nor-
mally be zero, there may be times when prior investments
might motivate setting ui to a specific value greater than zero,
provided that mi≥ui. In monecious tree species, where indi-
viduals can have reproductive structures for both genders,

there are no limits imposed by gender and the total sum of
all contributions in the pedigree should equal unity. For dioe-
cious tree species, restrictions on the contribution of the sep-
arate genders are needed: cTd =0.5 and cTs =0.5 for female
and male contributions, respectively, where: d and s are
indicator vectors of size Z ×1, di=1 and s i=0 if tree i is a
female and vice versa if i is a male.

In order to find the optimal gene contributions, the problem
can be formulated as:

Maximize : cTg ð1aÞ

Subject to : cTAc
.
2≤θ ð1bÞ

cT1 ¼ 1 ð1cÞ
c≥u ð1dÞ
c≤m ð1eÞ

where 1 is a vector of size Z ×1 containing 1s. This formula-
tion of the optimization problem is flexible; for example (1c)
could easily be replaced with cTs =0.5 and cTd =0.5, if re-
quired to account separately for gender.

When reformulating as an SDP problem, the quadratic
constraint (1b) is expressed in linear form using its Shur
complement and the equality constraint (1c) replaced by two
inequality constraints so that the selection problem for a
monecious species is reformulated:

Minimize : �cTg ð2aÞ

Subject to : A−1 c
cT 2θ

� �
≥0 ð2bÞ

cT1−1≥0 ð2cÞ

−cT1þ 1≥0 ð2dÞ

c−u≥0 ð2eÞ

m−c≥0 ð2fÞ

We can now formulate the results in Y ¼ Y0−∑
i¼1

Z

Yici :

Y ¼

A−1 c
cT 2θ

� �

cT1−1
−cT1þ 1

diag c� uð Þ½ �
diag m� cð Þ½ �

2
6666664

3
7777775
≥0

ð3aÞ
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with the Z +1 set of affine matrices being:

Y0 ¼

�A�1 0 Z�1ð Þ
0 1�Zð Þ −2θ

� �

1
−1

diag uð Þ½ �
�diag mð Þ½ �

2
6666664

3
7777775
≥0

ð3bÞand

Yi ¼

0 Z�Zð Þ Ii
I i
T 0

� �

1
−1

diag Iið Þ½ �
−diag Iið Þ½ �

2
6666664

3
7777775
≥0; i ¼ 1; 2;…Z

ð3cÞ
where the size of the first block is (Z +1)×(Z +1), the next two
are 1×1, and the last two blocks are of size Z ×Z . I i is the i
column of the identity matrix of size Z ×Z , and diag (I i) is a
diagonal matrix with diagonal equal to I i. All other matrix
elements are zero.

Solving the SDP

SDPA1 is an open-source solver that can be applied to many
types of SDPs. SDPA is very flexible, but with flexibility
comes complexity and room for error, both in setting up the
SDP properly and interpreting the output. We have simplified
this task by embedding the SDPA solver in a user-friendly
open-source tool, known as OPSEL2 (Mullin et al. 2013),
which is designed specifically for such selection optimization
applications in tree breeding. OPSEL receives input regarding
the total number of ramets to be established in the orchard, the
constraint on relatedness (as group coancestry or Status Num-
ber), whether a minimum is to be imposed on individual
genotype contributions (i.e., u ≠0), and the name of a text file
containing the EBVs of all candidate genotypes, their maxi-
mum (and minimum) frequency in the selected group, as well
as the complete pedigree including ancestors. These data are
used to prepare the SDP for solving by SDPA. Once SDPA
has completed its work, OPSEL then reads the SDPA output
and generates a file with the original data, as submitted in the
pedigree file, and with additional columns specifying the
optimum contribution as a proportion and as an integer num-
ber of ramets for each genotype.

