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Abstract 

In groupware, users must communicate about their intentions and maintain common knowledge via communi-

cation channels that are explicitly designed into the system. Depending upon the task, generic communication 

tools like chat or a shared whiteboard may not be sufficient to support effective coordination. We have previ-

ously reported on a methodology that helps the designer develop task specific communication tools, called co-

ordinating representations, for groupware systems. Coordinating representations lend structure and persistence 

to coordinating information. We have shown that coordinating representations are readily adopted by a user 

population, reduce coordination errors, and improve performance in a domain task. 

As we show in this article, coordinating representations present a unique opportunity to acquire user informa-

tion in collaborative, user-adapted systems. Because coordinating representations support the exchange of co-

ordinating information, they offer a window onto task and coordination-specific knowledge that is shared by 

users. Because they add structure to communication, the information that passes through them can be easily 

exploited by adaptive technology.  This approach provides a simple technique for acquiring user knowledge in 

collaborative, user-adapted systems. 

We document our application of this approach to an existing groupware system. Several empirical results are 
provided. First, we show how information that is made available by a coordinating representation can be used 
to infer user intentions. We also show how this information can be used to mine free text chat for intent infor-
mation, and show that this information further enhances intent inference. Empirical data shows that an auto-
matic plan generation component, which is driven by information from a coordinating representation, reduces 
coordination errors and cognitive effort for its users.  Finally, our methodology is summarized, and we present 
a framework for comparing our approach to other strategies for user knowledge acquisition in adaptive sys-
tems. 
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1 Introduction 

Acquiring enough run-time information about the user to provide intelligent support is a central issue in 

building any adaptive system (Fischer, 2001; Jameson, 2002; St. Amant & Young, 2001). To tutor a stu-

dent, a system needs to know the student’s strengths and weaknesses; to offer context sensitive help, it 

needs to know what the user wants to accomplish; to help find relevant content, it needs to know the 

user’s interests. For a collaborative system to adapt to its users’ needs, it must have information that is 

relevant to collaboration – information like the users’ shared goals, common knowledge, or roles. 

A major hurdle in the design of a user knowledge acquisition strategy is how to encourage the user to 

furnish the information that the system needs without impairing the overall usability of the system.  

There are numerous approaches to the problem. Mixed initiative systems (e.g. Maes, 1994; Horvitz, 

1999) often obtain information through agents that engage the user to jointly solve a domain task (e.g. 

TRAINS, Ferguson, et al., 1996; LUMIERE, Horvitz, et. al., 1998; COLLAGEN, Rich & Sidner, 1998). 

Intelligent tutorial systems exploit the information gained during the testing process to derive models of 

students (e.g., Anderson, et. al., 1995).  Multi-modal systems (e.g., Bosma & Andre, 2004) and affective 

interfaces (e.g., Kaiser, E., 2005) integrate other sources of information, like gestures and biometrics, to 

enhance the information available to a back-end inference process. 

In groupware systems, much of the information required to drive intelligent support is already available 

in the communication that goes on between coordinating users (see Alterman, 2000). Unfortunately, 

most user communication occurs via unstructured channels such as chat or message boards, making it 

difficult for the system to extract the necessary information. One solution is to enlist a human actor as 

interpreter for the system; for example, in the COPPER system (Read, et. al.; 2006) a student tutor 

evaluates a group process and provides this information in a form the system can use. The student tutor 

performs the group evaluation as part of her role and the system provides support for the activity.   

However, it is not always possible to co-opt an individual’s existing domain task to furnish the adaptive 

component with the structured information it needs at runtime. In these cases it may be possible is to add 

more highly structured communication channels to the system (e.g. Malone, et. al, 1996; Soller, 2004).  

The structured information generated by collaborators when using these channels can be leveraged to 

populate user models and adapt the system. For instance, McLaren et al. (2006) show how students’ use 

of a domain specific structure (Petri-nets or UML diagrams) can be used to infer metrics of group effec-

tiveness.  Similarly, Suebnukarn & Haddawy (2006) show how the collaborative use of a graph based 

interface tool can be mapped directly into the system’s Bayesian Network based model of each student’s 

conceptual knowledge. In both of these systems, interface structure is leveraged to simplify a back-end 

adaptive process. 

Identifying the right kind of structure to introduce at the interface is a hard design problem. Care must 

be taken not to impair the users’ ability to communicate with one another or perform their domain tasks, 

and there is no guarantee that the structure which is introduced will provide the system with the runtime 

information it needs. In this article, we describe a method for introducing structure that people will use, 

that helps them stay coordinated, and at the same time provides useful information to the adaptive sys-

tem. The method hinges upon the development of task specific communication tools that support the ex-

change of structured information relevant to coordination. Because these artifacts add structure to com-

munication, the information that passes through them can be easily exploited by runtime algorithms. Be-

cause the information is relevant to coordination in the task domain, it will be useful for domain-specific 
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intent inference. Here, we present a series of case studies demonstrating the approach in a testbed 

groupware environment. 

