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Using Series-Series Iwan-Type
Models for Understanding Joint
Dynamics
In mechanical assemblies, the energy loss induced by joints and interfaces can account
for a significant portion of the overall structural dissipation. This work considers the
dynamical behavior of an elastic rod on a frictional foundation as a model for the
dissipation introduced by micro-slip in mechanical joints. In a quasi-static loading limit,
the deformation of the rod and hence the frictional dissipation can be solved in closed
form. The resulting model is a continuum model of series arrangements of parallel
Jenkins elements. For a general class of normal load distributions, the resulting energy
loss per forcing cycle follows a power-law and is qualitatively similar to observed ex-
perimental findings. Finally, these results are compared with those obtained from a dis-
crete formulation of the rod including inertial effects. For loading conditions that are
consistent with mechanical joints, the numerical results from the discrete model are
consistent with the closed form predictions obtained in the quasistatic
limit. �DOI: 10.1115/1.1978918�
1 Introduction
In many structures of great engineering importance, such as air

frames or jet engines, the primary source of vibration damping is
often just the frictional damping of interfaces associated with me-
chanical joints. This damping is associated with slip in outer re-
gions of the contact patches and is known to be strongly ampli-
tude dependent �and hence nonlinear� �1,2�. These mechanisms
have traditionally been accommodated in structural dynamics only
indirectly. For instance, one may use a finite element code to
deduce modes and frequencies but then wait for data taken from a
prototype tested at amplitudes of interest to obtain nominal values
for modal damping coefficients.

As the need and expectation of predictive structural dynamics
simulation grows, the requirement of systematically accounting
for the role of joints in the structural response becomes more
urgent �3�. Unfortunately, the most direct method of accommodat-
ing joint mechanics into finite element analysis—meshing the
joint regions finely enough to capture any relevant micro-
mechanics �4,5�—proves to be impractical for large-scale struc-
tural systems because of the prohibitively small time steps re-
quired and/or matrix ill-conditioning that results from the attempt
to resolve the interfaces. A more practical approach is to devise
constitutive models for the overall behavior of individual joints
and to incorporate that constitutive response locally into the struc-
tural model. In the following we discuss a class of models that
captures important qualitative properties of mechanical joints in a
manner that can be integrated into conventional finite element
codes.

The qualitative behavior generally found for joints is illustrated
by two types of experiments. The first is a unidirectional lateral
pull test. At small loads, the force-displacement curve appears
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linear, though some amount of micro-slip in the interface does
take place. At larger loads, as slip increases, the curve begins to
level out and finally, at macro-slip the curve becomes flat. Of
course, if there is a bolt at the core of the joint, that bolt will
eventually come into shear and a new apparently linear portion of
the curve begins.

The second experiment that illustrates the core features of joint
response is a lap joint subject to small amplitude lateral oscillatory
loads. When energy dissipation per cycle is plotted against the
force amplitude on a log-log scale, the result is generally well-
approximated by a straight line, whose slope lies between 2.0 and
3.0 �6,7�. �It is interesting to note that Goodman pointed out forty
years ago that the Mindlin solution for spheres pressed together
and subject to similar small oscillatory loads predicts similar
power-law dissipation with a slope of 3 �8�.� Though the departure
of power-law slope of experimental values from the Goodman
value of 3.0 has often been ascribed to nonlinear material re-
sponse �2�, recent work �5� indicates that the slope may also de-
pend on geometric nonlinearities reflective of the geometry of the
joint.

This paper considers a simplified model for the prediction of
energy dissipation in mechanical joints and interfaces. The model
represents an elastic rod on a frictional foundation with time-
varying shear loads and spatially varying normal pressure. In the
quasi-static limit, these continuum equations are solved in closed
form to determine the force-displacement relationship and thereby
deriving an expression for the energy dissipation per cycle of
harmonic forcing. Finally, the continuum model is discretized and
the resulting n-dof model is studied for non-zero forcing fre-
quency and as the model order n varies.