Case study 1: establishing a Scots pine orchard in northern
Sweden

To illustrate the application of SDP to optimize a seed orchard,
we use the actual pedigree and breeding value data from the

Scots pine breeding program in northern Sweden. The program
has access to many plus tree founders (F0 generation) that have
been progeny tested by open pollination and/or polycross and to
the progeny of many pair crosses between the F0 parents that
have been established in F1 family field tests. Comparable BLUP
EBVs for the target orchard deployment region were available
from the TREEPLAN® system (McRae et al. 2004), using all
available field test data. The client's specification for the orchard
is that it should contain a total of N=2,800 ramets, having a
status number Ns ≥ 14 (sensu Lindgren et al. 1996 and equiva-
lent to group coancestry θ ≤ 0.03571).

The first step was to perform a truncation of the candidate
list to a total of 2,000 F1 genotypes, including not more than
15 per full-sib family, and their F0 parents. The complete
pedigree list contained 2,045 genotypes. We then satisfied
the orchard specification using three selection approaches:

1. Forwards selection of the best 14 unrelated F1 candidates .
By establishing 200 ramets for each of the best 14 unrelated
F1 genotypes, we can establish a 2,800-tree orchard that
satisfies the genetic diversity specification Ns=14.
Performing the selection is as simple as preparing a ranked
list of the single best candidate from each F1 family and
selecting from the top down, such that each candidate added
to the selected group is unrelated to all previous selections.

2. Optimum selection with unequal contributions and no max-
imum . Here, we apply selection across all F0 and F1 candi-
dates, while constraining on group coancestry θ ≤ 0.03571
but with no maximum contribution from any given candi-
date. This optimization can be solved by Meuwissen's LM
algorithm or by OPSEL based on an SDP solved by SDPA.

3. Optimum selection with constraint on maximum contri-
bution from F1 genotypes . Whereas the F0 candidates are
large mature trees that can contribute very large quantities
of scions for grafting, the younger F1 candidates are much
smaller. Practically speaking, the F1 trees are not likely
capable of contributing more than 50 scions each. OPSEL
can include this additional constraint in the SDP.

Case study 2: optimizing selection in a clonally replicated test
of loblolly pine

Resende et al. (2012) recently made a standard set of data
available online3 from a clonally replicated population of
loblolly pine in the southeastern USA. The population was
derived by controlled crossing among 32 selected parents
from the Lower Gulf Elite Population, consisting of 22 field-
selected F0 plus trees and 10 selected F1 progeny. These

1 The current version of SDPA software for various platforms is
maintained at http://sdpa.sourceforge.net/.
2 OPSEL is open-source software. The current version can be requested
from tim.mullin@skogforsk.se.

3 Pedigree data and estimated breeding values for this standard loblolly
pine dataset are available in File S2 and File S3, respectively, within the
supporting information for the paper by Resende et al. (2012) and found
at http://www.genetics.org/content/190/4/1503/suppl/DC1.

30 Tree Genetics & Genomes (2014) 10:27–34

http://sdpa.sourceforge.net/
http://www.genetics.org/content/190/4/1503/suppl/DC1


parents were crossed in a partial diallel mating design, and the
progeny propagated for field testing as rooted cuttings
(Baltunis et al. 2007a, b). For this case study, we developed
the SDP to optimize the selection of a grafted elite seed
orchard with a total of N =2,000 ramets, based on the pub-
lished 6-year height EBVs for 861 of the candidate genotypes.
The candidates together had a status number Ns=23.3,
reflecting the considerable relatedness among the clones.
Contributions to the seed orchard were constrained to status
number Ns ≥ 10 (group coancestry θ ≤ 0.05). There were no
other limitations placed on the contributions from any given
genotype. The selection optimized by means of an SDP is
compared with selecting the ten top-ranked, unrelated
genotypes.