1.1 Coordinating Representations 

There is a rich body of ethnographic research that describes how people design and use structured arti-

facts to support specific and complex coordination as part of an established work practice (Suchman & 

Trigg, 1991; Goodwin & Goodwin, 1996; Hutchins, 1995; Schmidt & Simone, 1996).  These kinds of 

artifacts have several common properties. They are external representations that address recurring prob-

lems of coordination within a community. They make it easier for individuals to align their private 

views of the world. There is a protocol that describes their typical use within a particular community of 

practice. Following Suchman & Trigg (1991), we refer to these kinds of artifacts as coordinating repre-

sentations (CRs) (Alterman, et al., 2001).  

There are many examples of CRs in everyday life. The stop sign is a CR that helps people to coordinate 

their behaviors at an intersection.  The arrivals and departures board at a train station supports coordina-

tion between many people and the operators of a railway terminal.  The grocery list on the wall in the 

kitchen helps a couple coordinate the activity of supplying a household.  The stock market “ticker” helps 

millions of people coordinate their market activities. 

There are also many examples of CRs that have evolved over time to support specialized communities.  

For instance, the complex sheet in an airport setting is an example of a paper-based coordinating repre-

sentation that helps coordinate transfers of baggage and people between gates in an airport during “com-

plexes” (Suchman & Trigg, 1991).  Complexes are pre-scheduled periods of time during which all gates 

fill with incoming planes, transfers are made, and then all planes depart.   As shown in Figure 1, the 

complex sheet is a matrix mapping incoming to outgoing planes, and cells in the matrix are used to indi-

cate the transfer of people or baggage. Planes are ordered chronologically along both axes, so completed 

transfers are checked off diagonally downward and to the right across the cells of the matrix. 

 
Figure 1: The complex sheet (Suchman & Trigg, 1991) 

As computers have become common in work settings, computer-based coordinating representations 

have been developed. The bug-report form is a CR that is used by software engineers to structure and 
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monitor the progress of a software engineering process. Shared calendars, call tracking databases, and 

inter-office wikis are all examples of general CRs that can be used to share information and improve co-

ordination within a multi-user environment.  

When CRs are introduced directly into a system's communication channels, we are able to enhance co-

ordination both via the intrinsic usefulness of the CRs and also by gathering information that a group-

ware system can then use to provide intelligent support.  This article discusses evidence of such ex-

panded utility in one system and describes a methodology that can be applied to develop adaptive com-

ponents in other groupware systems.  

1.2 Organization of the argument  

This work primarily concerned with how to acquire knowledge about users and their at runtime context 

to drive intelligent algorithms, without creating unnecessary or undesirable work for the users.  The so-

lution proposed is to modify the representational properties of the software system so as to both improve 

user coordination and gain access to the necessary runtime information.  Hence, a single design solution 

is used to improve the system from the users’ perspective, and from the perspective of the adaptive com-

ponent designer.   

To serve as a roadmap, an outline of the argument is provided here as a series of questions and answers. 

1. Question: How can adaptive support be added to a groupware system? 

Answer: We infer users’ intentions. 

2. Question: Where can the run-time user information required for intent inference be obtained? 

Answer: This information is available in unstructured communication channels, but because it is 

unstructured it is difficult to access. 

3. Question: How can this information be transformed so as to make it available to the system? 

Answer: By introducing a structured communication channel in the form of a coordinating rep-

resentation. 

4. Question: If users are provided with this more highly structured communication channel, will 

they use it? 

Answer: Yes, because the structure that is provided by the coordinating representation makes it 

easier for users to exchange some kinds of information.  

5. Question: Can a coordinating representation be developed that does not impair user perform-

ance? 

Answer: Yes; in fact, CRs improve domain performance. 

6. Question: Is the information that becomes available via the use of the CR useful for intent infer-

ence? 

Answer: Yes, because it offers a window onto task and coordination-specific knowledge that is 

shared by users, and this knowledge is highly structured. 

The results from case studies will be presented that confirm the answers to the above questions, demon-

strating that: 

1. Users choose to use the coordinating representation over chat to exchange some kinds of infor-

mation (Section 4.1) 

2. Using the coordinating representation helps users perform their task better. (Section 4.1) 
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3. The information provided by the coordinating representation enables intent inference with good 

accuracy. (Section 4.2) 

4. An adaptive component that is driven by the information made available is heavily used, im-

proves performance in the domain task, and reduces cognitive effort. (Section 5) 

The article proceeds as follows. First, the domain, groupware platform, and associated intent inference 

technique are presented. Some of the representational deficiencies of the groupware system are then de-

scribed; first from the perspective of the user, and then from the perspective of the developer of an adap-

tive component.  It is then shown how a CR addresses these problems. Empirical data is presented that 

demonstrates how the CR benefits the users, and how information derived from its use improves intent 

inference. An adaptive component that uses information from the CR is described, and further empirical 

data confirming the utility of the adaptive component is presented. After a summary of the overall meth-

odology, we provide a framework for comparing this methodology to other approaches to building adap-

tive systems. The article concludes with some final thoughts about the generality of the approach and 

future work. 