Iwan Models. Iwan considered two permutations of a spring
and frictional damper—arranged in series and connected in paral-
lel, sometimes referred to as Jenkins elements �9,10� �see Fig. 1�.
The parallel element allows for changes in force with zero change
in displacement while the series element allows for changes in
displacement with zero force change. Moreover, researchers in-
cluding Iwan have considered both series and parallel collections
of each of these elements. This gives rise to four combinations:
series arrangements of parallel elements �series-parallel�, series-
series, parallel-parallel, and parallel-series. Of these, the most
well-known systems are parallel arrangements of series elements.
In this configuration, all spring stiffnesses are set to be identical,

the sliders are all connected to ground, and the left node is left
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free. Iwan’s parallel-series network has had some popularity, pri-
marily because of equations that Iwan presented to deduce model
parameters in terms of gross force-displacement behavior �11�. A
similar analysis has not been available for the series-parallel sys-
tem, and it has been generally assumed that the parallel-series
network is unique in having the useful relationships between
model parameters and gross behavior.

Iwan’s equations for the deduction of parameters for a parallel
network employs the force-displacement curve from monotonic
loading for the boundary of the system. We show in the following
that similarly useful relations can be obtained for another of the
four permutations of Iwan network types: the series-series net-
work. In the following, we do our best to derive equivalent ex-
pressions for the above-defined series-series system. In particular,
the series-series arrangement provides a straightforward point of
departure for considering the dynamical behavior of mechanical
joints. In this work we attempt to relate the characteristics of these
simplified models to experimentally observed behavior from me-
chanical lap joints as well as simulations based on a discrete
model for a rod on a frictional foundation.

Physical model. The physical model under consideration can be
described as a uniform elastic rod of length L held in place by a
frictional surface, as illustrated in Fig. 2. The continuum model
for this system can be written as

�
�2ũ

� t̃2
�x̃, t̃� − EA

�2ũ

� x̃2 �x̃, t̃� = G̃�x̃, t̃� , �1�

where ũ�x̃ , t̃� is the lateral displacement of the rod at location x̃

and time t̃ while EA is the rod stiffness. The function G̃�x̃ , t̃�
describes the force acting on the rod arising from friction. A Cou-
lomb model is used to describe friction and it is assumed that the
coefficient of friction does not vary over the interface. Also, no
distinction is made between static and kinetic coefficients of fric-
tion. More realistic interface models would necessarily consider
generalized descriptions of friction such as mesoscopic asperity
based models �12,13� and friction laws dependent on interfacial
variables, including slip rate �14�. The Amontons law of friction
can be uniquely specified in terms of two quantities: �N�x̃�, the
frictional intensity, and Geq�x̃ , t̃�, the value of the friction force that
would be required to maintain static equilibrium in a state of
sticking. With these, the friction force is described by

G̃�x̃, t̃�

=�− �N�x̃�sgn�u̇̃�x̃, t̃�� , u̇̃�x̃, t̃� � 0,

− min��G̃eq�x̃, t̃��,�N�x̃�� · sgn�G̃eq�x̃, t̃�� , u̇̃�x̃, t̃� = 0.

�2�

Fig. 1 Iwan elements

Fig. 2 Physical system. The rod slips over the interval 0Ï x̃
˜ ˜
<�„t….
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The frictional intensity �N�x̃� is the product of the magnitude
of the normal force and the coefficient of friction. Each of these
quantities can depend independently on the spatial position along
the rod. However, as they appear only in the combination � ·N, we
do not differentiate between the N�x̃� and ��x̃�. The function sgn
is the sign of nonzero arguments and zero if its argument is zero.

Finally, G̃eq�x̃ , t̃�, the force required to maintain sticking, is

G̃eq�x̃, t̃� = − EA
�2ũ

� x̃2 �x̃, t̃� �3�

This model is subject to a suitable initial state and a natural
boundary condition at x̃=0:

� ũ

� x̃
�0,t� =

F̃�t̃�
EA

, �4�

where positive values of F̃ imply the end of the bar is in tension.
We nondimensionalize this model through the transformations:

x̃ = L x, t̃ =��L2

EA
t, ũ = � L

EA	0

L

�N���d�
u ,

F̃ = �	
0

L

�N���d�
F , �5�

yielding the following equations:

�2u

�t2 �x,t� −
�2u

�x2 �x,t� = G�x,t�, x � �0,1� �6�

with:

G�x,t� = �− ��x�sgn�u̇�x,t�� , u̇�x,t� � 0,

− min��Geq�x,t��,��x��sgn�Geq�x,t�� , u̇�x,t� = 0,
�
�7�

where ��x� represents the frictional intensity and in terms of di-
mensional quantities:

