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Monitoring Biodiversity
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Biodiversity is being lost at an unprecedented rate, and monitoring is crucial for understanding the causal drivers and assessing solutions. Most 
biodiversity monitoring data are collected by volunteers through citizen science projects, and often crucial information is lacking to account for 
the inevitable biases that observers introduce during data collection. We contend that citizen science projects intended to support biodiversity 
monitoring must gather information about the observation process as well as species occurrence. We illustrate this using eBird, a global citizen 
science project that collects information on bird occurrences as well as vital contextual information on the observation process while maintaining 
broad participation. Our fundamental argument is that regardless of what species are being monitored, when citizen science projects collect 
a small set of basic information about how participants make their observations, the scientific value of the data collected will be dramatically 
improved.
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Biodiversity monitoring provides essential information   
and evidence to develop species conservation strate-

gies and inform the sustainable use of natural resources. 
Traditionally, monitoring programs rely on humans to 
collect field observations (Kelling et  al. 2013); however, 
recent advances in machine learning are improving the abil-
ity of automated systems to detect and classify organisms 
(Schneider et al. 2018, Zhang et al. 2018). Because govern-
ments and scientific agencies often lack resources to support 
long-term biodiversity assessments by professional scientists 
(Balmford and Gaston 1999, Bland et al. 2015), many orga-
nizations recruit volunteers—both beginners and highly 
skilled ones—to meet these assessment goals (Danielsen 
et al. 2014, Pimm et al. 2015). Worldwide, up to 85% of the 
species-level information required by governments is col-
lected by volunteers (Roy et al. 2012).

Thousands of citizen science projects enlist the pub-
lic in gathering or processing scientific data (see http://
scistarter.com), with hundreds of these projects collecting 
species observations (Theobald et al. 2015). Although bio-
diversity science has a long history in working with volun-
teered data—e.g., through museums—citizen science, as a 
formal activity, began to coalesce between 2006 and 2010, 

and the number of peer-reviewed publications using citi-
zen science data began to grow exponentially (McKinley 
et al. 2015). Technical advances such as the Internet, social 
media, and mobile/handheld computers helped to engage 
many more participants, locally and globally, and these 
projects are now gathering or processing hundreds of 
millions of observations annually (Chandler et  al. 2016). 
However, these projects vary greatly in the types of infor-
mation that they collect, with important consequences 
for the ability of each to meet its intended outcomes for 
science and society.

In this article, we argue that citizen science projects aimed 
at robustly monitoring species distributions should follow 
several basic data-collection principles to provide a solid 
foundation for data analysis. We build on existing recom-
mendations for biological monitoring programs that collect 
sufficient information on observation processes such that 
resulting data can be used for statistical analyses (Yoccoz 
et al. 2001). Although, in this article, we focus on birds and 
use eBird as an exemplar, our intent is to emphasize that 
anyone designing, or redesigning, a citizen science project 
that is gathering observational data on any organism or any 
taxa should follow these principles.
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We begin by describing the spectrum of data collec-
tion survey methodologies employed by citizen science 
projects. Next, we compare and contrast the ecological 
and observational processes involved in collecting data 
and how they affect the analyses of citizen science data. 
Third, we recommend several core types of information 
that all citizen science projects should collect that allow 
analysts to estimate species distribution. Finally, we 
describe how eBird data provide meaningful informa-
tion on the distribution and abundance of bird popula-
tions. If citizen science projects collect a small set of 
basic information about how the participants make their 
observations, in addition to the species observations, the 
scientific value of the data collected will be dramatically 
improved.

The spectrum of citizen science biodiversity surveys

Citizen science projects that gather species observations 
of organisms can be considered on a continuum reflecting 
how data-collection events occur, from preplanned and 
structured to opportunistic and unstructured. Structured 
surveys are composed of rigorous protocols designed to 
meet well-defined objectives (table 1). For example, the 
United Kingdom Butterfly Monitoring Scheme, which is 
designed to monitor the population status of butterflies, has 
surveyed 1200 transects since 1976. Each transect is chosen 
to sample evenly the habitat types and management activity 
on varied sites. Transects are typically 2–4 kilometers long 
and are walked weekly between 1 April and 29 September, 
on days when weather conditions are favorable for encoun-
tering butterflies. Counts of all butterflies are recorded in 

Table 1. Characteristics of unstructured, semistructured and structured citizen science projects as defined in this article.

