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Background. Super-spreading events, in which an individual with measurably high connectivity is responsible
for infecting a large number of people, have been observed. Our goal is to determine the impact of hand hygiene
noncompliance among peripatetic (eg, highly mobile or highly connected) healthcare workers compared with
less-connected workers.

Methods. We used a mote-based sensor network to record contacts among healthcare workers and patients in
a 20-bed intensive care unit. The data collected from this network form the basis for an agent-based simulation to
model the spread of nosocomial pathogens with various transmission probabilities. We identified the most- and
least-connected healthcare workers. We then compared the effects of hand hygiene noncompliance as a function
of connectedness.

Results. The data confirm the presence of peripatetic healthcare workers. Also, agent-based simulations using
our real contact network data confirm that the average number of infected patients was significantly higher when
the most connected healthcare worker did not practice hand hygiene and significantly lower when the least con-
nected healthcare workers were noncompliant.

Conclusions. Heterogeneity in healthcare worker contact patterns dramatically affects disease diffusion. Our
findings should inform future infection control interventions and encourage the application of social network
analysis to study disease transmission in healthcare settings.

To understand how infections spread, one must un-
derstand how the agents under study move and inter-
act. Many mathematical models used to explain the
spread of infections assume random mixing. However,
this assumption is known to produce misleading
results even in studies outside of hospital settings [1].
Given the pattern of close and repeated contacts
between healthcare workers (HCWs) and patients and

the presence of architectural constraints, it is unlikely
that the random mixing assumption is warranted in
healthcare settings. Indeed, observational studies
suggest that different types of HCWs exhibit dramati-
cally different contact patterns (in terms of both diver-
sity and number) with other HCWs and patients [2].
Such high contact pattern variability suggests that
some HCWs may have outsized influence on the
spread of infections by virtue of sheer number and di-
versity of contacts. Models that assume the existence
of peripatetic HCWs (ie, HCWs having an unusually
large and diverse set of contacts) demonstrate that
such highly connected HCWs may affect the dynamics
of disease diffusion in healthcare settings. For
example, Temime et al used simulations based on a
hypothetical intensive care unit along with specific as-
sumptions about HCW and patient interactions to
demonstrate that hand hygiene noncompliance in a

Received 18 December 2011; accepted 4 May 2012.
Presented in part: 21st Annual Scientific Meeting of the Society for Healthcare

Epidemiology of America Dallas, TX, 1–4 April 2011. Abstract 423.
Correspondence: Philip M. Polgreen, MD, MPH, University of Iowa, Carver

College of Medicine, 200 Hawkins Dr, Iowa City, IA 52242 (philip-polgreen@
uiowa.edu).

The Journal of Infectious Diseases 2012;206:1549–57
© The Author 2012. Published by Oxford University Press on behalf of the Infectious
Diseases Society of America. All rights reserved. For Permissions, please e-mail:
journals.permissions@oup.com.
DOI: 10.1093/infdis/jis542

Peripatetic Healthcare Worker Effects • JID 2012:206 (15 November) • 1549

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/206/10/1549/857750 by guest on 21 August 2022

mailto:philip-polgreen@uiowa.edu
mailto:philip-polgreen@uiowa.edu
mailto:journals.permissions@oup.com


single peripatetic HCW can substantially affect the spread of
healthcare-associated infections (HAIs) [3].

In this study, we used actual HCW movement data collected
from a network of wearable sensors to confirm the existence
of peripatetic HCWs in a hospital setting and to determine
the impact of hand hygiene noncompliance in the presence of
peripatetic HCWs.