��x� =
�N�L x�L

	
0

L

�N���d�

�8�

Finally, the boundary condition at x=0 can be written as

�u

�x
�0,t� = F�t� �9�

A few words concerning this nondimensionalization are in or-
der. The frictional intensity satisfies the constraint:

	
0

1

����d� = 1, �10�

which implies that the interface can support a maximum total
�nondimensional� friction force of one. Also, the nondimensional
length of the rod is now unity and time has been scaled by the
period required for a longitudinal wave to traverse the interface.
For typical applications, the joint is expected to extend over a very
small interval and therefore the corresponding frequency will be
much larger than typical frequencies associated with the forcing

F̃�t̃�. In terms of the nondimensional time t, the forcing frequen-
cies are expected to be much less than one. Consequently, in many
problems of interest the results do not depend on inertia, but the
presence of inertial terms stabilizes the numerical results. Like-
wise, the dimensional forcing amplitude has been scaled by the
force required to induce gross slip in the interface. Realistic am-
plitudes of the nondimensional forcing F are usually expected to

be much less than one for most structural problems.
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2 Continuum Results
A closed form solution to the continuum problem is unavailable

in terms of elementary functions due to the nonlinear form of the
interfacial friction, except for the case �=0, which we consider in
the following. Under nonzero external force with �F��1, there
exists an interval 0�x���t� over which the interface exhibits
slip. We further assume that for the non-slip region, that is, x
���t�, the displacement profile of the rod is specified. In particu-
lar the quantities:

u���t�,t�,
�u

�x
���t�,t� �11�

are known. Neglecting the inertial terms in the above-noted dif-
ferential equation, over the interval of slip the deformation of the
rod is described as

�2u

�x2 �x,t� = ��x� sgn�u̇�x,t�� , �12�

while the boundary condition at x=0 remains unchanged. Finally,
because of the quasi-static approximation �and sign conventions�
the velocity of slip has sign opposite to the term Ḟ, that is:

sgn�u̇�0,t�� = sgn�− Ḟ�t�� � ��t� �13�

It is worth noting that this model is closely related to the Menq
model �15,16�, which generalizes the frictional interface consid-
ered here to an elastoplastic shear layer at the interface. However,
the present model incorporates spatial variations in the frictional
intensity, whereas the Menq model considers only uniform pres-
sure.

2.1 General Response. We consider general loading condi-
tions applied at x=0. Integration of the governing equation and
application of the boundary conditions yields

�u

�x
�x,t� = F�t� + ��t�	

0

x

��s�ds , �14a�

u�x,t� = u���t�,t� − F�t����t� − x� − ��t�	
x

��t� 	
0

s

����d� ds .

�14b�

The integral of ��x� will appear throughout the following
analysis. Therefore to simplify the resulting expressions we iden-
tify

	
0

x

����d� � 	�x� , �15�

and we note that 	�0�=0. In addition, because of the nondimen-
sionalization 	�1�=1 �see Eq. �10��. Physically, 	�x� represents
the total frictional loading over the interval �0,x�, provided the
interval is uniformly slipping. Therefore the above-noted solutions
are written as

�u

�x
�x,t� = F�t� + ��t�	�x� , �16a�

u�x,t� = u���t�,t� − F�t����t� − x� − ��t�	
x

��t�

	�s�ds .

�16b�
Evaluating Eq. �16a� at x=��t�, we find
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�u

�x
���t�,t� = F�t� + ��t�	���t�� , �17�

and evaluating Eq. �16b� at x=0, the displacement at the end of
the rod is seen to be

u�0,t� = u���t�,t� − F�t���t� − ��t�	
0

��t�

	�s�ds �18�

Moreover, the gradient of this terminal displacement with respect
to the external load is simply:

d

dF�t�
�u�0,t�� = − ��t� �19�

2.2 Unidirectional Loading.

2.2.1 Slip Zone. On unidirectional loading from an initially
undeformed state, we anticipate a region of slip of length �1�t�, in
which the deformation gradient at x=0 reflects the external force
F�t�= f1�t�. �In the following description the subscript “1” indi-
cates the initial loading into the undeformed material.� At the
other end of the slip region, the displacement is zero. Also, be-
cause the right-hand side abuts an undeformed domain, the force
there must be zero also. Therefore:

�u1

�x
�0,t� = f1�t�, u1��1,t� = 0,

�u1

�x
��1,t� = 0, �20�

where u1�x , t� is the displacement field resulting from the applica-
tion of F�t�= f1�t�.