Project elements Unstructured Semistructured Structured

Why

What

Objectives

• Clear objectives

• Clear planned data analysis

How

When

Where

Survey design

• Target sample size

• Locations selected to fit design

• Trained or expert observers

How

When

Where

Rigorous protocol

• Preselected locations

• Ability to estimate detectability

• Specifications for date, time of day, etc.

• Specialized equipment required

Who

Open and flexible recruitment

• Open

• Accessible

• Appealing to wide range of observers

How

When

Where

Who

Observation process recorded

• Time of day, date, location

• Number of observers

• Distance traveled

• Style/type of survey

Variation accounted for by analytical techniques

Variation controlled by restricted protocol

Note: The size of the dots relates approximately to the extent or frequency with which projects of different types meet the various criteria.
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a 5 meters wide band along each transect, and if a species 
is not reported, it is considered undetected or absent. The 
participants are highly motivated and trained in the survey 
methodology. Although the method is labor intensive, the 
project has allowed the calculation of robust site-level trend 
estimates for more than 50 species of butterflies (Fox et al. 
2011) and has contributed to more than 100 peer-reviewed 
publications.

At the opposite end of the continuum unstructured proj-
ects have few requirements for data collection, and the par-
ticipants report only when they opportunistically encounter 
a species (table 1). For example, iNaturalist is successful in 
recruiting volunteers to submit observations and images of 
species they detect. However, the observations have lim-
ited application for monitoring populations of organisms 
because the project collects little information about how the 
participant made their observations, which are crucial for 
subsequent scientific analyses (Guillera-Arroita et al. 2015). 
The majority of citizen science projects that gather ecologi-
cal data can be characterized as unstructured (Pocock et al. 
2017) and do not gather information on the observation 
process, meaning that there is no fully statistically defen-
sible way of accounting for the biases inherent in the data 
collection.

To enlist a large number of participants while gathering 
interpretable data, a citizen science project must balance the 
trade-offs between strict data-collection protocols that pro-
vide high scientific value and flexible data-collection pro-
tocols that appeal to a wide audience (Bonney et al. 2009). 
To accomplish this balance we suggest a semistructured 
data collection process, which can yield enjoyable projects 
that attract large numbers of participants while collecting 
sufficient information to account for variation and bias 
in the data-collection process (table 1). Whereas a highly 
structured project attempts to eliminate variation in the data 
collection with strict protocols, a semistructured project 
gathers just enough data to control variation and bias during 
analysis (Fink et al. 2010).

One example of a semistructured survey project that 
allows open participation and observer-selected sites is 
eBird (Sullivan et  al. 2014). What characterizes eBird as a 
semistructured survey is that it provides the option to collect 
information on how the participant made their observations; 
for example, the duration of data collection, the distance an 
observer traveled while collecting observations, inferring the 
nondetection of a species (e.g., from a complete checklist), 
and other facets of the data-collection event that can affect 
the probability that a species will be detected, identified, and 
recorded. Semistructured projects such as eBird can be very 
popular, and the volume of data they gather provides the 
largest and fastest-growing information on species occur-
rence (Amano et al. 2016).

A process for creating a citizen science project

In developing a citizen science project, it is critical for 
designers to understand that the data to be collected 

represent a combination of two processes: an ecological pro-
cess that determines which species exist in a given location 
and an observation process that a participant uses to make a 
sighting, which has inherent biases. When the two processes 
are confounded in the collected data, critical interpreta-
tions of the data may be limited or misleading (figure 1). 
For example, a pattern observed about species occurrence 
depends not only on the actual distribution of the species 
but on the distribution of locations that were sampled. If data 
are lacking about the observation processes, then occurrence 
maps will be impossible to interpret accurately because the 
apparent distribution is determined to an unknown degree 
by where the participants are likely to sample.