Results and discussion

The Scots pine case study

The case study illustrates several of the computational and
operational issues faced when attempting to optimize a real
orchard (Fig. 1 and Table 1). The simplest approach, (1) For-
wards the selection of best unrelated F1 candidates, successfully
achieves the target status number, but requires that each of the
14 selected genotypes produce 200 successful grafts. Most of
the young F1 selections could not produce that many scions in a
single collection, and it would take several years to completely
establish the orchard by returning to the ortets in future years or
collecting scion material from the earlier grafts. We also see in
Fig. 1 the not unusual situation where the very best genotype is
far better than average. The two parents of this genotype
themselves would be good candidates for selection, but since
we apply a strict restriction on inclusion of half-sib or other
relatives, we are forced to go well down the candidate list to
find the next eligible, unrelated genotype.

In this particular example, optimization by LM or by
solving the SDP gives identical results, provided that there is
no constraint on the numbers of ramets contributed by any
given genotype. Given that there are various degrees of
coancestry between candidates, the relationship between con-
tribution and EBV was very weak (Fig. 1), in contrast to the
strong linear relationship that would be expected had the
candidates been unrelated (Lindgren et al. 1989). The opti-
mum solution in this example, where no constraints were
placed on maximum contributions, utilized 56 genotypes,
many of them related to each other, but still producing the
required status number for the orchard. The average EBV was
over 17 % greater than that from selecting 14 unrelated
candidates (Table 1).

While the improvement in gain is impressive, we are still
left with many F1 genotypes having to contribute very large
numbers of scions that are simply not available on these
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Fig. 1 Distribution of numbers of ramets established versus estimated
breeding value for genotypes selected by each method for case study 1 on
Scots pine

Table 1 Comparison of selection methods for case study 1

Top 14 unrelated
F1s used equally

Optimized with unlimited
F0s and F1s

Optimized with unlimited
F0s and F1s≤50

Number of ramets 2,800 2,801 2,796

Number of genotypes 14 56 71

Status number 14 14 14

Group coancestry 0.0357 0.0357 0.0357

Average EBV 381 447 439

Difference in EBV – +17.3 % +13.0 %

Genotype deployment options for a grafted Scots pine seed orchard in northern Sweden with a totalN =2,800 ramets, constrained to a status numberNs≥
14 (equivalent to a group coancestry θ ≤0.03571 ), including the average estimated breeding value (EBV) of the orchard and the difference in EBV
compared with using the top 14 unrelated genotypes in equal numbers
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smaller trees. The ability to constrain on maximum numbers
of ramets is available through SDP, and the final approach
applied a constraint of 50 ramets from F1 candidates, while no
restriction was imposed on the numbers of ramets from F0
candidates.

The loblolly pine case study

The second case study illustrates the use of SDP to optimize
selection when there is more relatedness among the candi-
dates. Having a status number of Ns=23.3, the relationships
among the tested clones vary considerably, with coancestry
between related clones from 0.0313 to 0.25. Selection of the
top ten unrelated genotypes, each to be deployed in equal
numbers, requires that we go well down the candidate list,
and the orchard-wide average EBV for 6-year height is 89.0
(Table 2). Solving the SDP gives an optimum solution with 30
genotypes, each contributing from 1 to 289 ramets, distributed
as shown in Fig. 2, and producing an average EBVof 114.0,
over 28 % higher than deploying the top ten unrelated clones.

While the number of candidates is relatively small, this
example illustrates the difficulty of avoiding relatedness after
only 2 or 3 cycles of breeding. Solving the problem with an
SDP maximizes the genetic value of the orchard, while satis-
fying the constraint on relatedness.

Resource requirements

A comparison of computing efficiency between the LM algo-
rithm and OPSEL's solution by SDPA is not really possible as
there exists no public access to LM software that is truly
optimized. It can be noted that the time on a typical office
computer to optimize selection by SDPA for the case study
examples presented here is a matter of minutes. The solution

for a longer candidate list of 12,000 genotypes plus ancestors
used all available memory in a 16-Gb machine under Win-
dows 7 but was completed in just over 5 h. Practically speak-
ing, breeders would want to truncate their candidate list to
avoid exceedingly long execution times.