METHODS

Data Acquisition
As part of a process improvement project to measure hand
hygiene behavior, we deployed a set of wearable sensors to
capture detailed location (eg, in a particular patient’s room, at
the nurses’ station) and interaction data for 3 different catego-
ries of HCWs in the University of Iowa Hospitals and Clinics’
Medical Intensive Care Unit (MICU) for both day and night
shifts (a total of 6 distinct HCW types). This wireless sensor
network consists of small credit card–sized wearable devices
called motes: active, battery-powered, programmable devices
containing a processor, flash memory, and an IEEE 802.15.4–
compliant wireless radio. Each mote is programmed to broad-
cast a brief message at regular intervals (5 or 6 times a
minute). When received by other motes within range, we
obtain three pieces of data: (1) the identifier of the mote that
sent the message; (2) the received signal strength (RSSI); and
(3) the time the message was received. These data are recorded
in the receiving mote’s flash memory. The motes communi-
cate over unused space in the Wi-Fi spectrum, do not interfere
with medical devices, and, because they do not rely on fixed
infrastructure, are easy to deploy [4].

We placed fixed-location motes, or beacons, in all 20 single-
patient rooms in our MICU and also outside all patient rooms
in commonly shared patient care areas (ie, hallways and
nurses’ stations), forming a framework of spatial reference
points with which we can accurately estimate the location of
other motes through triangulation.

In addition to beacons, we distributed wearable motes, or
badges, to all HCWs assigned to work in the MICU. Techni-
cally, badges are identical to beacons in capability, but differ
physically (wearable badges are packaged in recycled pager
cases). By merging the data stored in each badge, we can re-
construct when the HCW wearing the badge entered a partic-
ular patient room, for example.

We deployed badges and collected data from all the MICU
HCWs over a period of 7 days. Every morning at 7 AM we
distributed badges to each HCW, and we collected the badges
at 7 PM. New badges were distributed to night-shift workers at
7 PM and then collected the following morning at 7 AM. Once
the badges were collected, their memory contents were off-
loaded to a server, and the badges were reset and recharged
for use the next day.

Each badge was assigned a unique identification number as-
sociated with 1 of 3 HCW categories: nurses (ie, MICU floor
nurses, nursing assistants, and nurse managers; day mean,
11.8; night mean, 8.1), doctors (ie, staff physicians, fellows,
and residents; day mean, 7.1; night mean, 1.7), and critical
support (ie, clerks, pharmacists, and respiratory therapists; day
mean, 1.5; night mean, 1.8). Badges were assigned at random
within categories: because of privacy concerns, we did not
record the association between badge identification number
and the HCW wearing the badge. Shifts were thus treated as
independent collections of events. This badge distribution pro-
tocol was designed to prevent identification of individual
workers; no HCW could be tracked across multiple shifts.
Because no patient-specific identifiers or clinical data were col-
lected for this process improvement project, it was ruled as
nonhuman subjects research by our institutional review board.

Data from individual badges were merged by timestamp to
produce a chronological log of all messages received by any
badge over the course of each shift. From this log, we were
able to reconstruct the physical contacts between individual
HCWs and between HCWs and fixed-location beacons (a
contact is defined as a time period where both motes recorded
each other’s presence above a predefined minimal RSSI for at
least 30 seconds). Using the recorded RSSI and triangulation
with known beacon locations, as well as knowledge about
which patient rooms were occupied at any given time, we were
able to detect hand hygiene opportunities occurring whenever
a HCW entered or left a patient room as well as localize con-
tacts between HCWs wearing badges in the unit outside the
patient rooms.

Model
Based on the data collected, we performed a simulation, where
HCW–HCW and HCW–patient contacts were replayed and
used as the basis for an agent-level simulation, with parame-
ters describing, probabilistically speaking, how infection
spreads from agent to agent.

We based our infection and handwashing model closely on
that used by Temime et al to simulate the spread of organisms
by direct contact (eg, methicillin-resistant Staphylococcus
aureus) [3]. We used 2 disease-based parameters: duration (D)
and transmissibility (P). Duration was set at 10 days, which
Temime et al suggest might reflect a weekly bacterial screening
plus a 3-day wait for test results. We varied transmissibility
from 0.0005 to 0.005 for each 30-second contact interval (cor-
responding to a 2%–18% chance of transmission during a
single 20 minute contact, or roughly the same range used in
Temime et al [3]). We assume HCW–HCW, HCW–patient,
and patient–HCW transmissions are all equally probable.