Applying these boundary conditions we find

f1�t� = − �1�t�	��1�t�� , �21�

and the displacement at x=0 may be reduced to

u1�0,t� = �1�t�
�1�t�	��1�t�� −	
0

�1�t�

	�s�ds� �22�

with �1�t�=sgn�− ḟ1�t��.
As in Iwan’s original work, we may relate the force-

displacement curve to the model parameters, in this case the dis-
tribution of the normal force over the interface. Making repeated
use of the chain rule for differentiation, we obtain

d

df1�t�
�u1�0,t�� = − �1�t� , �23�

as above, and differentiating again, using the definition of 	�x�:

d2

df1
2�u1�0,t�� =

1

���1�t��
�24�

Knowledge of the force-displacement curve generated by unidi-
rectional loading into undeformed material can be used to identify
the tangential tractions acting at the interface. In practice, Eq. �24�
typically yields reliable estimates for � only for large arguments
since �2u1 /�f1

2 is hard to evaluate meaningfully for small
argument.

2.2.2 Power-Law Scalings of Dissipation. Say in the vicinity
of x=0, the frictional intensity can be described as ��x�= �

+1�x
, or equivalently:

	�x� = x�, �25�

with 
=�−1. The solution to Eq. �16�, subject to unidirectional
loading is

�u1 �x,t� = f1�t�
1 − � x 
�� , �26a�

�x �1�t�
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ud
u1�x,t� = f1�t��1�t�
 1

� + 1
�1 − � x

�1�t�

�+1
 − �1 −

x

�1�t�

� ,

�26b�

with

�1�t� = ��f1�t���1/� �27�

Consequently, the deformation of the rod can be written as

u1�0,t� =
�

� + 1
f1�t��f1�t��1/� �28�

�The above presented equations apply equally for tensile loading
on the free surface.�

We now observe that the energy dissipation D due to small
oscillatory loads is four times the dissipation due to a single
monotonic loading of the same amplitude:

D = 4	
0

�1�t�

u1�x,t���x�dx =
4�

�� + 1��2� + 1�
f1�t�2+1/�. �29�

This last result is very interesting. If we associate the frictional
intensity ��x� with the normal traction in contact and recall that in
Hertzian contact the normal traction goes as �x, then we set �
=3/2. In that case, the dissipation goes as f1

8/3, which is reason-
ably close to the experimental values.

2.3 Cyclic Loading. Say that after we have pushed the rod by
a force F�t�= f1

* to obtain slip out to a length �1
*, we then reduce

the applied load, indicated as F�t�= f2�t�. Reduction of the loading
induces a new slip zone initiating at the free end of the rod. Notice
that from Eq. �19�, at the instant of this reversal the stiffness of the
rod is infinite. Labeling the length of that new slip zone as �2�t�,
within that slip zone, the governing equation remains unchanged.
However, �2=−�1

* and the relevant boundary conditions for the
deformation gradients become

�u2

�x
�0,t� = f2, �30a�

�u2

�x
��2�t�,t� =

�u1
*

�x
��2�t�� = f1

* + �1
*	��2�t�� , �30b�

where u1
*�x� represents the deformation profile of the rod at the

point of reversal. The length �2�t� of the new slip zone can be
found from Eq. �16a� subject to the above-noted boundary condi-

Fig. 3 Force-displacement curve. Th
displacement curve generated from
„28…‡. In each panel the loading amplit
tions, from which one finds
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f2�t� + �2	��2�t�� = f1
* + �1

*	��2�t�� �31�

Therefore, solving for the length of the new slip zone:

�2�t� = 	−1� f1
* − f2�t�

2�2

 , �32�

provided of course that �2�t���1
*. Recalling Eq. �19�, the force-

displacement curve can be determined to be

	
f1
*

f2�t� �du�0,t�
df�t�

= − 	−1� f1
* − f2�t�

2�2

�df2�t� , �33�

�u�0,t�� f2�t� = �u�0,t�� f1
* −	

f1
*

f2�t�

	−1� f1
* − f2�t�

2�2

df2�t� . �34�

For our power-law representation of the frictional intensity, we
find

�2�t� = � f1
* − f2�t�

2�2

1/�

, �35�

and therefore the force-displacement curve takes the form

�u�0,t�� f2�t� = �u�0,t�� f1
* −

2�

� + 1
�1

*� f1
* − f2�t�

2�2

1+1/�

. �36�

Over a harmonic cycle of loading, we obtain hysteresis curves as
illustrated in Fig. 3 for �=1.00 and �=1.50. In addition, the
above-presented description of the force-displacement curve can
be applied to more general loading conditions.