Citizen science projects often overlook the importance 
of accounting for variation in the observation process. 
Bias and noise in data can be thought of as having two 
general sources: uneven sampling effort over space and 
time (Geldmann et al. 2016) and variation in rates at which 
species are detected, identified, and reported (Kelling et al. 
2015, Kery and Schmid 2004). Structured projects control 
these sources of bias by implementing a sampling design 
and formal protocol that constrain variation in the data- 
collection process. The result is that structured projects 
focus on implementing a sampling design that feeds into a 
preselected analysis. An example is making multiple visits 
to a survey site to collect detection/nondetection observa-
tions that can be used to estimate species occupancy rates 
(e.g., MacKenzie et  al. 2006). Locations and survey times 
are preselected, and the participants are well-trained in fol-
lowing the protocols. Structured surveys gather the most 
information-rich data but often require high participant 
dedication, such as the weekly data collection visits required 
by the United Kingdom Butterfy Monitoring Project, and 
thus significant effort in project coordination. In addition, 
maintaining interest by trained observers can be difficult, 
and extending structured surveys over broad spatial and 
temporal extents is often impossible, because of the small 
number of expert, trained, and motivated observers.

In contrast, semistructured projects have minimal survey 
design, use flexible and straightforward data-collection pro-
tocols, allow for broad participation, and do not limit where 
and when observers make observations. However, they do 
gather information on both the ecological and the observa-
tion processes including detection/nondetection data and 
information on features that vary among data-collection 
events, such as the location, time of day, duration of collection 
event, and distance traveled (table 1). Although analyses of 
semistructured data are complex, data collection biases can be 
addressed because the observation processes can be modeled. 
This provides a basis for estimating variation in abundance 
and distribution over space and time (Johnston et al. 2018).

Identifying the information required to describe the 

observation process

We emphasize that when designing a project, or currently 
managing an ongoing project, project managers should not 
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only determine what is to be observed, and also provide the 
means for the participants to describe the process by which 
each observation will be made. In the present article, we pro-
vide six key questions that, when answered, define the facets 
of the observation process important for controlling bias.

Why is the project being conducted? Every citizen science 
project should have a clearly articulated purpose to 

motivate the project design. This should be based on 
either a research question or monitoring agenda that will 
determine what should be observed and how data need to 
be collected (Bonney et  al. 2009). We recommend clearly 
describing the project objectives and design, even if broad, 
so that an appropriate data-collection methodology can 
be implemented. Clearly articulated project objectives will 
be more engaging for the participants, and will lead to 

Figure 1. Schematic visualization of the observation process and ecological process for unstructured, semistructured and 

structured surveys, in relation to an imaginary variable A. The top two rows show the true ecological and observations 

processes in grey. Both unstructured and semistructured surveys show uneven sampling in relation to variable A. The lower 

two rows show the estimated ecological and observation processes in black and the true processes in grey underneath. The 

data on the observation process from the the semistructured survey are used to estimate the biased observation process (in 

red), which enables the estimated ecological process to be closer to the truth, when compared with the unstructured survey. 

When a biased observation process cannot be estimated analytically, the ecological and observation processes are confounded.
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more homogeneous observation behavior, helping further 
analysis.

What is observed? Most citizen science monitoring projects 
identify a specific taxonomic or ecological scope, because 
developing protocols that effectively gather observations of 
one taxon (e.g., mammals) would be different from another 
(e.g., stream invertebrates). We recommend clearly defining 
the taxonomic scope to ensure that the observation process 
is well described and as straightforward as possible.

Where are the observations collected? Most semi- or unstruc-
tured projects allow the observer to select their preferred 
observation location. Regardless of how a location is 
selected, we recommend accurately recording where data are 
collected. Spatial aggregation to lower resolution is always 
possible at a later stage, e.g., for species of conservation con-
cern, if needed.

When are the observations collected? Species detectability can 
change within a day or seasonally as animal behaviors 
change or plants alter their appearance. However, limiting 
sampling events to a short time frame in a given year may 
limit the participation of volunteers and miss key phenologi-
cal events or changes. We recommend always recording the 
date and time when observations were made, including the 
duration of the observation event.