We fixed handwashing effectiveness at λ = 0.58 (soap and
water) or λ = 0.83 (alcohol rub) consistent with the rates re-
ported in Girou et al [5]. We also assumed a baseline hand

1550 • JID 2012:206 (15 November) • Hornbeck et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/206/10/1549/857750 by guest on 21 August 2022



hygiene adherence rate, γ, in order to model typical low com-
pliance (γ = 0.25), medium compliance (γ = 0.50), and high
compliance (γ = 0.75) settings, respectively (the compliance
rate of 50% is consistent with Temime et al [3] and other mea-
surements of hand hygiene adherence in healthcare settings
[6–8]). The parameters used in the model are shown in
Table 1.

Agent-Based Simulations
We modeled the spread of nosocomial pathogens using an
agent-based, discrete-event simulator of our own design that
replays individual HCW–HCW and HCW–patient contacts
and hand hygiene opportunities reconstructed from the data
collected in the MICU. We defined a hand hygiene opportuni-
ty as a HCW entering or leaving a patient room. Each simula-
tion uses contact data from 1 of 4 different representative
MICU work shifts (2 day shifts, 7 AM–7 PM, and 2 night shifts,
7 PM–7 AM). The 2 day shifts track 27 or 19 HCWs and 19 or
18 patient beds, respectively, whereas the 2 night shifts track
19 or 14 HCWs and 18 or 19 patient beds, respectively. Fewer
HCWs were tracked at night due to the lighter staffing levels
typical of these shifts. During each shift, the motes recorded
hundreds of thousands of messages. We discarded messages
that did not meet predeployment calibration criteria indicative
of close physical proximity (ie, low signal strength or asym-
metric reception).

Each simulation is characterized by a particular set of pa-
rameter values and replays one shift’s contact pattern 30 times
sequentially for a total of 360 synthetic MICU contact hours
(because privacy concerns preclude conserving identities
across shifts, replicating and concatenating a single shift is the
most natural means to extend the simulation over multiple
days). Moreover, because the simulations are nondeterministic,
each 360-hour simulation is replicated 1000 times (using ran-
domly chosen initial conditions), and aggregate results (eg,
means, medians) are reported.

Each replicate establishes a single, randomly selected infect-
ed patient and assigns each HCW a randomly selected compli-
ance rate, γi, from a normal distribution with mean μ = γ and

fixed standard deviation of σ = 0.10. Noncompliant HCWs are
assigned γi = 0. The simulator then replays the selected shift’s
events 30 times. If the event is a contact between 1 infected
and 1 uninfected individual, the infection is passed on with a
probability P. An infected individual remains infected for D
simulation periods unless an intervening hand hygiene oppor-
tunity results in an effective hand hygiene event, resetting the
HCW’s infection status to uninfected with probability γi × λ.
An environmental parameter, ɛ, similarly regulates whether an
uninfected HCW is infected by the environment between
patient interactions.

For each 12-hour work shift, we determined both the peri-
patetic, or most connected, (deidentified) HCWs and the least
connected (deidentified) HCWs (for comparison) based on
the number of unique patients visited during that shift. Each
simulation compares results for 7 distinct scenarios demon-
strating the impact of peripatetic HCWs on infection rates:

S1: All HCWs are equally compliant.
S2: The single least-connected HCW is noncompliant.
S3: The 2 least-connected HCWs are noncompliant.
S4: One randomly selected HCW is noncompliant.
S5: Two randomly selected HCWs are noncompliant.
S6: The single most-connected HCW is noncompliant.
S7: The 2 most-connected HCWs are noncompliant.

RESULTS

Existence of Peripatetic Healthcare Workers
Analysis of 48 hours (4 12-hour shifts) of University of Iowa
Hospitals and Clinics’ MICU HCW contact data displayed
heterogeneity in the number of contacts, number of distinct
contacts, duration of contacts, and contacts between different
categories of HCWs (eg, nurse–doctor contacts, nurse–nurse
contacts).