2.4 Relationship With Parallel-Series Models. We briefly
review the force-displacement response of parallel-series system.
Iwan showed ��10,11�� that for a parallel-series system �con-
tinuum of series elements in parallel� all having the same spring
stiffness k, but a distribution �̃��̃� of sliders of strength �̃, the
instantaneous force-displacement relationship is

F̃�ũ�t�� = k	
0




�̃��̃��ũ�t� − x̃�̃�t��d�̃ , �37�

where ũ�t� is the imposed extension and x̃�̃�t� is the displacement

of sliders of strength �̃ at time t.
The break-free force of the system is that which can cause gross

dashed curve represents the force-
ding into undeformed material †Eq.

e is 0.30.
e
loa
slip to occur:
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�̄ =	
0




�̃�̃��̃�d�̃ �38�

Equation �37� is nondimensionalized by dividing both sides by
break-free force �̃ and scaling the displacements by �̃ /k:

F�u�t�� =	
0




�����u�t� − x��t��d� , �39�

where �= �̃ / �̄ and ����= �̄�̃��̄��. Note that the above also nor-
malized �:

	
0




� ����d� = 1, �40�

implying that gross slip occurs at an applied load of F=1.
As in the previous analysis, as this Iwan system is loaded from

the underformed state, the slider displacements can be deduced to
be as follows:

x��t� = u�t� − � for all � � �u�t�� , �41�

and

x��t� = 0 for all � � �u�t�� �42�

At this initial state we now break the above-presented force inte-
gral into two parts:

F�t� =	
0

u�t�

� ����d� + Kuu�t� , �43�

where

Ku =	
u�t�




����d� �44�

The quantity Ku represents the elastic stiffness arising from those
elements which do not undergo slip during this loading.

Having achieved a displacement u* with a force F*, we now
consider the force response as the system is reversed. For each
spring-slider unit, characterized by the value of �, the response is
initially elastic as u�t� withdraws from u*to u*−2� Sliding takes
place as u�t� further reduces from u*−2�. We can use the above
observation to identify those Jenkins elements that are sliding as
the system reaches a value of u�t�. This causes us to further divide
Eq. �39�:

F�u�t�� =	
0

�u*−u�t��/2

� ����d� +	
�u*−u�t��/2

u*

�u�t� − �u*

− �������d� + Ku*u�t� . �45�

With the above-presented definition of F* �Eq. �43��, this can be

written as
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F�u�t�� − F* = − 2	
0

�u*−u�t��/2

� ����d� + �u�t� − u*�
Ku*

+	
�u*−u�t��/2

u*

����d�� �46a�

=− 2	
0

�u*−u�t��/2

� ����d� + �u�t� − u*�
K0

−	
0

�u*−u�t��/2

����d�� �46b�

Selecting ����= �2+���� for small values of �, to provide
power-law dissipation at low forces, Eq. �46b� becomes

F�u�t�� − F* =
2

1 + �
�u* − u�t�

2

2+�

− K0�u* − u�t�� �47�

Subtracting off the elastic term, this expression is similar to the
force-displacement curve derived form the series-series con-
tinuum model, given in Eq. �36�. In addition, the frictional dissi-
pation per forcing cycle may be expressed as

D =
4

�1 + ���3 + ��
�u*�3+� �48�

As discussed in Segalman �11�, in the micro-slip regime the gross
displacement of the Iwan system is dominated by the elastic re-
sponse, so that u*�F*. Therefore, comparing this equation for the
parallel-series model with the equivalent expression for the con-
tinuum rod, given in Eq. �29�, we find that the exponents of the
distributions can be related as

� =
1

�
− 1, � =

1

1 + �

Therefore, either the series-series or the parallel-series formula-
tion may be used to generate power-law dissipation scalings aris-
ing from micro-slip. Segalman constructed a parallel-series Iwan
model to have this power-law behavior at low and medium am-
plitude loads and other desirable properties at high loads �17�.