When to optimize or re-optimize?

There are several points in the process of establishing and
managing a seed orchard when a manager might wish to
optimize:

1. Planning the initial makeup of an orchard. This is an
obvious time when one would want to prepare a list of
genotypes and contributions to plan the establishment of
N grafted plants in an orchard.

2. After collection of scions, to prepare the nursery's grafting
list. Typically, the scion collection operation will require a
crew to visit the ortets in the field or to make collections
from ramets established in clone banks or other orchards.
Some donor plants will produce more than enough scion
material, whereas others may fall well short of the number
prescribed by the initial optimization. Some donors may
be dead or too remote to allow access during the collec-
tion period. Furthermore, the grafting operation would
normally prepare excess numbers of rootstock, and the
grafting list should be optimized for this larger number of
plants. Once the scion collection has been completed, the
optimization can be rerun, using the actual numbers of
scions available as the new constraint on maximum con-
tribution and withN set to the total number of rootstock to
be grafted in the nursery.

3. Before shipping surviving grafts to the orchard site. The
nursery inventory of surviving grafts supplies the

Table 2 Comparison of selection methods for case study 2

Top 10 unrelated
genotypes used
equally

Optimized with
selection across
entire pedigree

Number of ramets 2,000 1,999

Number of genotypes 10 30

Status number 10 10

Group coancestry 0.05 0.05

Average EBV 89.0 114.0

Difference in EBV – +28.1 %

Genotype deployment options for a grafted loblolly pine seed orchard
using candidates from the CCLONES test population, having a total N =
2,000 ramets, constrained to a status number Ns≥10 (equivalent to a
group coancestry θ ≤0.05), including the average estimated breeding
value (EBV) for 6-year height of the orchard and the difference in EBV
compared with using the top ten unrelated genotypes in equal numbers
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value for case study 2, comparing simple selection of the top ten unrelated
genotypes deployed equally with selection by SDP to optimize contribu-
tions to a 2,000-ramet loblolly pine seed orchard
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information for the maximum possible contribution of
each genotype as the grafts are shipped for establishment
in the orchard.

4. Thinning an orchard. Most orchards will require thinning
at some point in their development. Updated EBVs will
likely be available, while the current inventory of surviv-
ing ramets provides the constraint on the maximum num-
bers of ramets to be left. The desired census number after
thinning provides the total number of contributions, N .

5. Adding material to an existing orchard. It is not uncommon
for the establishment of an orchard to begin with only a
portion of the total number of trees, leaving gaps for future
planting. To optimize the filling in of this orchard, the
existing inventory of established grafts is used as the con-
straint on minimum contributions, while the maximum for
these genotypes must be at least as large as the minimum.N
is declared as the total size of the orchard, including the
preexisting material. The same approach can be used to
optimize the replacement of mortality.

6. Optimizing an orchard when “standard” genotypes are
included. There are situations when an orchard manager
will want to ensure that certain genotypes are included in
the orchard. These “standards” may represent genotypes
whose performance or response to orchard management is
well known, or there may be a known market for their
seeds. Whatever is the reason for their inclusion, a con-
straint on the minimum contribution from these genotypes
can be declared when the orchard is optimized.

SDP for optimizing seed mixtures from orchards

Of course, the optimizing of seed orchard establishment
around a constraint on relatedness assumes that each ramet
of the various candidate genotypes will contribute the same
number of gametes to the seed produced in the orchard. This
may be a reasonable assumption for many open-pollinated
orchard species but will certainly not be the case when fertility
varies greatly among genotypes or when seed is produced by
controlled crossing. SDP can still be useful in such situations
by optimizing the mixing of seedlots collected in the orchard,
providing high genetic value while satisfying a constraint on
status number.
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