In a typical daytime shift, the average number of contacts
per HCW over a 12-hour period was 80.1 (median, 64;
k = 0.48), and for a typical nighttime shift, the average was
76.1 (median, 22; k = –1.34). But these contact distributions
vary significantly by individual shift (eg, day vs night) and
contact type (eg, HCW–HCW vs HCW–patient). Yet, for
nearly all of the shifts studied, the contact distributions were
distinctly heavy tailed— that is, a small number of HCWs
were responsible for a disproportionate share of the contacts
(ie, similar to power law distributions). This property is clearly
visible in the cumulative distribution functions for contact dis-
tributions (see Figure 1A and 1B). A similar property is noted
in the cumulative distribution functions for the duration of
these contacts (see Figure 1C and 1D). Healthcare workers
whose individual contacts fall into the tail are peripatetic
HCWs, given that increased diversity of contacts can only occur
if the HCW is traveling from place to place at a greater rate.

Table 1. Model Parameters

Symbol Definition Range

P Probability of transmission per 30
seconds of contact

0.0005–0.0050

D Duration of pathogen colonization
before treatment

10 days

λ Hand hygiene efficacy 0.58 (soap), 0.83
(rub)

γ Hand hygiene baseline
compliance

μ= 0.25, 0.50, 0.75
σ= 0.10

ɛ Environmental contamination
transmission rate

0.00–0.01
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Most contacts are of relatively short duration for both day
and night shifts, with only a few contacts being of very long
duration. In addition, most observed patterns were also
uniform across HCW types: for example, doctor–patient and
nurse–patient contacts were also heavy tailed, confirming that
peripatetic HCWs are not necessarily constrained to a single
type of HCW but exist in every HCW category.

Impact of Peripatetic Healthcare Workers on Infection Rates
Figure 2 shows the results obtained from simulations with a
medium baseline compliance (γ = 0.50), alcohol-based rub
(λ = 0.83), and no environmental contamination (ɛ = 0).
Each pair of plots shows mean and median values obtained

for each scenario over 1000 replicates as a function of trans-
missibility, P, for selected daytime and nighttime contact
patterns. The plots confirm that the scenarios assort as
expected in terms of infection outcomes; in other words,
noncompliant peripatetic HCWs serve as outsized amplifiers
of infection. These observations are consistent over the
whole range of simulations: when soap and water (λ = 0.58)
are used in lieu of alcohol-based rub (see Figure 3) or when
environmental contamination (ɛ = 0.05) is in play (see
Figure 4). They also are consistently true across both day and-
night shifts: although the magnitude of the effect may
differ, there is no discernible difference in the nature of
the effect.

Figure 1. Healthcare worker [HCW] contact cumulative distribution functions for typical day shift (A and C ) and night shift (B and D ). Plots A and B
describe the distribution of contacts observed over the course of a single shift. The distributions are fat tailed, with median values at about 50 contacts
per shift (day, A) and <50 contacts per shift (night, B) but with maximum contacts at much higher values for both shifts (third-quartile values of 111.50
for day shift and 167.50 for night shift). The larger horizontal separation of the healthcare worker–HCW curve and HCW–patient curve in (A and B)
reflects the difference between day shifts, where HCW–patient interactions are relatively more balanced, and night shifts, where the smaller number of
HCWs on duty are more likely to interact with each other than with most patients. Plots C and D describe the distribution of contact durations; these
are also fat tailed, with the median values in the 1-minute range. Notice that, although fewer in number, nighttime HCW–patient contacts (D) tend to
be longer in duration.