3 Discrete Formulation
Although the above-described quasi-static continuum model

can in principle be solved in closed form for arbitrary load histo-
ries, the requirement of keeping track of the slip reversal location
can be cumbersome. This issue is obviated by considering the
corresponding discrete series of Jenkins elements. The direct so-
lution of the resulting nonlinear algebraic equations is notoriously
awkward. We have chosen to regularize the problem by returning
the intertial terms and solving a differential problem in time. Thus
we are led to consider an n-degree-of-freedom discrete approxi-
mation to the continuum model given in Eq. �6� as shown in Fig.
4. The quasi-static result is recovered in the limit of forcing fre-
quencies much less than one �the characteristic frequency of the

Fig. 4 Discrete model
system�. This finite degree-of-freedom system corresponds to an
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n-element series-series Iwan model. The discretization is obtained
by a collocation method with quadratic comparison functions and
in the following, the displacements are represented as

ui�t� = u�xi,t� with xi =
i

n
�i −

1

2

, i = 1,…,n �49�

With this, the discrete equations of motion become

1

n
ü1 + n�u1 − u2� =

G1

n
− F�t� ,

1

n
ü2 + n�− u1 + 2u2 − u3� =

G2

n
,

]

1

n
üj + n�− uj−1 + 2uj − uj+1� =

Gj

n
,

]

1

n
ün + n�−

4

3
un−1 + 4un
 =

Gn

n
,

�50�

The description of the friction force Gi follows from the con-
tinuum model, i.e.,

Gi�t� = �− �isgn�u̇�t�� , u̇i�t� � 0,

− min��Gi
eq�t��,�i�sgn�Gi

eq�t�� , u̇i�t� = 0,
� �51�

where �i=��xi� and Gi
eq represents the force required to maintain

static equilibrium on the i-th element. In particular, G1
eq reduces to

G1
eq = n2�u1 − u2� + nF�t� , �52�

so that in this discrete model, the boundary �i=1� element cannot
support an equilibrium state if

��u1 − u2� +
F�t�

n
� �

�1

n2 , �53�

and in the undeformed configuration �ui=0� the boundary element
begins to slip if F�t���1 /n. As n increases, the minimum force
necessary to induce initial slip decreases to zero. A similar model
was considered in �18�.

Our focus in this work is to characterize the effect of distributed
friction, as represented by the number of discrete masses in the

Fig. 5 Interfacial behavior with n=64„�=0.25
according to the slip velocity—for the lightes
>v0

2 /n. The velocity of the darkest points is v

velocity is in the same direction as that of the en
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model, on the dynamic response of the interface as well as the
energy dissipated by the frictional forces. To accomplish this, we
investigate the response of the above-presented systems to exter-
nal forces of the form:

F�t� = 
 sin���, � = �t + ��0� �54�

and over one complete forcing cycle, � varies over 2 � regardless
of the forcing frequency. The following numerical investigations
are restricted to 0���1 and 0�
�1, which correspond to
physically common values of these nondimensional parameters.
The results shown in the following are often represented as a
function of � rather than time. Finally, the instantaneous �nondi-
mensional� power dissipated by the frictional forces can be ex-
pressed as

Ploss�t� =
1

n�
i=1

n

Gi�t�u̇i�t� , �55�

while the frictional work is calculated as the integral of this power
over time.

The numerical results were obtained using a fourth-order
Runge-Kutta method, with an integration step size of �t
=0.001/n. Coulomb friction is incorporated through a regularized
model proposed by Quinn �19�. To verify the accuracy of the
results, the step size was reduced by a factor of 100 and the
resulting simulated behavior showed no qualitative change �Fig.
4�.

In Fig. 5�a� the dynamical behavior of the joint is shown for
�=0.25,
=0.25, and n=64. In the figure the displacement of
each element is traced versus �, where the leftmost curve repre-
sents the terminal end of the chain �to which the forcing is ap-
plied�. The asymptotic response is shown for one forcing cycle;
the transient behavior �not shown� was removed by integrating
over five forcing cycles before showing the results. Although this
external load is one-quarter of that expected to initiate slip in the
1-dof model, a slip zone is seen at the end of the chain. However,
only the 25 elements nearest the boundary of the rod experience
slip—the majority of the joint remains stationary throughout the
forcing cycle. In addition, the evolution of the slip interface is
consistent with that predicted from the quasi-static continuum
model described in the previous section.