Who is making the observations? Most citizen science programs 
do not restrict participation and have a range of participants 
from very dedicated recorders to others who submit data 
only occasionally. Although the participants can develop 
enormous expertise in gathering information through par-
ticipation, a large variation can exist between individuals in 
their behavior and their detection and classification skills 
(Fitzpatrick et al. 2009). Regardless of the monitoring proj-
ect, knowing who collected each observation is important. 
In this way bias related to variability in observer behavior 
and expertise can be estimated and taken into account. We 
recommend retaining clear information about who col-
lected the observations in the data management framework, 
by using coded identifiers that are unique to individual 
observer.

How are the observations collected? A high level of data quality 
can be maintained in the absence of a rigid sampling design 
and protocols if the observation event is well described. Not 
only should this description include information on what, 
where, when, and who made the observations, but also 
how observations of species are made. Recording all species 
generates a “complete checklist,” which directly provides 
information on species detected and inferred information 
on species not detected. Knowing whether a checklist of 
species is “complete” is critical because the nondetections 
are required to estimate detection probabilities, used to infer 
true species presence and absences (Guillera-Arroita et  al. 

2015). Other key aspects of how the observations were col-
lected may include the distance travelled or any variables 
that describe variation in the area surveyed or the method 
of surveying, which affect the detectability of individuals.

eBird, a semistructured citizen science project

eBird is a semistructured citizen science project with an 
open project design and minimal protocol requirements 
(Sullivan et  al. 2014). To date, eBird’s more than 400,000 
observers have volunteered 40 million hours of effort in 
reporting bird observations. No restrictions are placed on 
who can participate, where and when they participate, or 
how they participate. However, observers are encouraged 
to submit “complete checklists.” eBird has maintained 20% 
or more annual growth in data collection for more than a 
decade, and as of October 2018, eBird data include 31 mil-
lion complete checklists containing 567 million observations 
of more than 10,000 bird species from every country in the 
world.

An important part of these complete checklists is the 
description of the observation process. eBird answers the six 
questions above as follows:

Why is eBird being conducted? eBird collects data that will be 
used to estimate the distribution and abundance of bird 
populations by taking advantage of the global network of 
bird enthusiasts who submit their observations to a central 
data repository.

What is observed? eBird gathers observations and counts of all 
wild bird species.

Where are the observations collected? eBird participants can select 
where they make their observations from any global location. 
All locations are georeferenced either through mapping tools 
provided on the eBird website or through the GPS system 
available on mobile phones and used within the freely available 
eBird App. The mobile App also records the track and distance 
the observer travelled while making observations.

When are the observations collected? eBird allows observers to 
record observations at any time of day or year. The start time 
of an observation event is recorded along with the total time 
spent making observations.

Who is making the observations? Individuals must register for 
eBird and then log in whenever they submit a checklist. In 
this way all submissions are linked to the individual who 
submitted them. Checklists can be shared to link multiple 
observers to the same checklist.

How are the observations collected? eBird collects lists of all spe-
cies identified along with counts of the number of individu-
als of each species observed during the collection event. By 
asking observers if they are reporting a list of all the species 
they identified, analysts can better infer detectability and 
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therefore absence of species. By collecting counts of each 
species, analysts can better estimate population abundance 
(Johnston et  al. 2015). eBird also collects information on 
whether the observer was stationary or traveling, the dis-
tance they traveled, the duration of the checklist, and the 
number of observers.

eBird complete checklists are translated into information 
describing patterns of species occurrence and abundance in 
space and time using Species Distribution or Niche models 
(SDMs). These statistical models estimate the distribution or 
abundance of a species by estimating relationships between 
the observed patterns of species occurrence, or counts, and 
data describing the processes that give rise to these observa-
tions (Franklin 2009). To understand ecological processes, 
each location where eBird data are collected is linked to 
remotely sensed habitat and elevation data, which are 
included as explanatory variables in the SDM.