1552 • JID 2012:206 (15 November) • Hornbeck et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article/206/10/1549/857750 by guest on 21 August 2022



Results are reported as both average and median number of
patients infected over 1000 replicates because the distribution of
outcomes within replicates is quite skewed. More specifically,
when transmissibility is low, transmission does not occur in
many of the replicates, meaning that disease often does not
spread beyond the originally infected patient. In such cases, the
median values are more indicative of the expected behavior
because the mean values can be unduly influenced by just a few
replicates where the infection affects a large number of agents.

Comparing Figures 2 and 3 demonstrates the impact of im-
proving the effectiveness of hand hygiene. Less-effective hand
hygiene, represented here by the use of soap and water
(λ = 0.58; see Figure 3) rather than an alcohol-based solution
(λ = 0.83; see Figure 2), does increase the expected infection
count, as can be seen by the slight upward shift in the upper
panels of Figure 3 with respect to the upper panels of
Figure 2. A similar effect is noticeable in the lower panels,
where some of the median curves in Figure 3 are shifted

Figure 2. Aggregate infection counts for day-shift (A and C) and night-shift (B and D) simulations as a function of transmissibility. Each plot shows
the aggregate outcomes (means in A and B; corresponding medians in C and D) obtained over 1000 replicates of 360 hours of synthetic medical
intensive care unit contact hours for all 7 standard scenarios:S1 (all healthcare workers [HCWs] are equally compliant), S2 (the single least-connected
HCW is noncompliant), S3 (the 2 least-connected HCWs are noncompliant), S4 (1 randomly selected HCW is noncompliant), S5 (2 randomly selected
HCWs are noncompliant), S6 (the single most-connected HCW is noncompliant), and S7 (the 2 most-connected HCWs are noncompliant). The simula-
tions shown here correspond to a medium level baseline compliance (γ = 0.50) with alcohol-based rub (λ = 0.83) and no environmental contamination
(ɛ = 0). The lowest possible infection counts are obtained with full compliance—that is, every HCW, i, has hand hygiene compliance, γi, drawn from a
standard normal distribution (μ = γ; standard deviation = 0.1). When either 1 or 2 noncompliant HCWs are present, the best results are obtained when
the least peripatetic HCW(s) is/are noncompliant (γi = 0), and the worst results are obtained when the most peripatetic HCW(s) is/are noncompliant
(γi = 0); randomly selected noncompliant HCWs generally produce infection count results in between, although usually closer to the former. Comparing
means (A and B) with medians (C and D) confirms that outcome distributions are very skewed; very high infection counts in a few replicates tend to pull
mean values up, even if most replicates produce very low infection counts. Plotting medians makes clear, for example, that with low transmission
rates, the initial infection does not spread beyond the initially infected patient.
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slightly to the left and up with respect to the analogous curves
in Figure 2.

Comparing Figures 2 and 4 demonstrates the impact of en-
vironmental contamination. When an HCW leaves a patient’s
room and ɛ > 0, the HCW is colonized with the pathogen with
probability ɛ. Increasing levels of environmental contamina-
tion attenuate the positive impact of hand hygiene on infec-
tion counts, in effect shifting the curves in the upper plots
upward in Figure 4 with respect to Figure 2. Note, however,
that the effect of environmental contamination is independent
of the impact of noncompliant peripatetic HCWs; the curves
for scenarios S6 and S7 are always well above the other curves
in the upper plots of both Figures 2 and 4, although the lower
plots of Figure 4 do indicate, by virtue of their greater median
values with respect to Figure 2, that environmental contami-
nation increases the likelihood that an infection will spread

beyond the initial patient. These trends continue as the value
of ɛ increases, and similar effects are noted when comparing
analogous plots based on soap and water protocols (λ = 0.58).

The results reported here and the general observations that
accompany them are confirmed by similar plots for low and
high baseline compliance (γ = 0.25 and γ = 0.75). In every
case, who is not compliant with hand-hygiene practice is as
least as important as the average compliance rate. For
example, in every plot shown here, the infection count for sce-
nario S6 greatly exceeds the infection count for scenario S5.