=0.25…. The displacements have been marked
oints �u̇i�>v0 and for the darker points v0> �u̇i�
> �u̇i�, with v0=2�„�t…=7.8125Ã10−6. The slip
,�
t p
0
2 /n
d of the interface.
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The power dissipated by the frictional forces is sensitive to the
number of elements in the model. In Fig. 6 the power dissipated is
shown over one cycle of motion for n=8, 16, 64, and 256. In the
simulation the rod was initially at rest in an undeformed state, and
then integrated for five cycles of the external forcing to remove
the transient behavior before generating the observed figures. As
the number of elements is decreased, the trace of the power dis-
sipated becomes less smooth. For n=256 the trace of the instan-
taneous power dissipation is relatively smooth, while as the de-
gree of freedom is decreased to n=8, power is dissipated in
relatively short, large amplitude bursts, indicating significant
stick-slip motions.

Surprisingly, the total work done per unit cycle is rather insen-
sitive to the number of elements, provided a sufficient number are
chosen to admit a time-dependent state, i.e., n�1/
. In Fig. 7 the
frictional work per unit cycle is shown as the number of elements

Fig. 6 Power dissipated over one
=0.25…

Fig. 7 Frictional dissipation per unit cycle as n varies „�

=0.25,�=0.25…
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varies from n=2 to n=32. As n increases beyond 32, the work
remains fairly constant. For example, at n=32, the work is found
to be W=−0.015233 while as n is increased to 256, the frictional
work becomes W=−0.015070, which represents a 1.1% change
for an eightfold increase in model size. Moreover, the dissipation
predicted by the quasi-static continuum model is W=−0.014882
�see Eq. �29��.

In contrast to variations in n, the work done by the frictional
forces is strongly dependent on 
. In Fig. 8�a�, the frictional work
is shown as 
 is varied, holding �=0.25 and n=256 fixed. As
illustrated in the figure, the dissipation is well-represented by a
power law and for this simulation the slope of this curve is ap-
proximately m=2.672. The numerical value closely approximates
the predicted value of m=8/3 obtained from the quasi-static con-
tinuum model.

The work done by frictional forces can also be evaluated as the
forcing frequency varies. In Fig. 8�b� both n and 
 are held fixed
while 0.01���0.25. Although some dependence on � is seen
�m=0.002�, it is slight compared with the variation seen in W as 

is varied. This implies that for forcing frequencies much less than
the lowest characteristic frequency of the joint, the dissipation
predicted by the quasi-static continuum model closely approxi-
mates the response predicted by the model with inertia. Moreover,
the dissipation predicted by the discrete model rapidly approaches
that of the quasi-static continuum model as the number of
degrees-of-freedom �n� increases, provided that n is sufficient to
resolve the slipping at the free end of the chain.

4 Discussion and Conclusions
We have considered an elastic rod sliding on a frictional surface

subject to an external force across the structure. When the rod is
assumed massless, the continuum partial differential equations can
be solved exactly, based only on the amplitude of external force
across the rod. This solution can then be used to predict the fric-

teady-state cycle, t=��„�=0.25,�
s
tional dissipation and generate force-displacement curves for
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comparison with experimental data. When mass is included, the
partial differential equations are discretized to develop a finite
degree-of-freedom model.

The above-noted system is appropriate for the modeling of dis-
sipation induced by mechanical joints, provided the forcing am-
plitude and frequency are limited. If the degrees-of-freedom of the
discrete model is sufficiently large �roughly twice the value nec-
essary to allow for micro-slip, c f., Eq. �53��, the predictions of the
massless continuum model agree with those of the discrete formu-
lation for the frictional dissipation per unit cycle. Moreover, in
both formulations the dissipation per cycle is seen to depend sen-
sitively on the distribution of the normal load over the rod, while
for the parameter ranges applicable to joint dynamics it is insen-
sitive to the frequency of the external loading.

Finally, this model yields power-law behavior in the dissipation
per forcing cycle. Specifically, if the normal traction varies as x


near the free edge of the rod, then the frictional dissipation per
cycle scales with the forcing amplitude to a power of �3
+2
� / �1+
�. As a special case, if the normal traction follows a
Hertzian distribution, so that 
=1/2, the dissipation per cycle
scales with the forcing amplitude to the 8/3 power which is simi-
lar to experimentally observed results �6,7�. These results indicate
that the model under consideration is a reasonable first step to-
ward the development of physically based reduced-order models
for the incorporation of interfaced-induced dissipation in larger
structural models.
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