Comparable to modeling ecological processes, similar 
strategies can be used to account for sampling biases inher-
ent in the observation process in the SDM by using the 
information that eBird collects about the observation pro-
cess. First, to limit differences in sampling effort, the data 
used to train the SDM can be limited to complete checklists 
with similar levels of sampling effort. In addition, to account 
for the effects of variable search effort within the selected 
data, the duration and length of each search are included as 
explanatory variables in the SDM. To account for variation 
in detection rates associated with changes in species’ behav-
ior throughout each day, the time of day that each search 
is made is included as an explanatory variable. Finally, to 
account for the strong differences between observer’s abil-
ity to detect and identify species, we have calculated the 
Checklist Calibration Index (Kelling et  al. 2015), which 
is derived from the rates at which observers accumulate 
additional species with increasing effort. We also include 
the index as an explanatory variable in the SDM. In our 
experience, these explanatory variables that describe the 
observation process are some of the most important predic-
tors of variation in the data fit by the SDMs. Including these 
variables leads to improved predictive performance and pro-
vides an inferential basis for separating the ecological and 
observation processes. This allows researchers to model the 
spatiotemporal variation in bird distributions throughout a 
species’ annual cycle at continental scales (Fink et al. 2014, 
Fink et al. 2010).

Above, we list the principles of good practice for analyz-
ing semistructured citizen science data, such as eBird. In a 
forthcoming article, we outline the practical steps for analyz-
ing eBird data that follow these principles (Johnston et  al. 
In prep). We provide researchers with code and practical 
guidance for applying these principles in their own analyses 
of species distributions. Appropriate filters on the observa-
tion process variables reduce the variation in the analysed 
data. Including the observation process variables as covari-
ates in the analysis accounts for the remaining variation 
in the analysed data. Following these steps leads to better 

estimates of species distributions and more robust ecological 
conclusions.

For each individual species, SDMs generate a series 
of data products including range-wide, seasonal relative 
abundance estimates (figure 2) and weekly relative abun-
dance estimates (figure 3). The range-wide, seasonal relative 
abundance estimates are meant to show the population of 
each species across its entire distribution. The inclusion of 
relative abundance identifies the core range of the species. 
The weekly relative abundance estimates show where a spe-
cies occurs and its relative abundance for every week of the 
year. The estimates also show regions in which the species 
does not occur and locations where eBird does not have 
sufficient data.

When combined and analyzed appropriately, eBird data 
enable next generation species distribution models that pro-
vide full life cycle information about birds at relatively fine 
scales across broad spatial and temporal extents. Recently, 
estimates of the status and trends of more that 100 species 
of birds was released on the eBird website (https://ebird.
org/science/status-and-trends). The eBird status and trends 
provide an unparalleled window into the full annual cycle of 
bird populations in North America. Maps, charts, and other 
products explore the range, abundance, habitat, and popula-
tion trends for each species.

Together these metrics and species summaries can be used 
to contrast regions, seasons, and species, or to inform man-
agement decisions. For example, modeling how bird popu-
lations change throughout the year has uncovered complex 
and seasonally varying species–environment relationships 
(Zuckerberg et al. 2016), identified novel aspects of habitat 
associations that can affect bird populations during migra-
tion (La Sorte et al. 2017), and identified seasonal resources 
needed for supporting bird populations during critical stages 
of their life history (Johnston et  al. 2015, Reynolds et  al. 
2017). Overall, eBird collects sufficient data to account for a 
large proportion of the variation in the observation process, 
which provides greater confidence in trends, maps, and 
other ecological metrics that are produced using eBird data.

Ensuring that citizen science projects effectively monitor biodiversity

Our focus in this article has been to provide a framework 
to improve the quality of citizen projects to best provide 
data that meet scientific objectives. Although proponents 
of citizen science monitoring projects may emphasize that 
the ability to gather large quantities of observational data 
can compensate for poor data quality (Munson et al. 2010), 
for many applications the quantity of data does not neces-
sarily compensate for its quality. Our recommendations 
focus on improving the information collected regarding the 
observation process in order to account for the biases in 
the data caused by variation in the observation process. By 
doing this, the scope and quality of inferences that deter-
mine the distribution and abundance of species in space 
and time is enhanced. We argue that by using a semistruc-
tured approach it is possible to engage volunteers in citizen 
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Figure 2. Seasonal relative abundance of barn swallow (Hirundo rustica). This map shows the average relative abundance 

during each of the stationary seasons: breeding (June 11–July 23) and nonbreeding (December 18–February 11). The 