DISCUSSION

Our results generated by a real contact network clearly dem-
onstrate the heterogeneous nature of HCW–HCW and HCW–

patient contact patterns and also show the importance of

Figure 3. Aggregate infection counts for day-shift (A and C ) and night-shift (B and D ) simulations as a function of transmissibility for all 7 standard
scenarios: S1 (all healthcare workers [HCWs] are equally compliant), S2 (the single least-connected HCW is noncompliant), S3 (the 2 least-connected
HCWs are noncompliant), S4 (1 randomly selected HCW is noncompliant), S5 (2 randomly selected HCWs are noncompliant), S6 (the single most-
connected HCW is noncompliant), and S7 (the 2 most-connected HCWs are noncompliant). The simulations shown here correspond to a medium level
baseline compliance (γ = 0.50) with soap and water washing (λ = 0.58) and no environmental contamination (ɛ = 0). The results are consistent with
those observed in Figure 2 for alcohol-based rub, with all 7 standard scenarios assorting as expected.
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considering this heterogeneity in order to understand the
spread of infections. Our findings have implications not only
for designing models to measure the potential impact of infec-
tion control measures but also for auditing HCW behavior as-
sociated with such measures.

Healthcare-associated infections are a notable cause of mor-
bidity and mortality and add greatly to the cost of healthcare
delivery [9, 10]. However, opportunities to learn about HAIs
are often limited to observing outbreaks. Furthermore, when
outbreaks occur, multiple interventions are applied contempo-
raneously, making it difficult to tease apart the impact of
individual interventions. For this reason, simulations based
on mathematical models represent an important tool for

improving our understanding of HAIs, and they represent a
useful approach to study the potential impact of interventions
because one can isolate the effects of a particular intervention.
Of course, the quality of a computational simulation is
bounded by the explicit and implicit assumptions of the model
as well as the accuracy and completeness of the underlying
data driving the simulation. For logistical and technical
reasons, the latter has historically been especially difficult, re-
sulting in either sampling or simplifying assumptions about
movement and interactions that may not accurately reflect
real-world practice. Fortunately, new technology, embodied by
our motes and similar wearable devices [11], can now be used
to accurately measure contact patterns in healthcare settings.

Figure 4. Aggregate infection counts for day-shift (A and C ) and night-shift (B and D ) simulations as a function of transmissibility for all 7 standard
scenarios: S1 (all healthcare workers [HCWs] are equally compliant), S2 (the single least-connected HCW is noncompliant), S3 (the 2 least-connected
HCWs are noncompliant), S4 (one randomly selected HCW is noncompliant), S5 (2 randomly selected HCWs are noncompliant), S6 (the single most-
connected HCW is noncompliant), and S7 (the 2 most-connected HCWs are noncompliant). The simulations shown here correspond to a medium level
baseline compliance (γ = 0.50) with alcohol-based rub (λ = 0.83) and some level of environmental contamination (ɛ = 0.05). As before, all 7 standard
scenarios assorting as expected, but here the mean (A and B) and median (C and D) plots are much less differentiated, reflecting the effect of
environmental contamination on infection rates even when hand hygiene compliance is relatively good. Even with low transmission rates, median
values are much higher (compare with Figure 2) for all 7 scenarios, reflecting the fact that the initial infection spreads beyond the initially infected
patient in a larger proportion of replicates.
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One standard assumption used in many infectious disease
models is to assume that populations mix randomly, essential-
ly assuming all individuals move and interact uniformly (ie,
the likelihood that any individual encounters any other indi-
vidual is uniform). This assumption ignores 4 important fea-
tures of human interactions in healthcare settings [1, 11]: (1)
the large variability of potential contacts between patients
and/or HCWs; (2) that any 2 individuals are connected by a
surprisingly small number of transmission steps; (3) the archi-
tectural (spatial) constraints; and (4) the nonuniform cluster-
ing of human social contacts. Because our simulations are
driven by extraordinarily complete and accurate contact track-
ing, we show that ignoring the inherent complexity of contact
patterns in real-world healthcare settings can lead to mislead-
ing simulation results.

In addition, our results also highlight how simulations can
be used to study the effectiveness of interventions to reduce
the spread of HAIs and how important it is to consider het-
erogeneity because many of these interventions depend upon
individual HCW behavior (eg, hand hygiene adherence, vacci-
nation choice, wearing gowns and gloves for patients in
contact isolation). Individual behavior is especially important
because a significant proportion of HCWs do not adhere to
infection control policies: indeed, hand hygiene rates <50%
are often reported [6–8]. These rates are routinely tracked by
infection control programs in an aggregate fashion [6, 12].
Our results suggest that aggregate rates may not reflect impor-
tant variations at the individual level. For example, a unit with
HCW hand hygiene rates approaching 90% may still have dif-
ficulties controlling the spread of infections if the noncompli-
ant HCWs happen to be unusually connected. Moreover,
although several studies demonstrate that improving hand
hygiene can decrease HAIs [13, 14], increasing hand hygiene
rates will not necessarily decrease infections [15]. Clearly
HCWs’ hands can harbor and transmit infectious agents to
patients [14, 16, 17]. However, our results, which are consis-
tent across a broad range of MICU work shifts (data not
shown) and hand hygiene compliance rates, suggest that the
measured effect of an intervention to improve hand hygiene
compliance may depend on the nature of the HCWs eventual-
ly engaged by the intervention.

The existence of peripatetic HCWs should also change the
way we collect information about hand hygiene and other
HCW behavior. For example, the use of hand hygiene product
has been proposed as a surrogate marker for hand hygiene
compliance [18], yet product usage is an aggregate measure
that is blind to the existence of peripatetic HCWs [3]. Note
that direct observation, if not carefully implemented, can also
fail to capture peripatetic effects.

Our study has several limitations. First, our simulations
define hand hygiene opportunities as “in room” or “out of
room”; these are easy for us to measure but fail to entirely

capture the World Health Organization 5 moments of hand
hygiene [19]. Second, there was a brief 20–40-minute period
between shifts during badge distribution where we did not
capture contacts or hand hygiene opportunities. However,
because the missing period corresponds to nursing report,
when there are relatively fewer patient contacts, the coherence
of our results was not unduly affected. Third, we did not dis-
tribute motes to HCWs who visited the unit to see patients in
the MICU (eg, consulting physicians); however, our technolo-
gy captured the overwhelming majority of HCW interactions,
especially because consulting physicians interact for very
limited periods of time with limited patients on the MICU.
Fourth, our study was done in a single unit in a single medical
center, and the results may not necessarily be generalizable to
other settings. Finally, the disease diffusion parameters used
in our study were largely obtained from the (very sparse) liter-
ature on objective measures of infectivity and transmissibility.
Yet despite these limitations, our results demonstrate, using
real data, the importance of considering HCW heterogeneity
in understanding how infections spread within an intensive
care unit.

Future modeling efforts should incorporate the kind of data
generated by our sensor motes. Because traditional approaches
to contact tracing are extremely labor intensive and often
prone to measurement errors (eg, recall bias [20]), our sensor
motes could also be used to estimate more accurate disease
parameters. Because this wireless approach does not require
any preexisting infrastructure and is therefore easy to deploy
(usually within minutes), it could ultimately be used to esti-
mate exposure to infectious patients and could thus be used to
augment traditional contact tracings during outbreak investi-
gations soon after an outbreak starts. For example, during an
outbreak, our motes (now small enough to be incorporated
into name badges) can be used to determine if HCWs came
within 3–6 feet of other HCWs wearing motes and how long
they spent in particular patient rooms. Indeed, the importance
of measuring contacts and estimating exposure risk was high-
lighted during the severe acute respiratory syndrome outbreak,
when it was not immediately clear if the disease was spread by
a droplet or airborne route [21, 22]. Thus, in addition to
informing mathematical models and infection control inter-
ventions, our mote-based approach could help assist with out-
break investigations.
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