average relative abundance is also shown during the nonstationary migration seasons, and locations in which barn 

swallows occur year around. The stationary breeding and nonbreeding seasons are plotted on top of the other year-round 

and migration seasons, obscuring some aspects of the species’ movements through the annual cycle. The areas denoted in 

palest grey currently have insufficient data with which to model relative abundance.
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Figure 3. Barn swallow estimates of weekly relative abundance at 2.8 kilometers (km) × 2.8 km resolution representing 

the seasons: (a) breeding (June 18–24), (b) autumn migration (October 2–8), (c) nonbreeding (January 1–7), and (d) 

spring migration (March 26–April 1). The darker colors (pink and purple) indicate areas with higher abundance. Relative 

abundance was measured as the expected count of the species on a standardized 1-km survey conducted by a highly 

experienced participant.
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science monitoring through broad participation, while still 
gathering sufficiently robust data for analysts to pursue these 
objectives. Although the additional data collection “costs” 
could still limit participation, recent advances in automated 
processes (e.g., GIS location and timing recording via smart 
phone apps) reduce these costs. For example, already more 
than 60% of all eBird data are being submitted via mobile 
apps, with this percentage growing. The eBird app auto-
matically gathers most of the observation process data that 
eBird requires, with little additional effort required from the 
observer. Nevertheless, increasing rigor and standardiza-
tion in data collection will need additional coordination 
and communication from project personnel. In summary, 
it is the responsibility of the project coordinators to care-
fully assess the project design and data collection necessary 
to ensure they are collecting semistructured rather than 
unstructured data to improve the scientific outcomes of the 
data collected.

Developments in the field of Artificial Intelligence, com-
bined with increasingly efficient and powerful mobile tech-
nologies, will vastly improve the quality and quantity data 
of collected by citizen scientists. For example, projects such 
as the Cornell Lab of Ornithology’s Merlin Bird ID App 
and iNaturalist already use powerful Deep Learning algo-
rithms and computer vision techniques to identify images 
of thousands of organisms to species, helping observers get 
a species-level identification in the field (Van Horn et  al. 
2017). In addition, to encourage a more even distribution 
of surveys across a region or across habitat gradients, the 
eBird-based project called Avicaching used behavioral eco-
nomics to incentivize site selection among the participants. 
Incentives were used to gather data from locations that were 
historically undersampled, using discrete choice models 
and machine learning to account for variable patterns of 
human behavior (Xue et  al. 2016). The incentives resulted 
in significant shifts in participant effort to under sampled 
areas, demonstrating how incentives can be used to collect 
less-biased data in citizen science programs. However, as 
outlined above, any incentives should be carefully recorded 
as part of the observation process.

Equally important are continuing advances in analytical 
methodology for extracting signals from noisy citizen sci-
ence data (Isaac et  al. 2014). For example, recent methods 
have described a means to jointly analyze data collected in 
both structured and unstructured projects (Fithian et  al. 
2015, Giraud et al. 2016, Tenan et al. 2016). Other models 
leverage the strengths of both information-rich but relatively 
sparse structured data with semistructured data that has 
broad spatial coverage (Robinson et al. 2018).

We also note open-access data as another key component 
to consider in project development. Contributing data to 
data aggregators like the Global Biodiversity Information 
Facility (GBIF) or providing means to download data 
directly from a citizen science project’s website, can sig-
nificantly enhance the overall impact of collected data. For 
example, open accessibility of data to interested researchers 

can lead to analyses that would not have been possible by the 
project team alone, and feedback from external users of the 
data can feed into refinements in the data-collection process.

In conclusion, the enormous growth of digital networks, 
rapid advances in the field of artificial intelligence, the 
appearance of powerful computing devices that can fit in 
a pocket, new statistical analysis methods, and open data 
initiatives will improve the quantity and quality of citizen 
science project data. The potential benefits of technologi-
cal advances, however, will be realized only if coupled with 
standardized reporting of basic ecological information, and 
related information on the observation process in order to 
best use these data in downstream analyses. We envision 
a global network of motivated observers rapidly collecting 
species lists and observation-process information usable for 
near real-time trend assessment of species and community 
health.
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