2 VesselWorld 

The experimental platform used in these studies is a groupware system called VesselWorld, in which 

three participants collaborate to remove toxic waste from a harbor. VesselWorld was demonstrated at 

CSCW 2000 (Landsman, et al., 2001). The platform was designed with the goal of studying the coordi-

nation problems commonly faced by groupware users. The domain task requires varying degrees and 

types of coordination, collaborators have different roles and responsibilities, and coordinating informa-

tion is exchanged via a chat window. These features are highly relevant to the study of groupware sys-

tems in general. VesselWorld proved to be very challenging for its users; in our case studies, we found 

that the performance of a given user group usually did not stabilize until after roughly seven hours of use 

(including a two-hour training session). 
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Figure 2: The VesselWorld system 

VesselWorld presents a relaxed WYSIWIS environment, shown in Figure 2, in which three participants 

play the role of ship’s captains, and their joint goal is to remove toxic waste barrels from a harbor with-

out spillage. The main interface (“World View” in the figure) is a shared map; the x (increasing to the 

west) and y-axes (increasing to the north) indicate latitude and longitude respectively. Users are pro-

vided a private “marker” facility so that they may annotate the world view with pertinent information 

(see the “Marker” in the figure). Each ship can only “see” a small radius around its current location (the 

darker circle marked “Visible Range” in the figure), so each user has different directly observable do-

main information; hence users must communicate to maintain shared information about wastes in the 

environment. Communication may occur at any point, but all communication occurs through a text-

based chat window that is part of the system (“Chat Window” in the figure). VesselWorld logs complete 

interaction data that can be used to replay user activity. This later feature is discussed further in Section 

 6. 

The progression of a VesselWorld session is turn-based, such that every user must submit a single step 

to the server before it evaluates them and updates the world on each client screen. Users may plan any 

number of steps in advance, although each step can only involve objects that are currently visible. Plans 
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can be managed (steps may be deleted or plans reset) via a separate planning window (“Planning Win-

dow” in the figure). Users’ plans are not visible to each other, again requiring explicit communication to 

manage coordinated plans.  

A VesselWorld session is complete when all toxic waste barrels have been moved to a large barge, 

which has a fixed position and unlimited capacity. Each ship has a different role in this process. Two of 

the ships have cranes that can be used to lift toxic waste barrels from the harbor and load them onto a 

barge. The third user is a tugboat that can be used to drag small barges (which have limited capacity) 

from one place to another.  The crane operators can load multiple wastes onto the small barge, and at 

least one of them must also be present to unload the barrels and place them on the large barge. For nota-

tional convenience, we will occasionally refer to the crane operators as “cranes,” the tugboat operator as 

the “tug,” and toxic waste barrels as toxic wastes or simply wastes. 

Wastes are of different types and require different coordination strategies to be removed from the har-

bor. A single crane may lift a small or medium waste, but two cranes must join together to lift and carry 

a large waste, and an extra large waste may be jointly lifted but can only be carried on a small barge by 

the tug. Wastes may require specialized equipment to be moved, and the cranes carry different types of 

equipment. The tug is the only actor who can determine the type of equipment a waste requires. 

The users are scored by a function that takes into account the number of barrels cleared, the number of 

steps this took, the number of errors (dropped waste barrels) made, and the difficulty of the problem. In 

all user studies, the users were instructed to try to maximize their score.  

2.1 Intent Inference in VesselWorld 

Planning in VesselWorld is a laborious and error prone operation (Alterman, et al., 2001). User errors 

often occur because of forgotten plan steps or joint plans that have become unsynchronized. We sought 

to develop an automatic plan generation tool to address these problems. A hurdle in making such a tool 

useful is that there are an overwhelming number of potential goals for each user at any given time. Thus, 

an intent inference procedure was developed to reduce the number of possible goals to a manageable list 

from which users could then make a selection.  

Bayesian Networks (BNs; Pearl, 1988) were used to infer user intensions. BNs have been used in nu-

merous systems and in a variety of ways to perform plan recognition (e.g. Charniak & Goldman, 1993; 

Horvitz, et al., 1998; Albrecht, et al. 1997). The approach taken here is straightforward. The BNs used in 

VesselWorld are static and model the relationship between information about the state of the domain 

and users’ likely intentions. At runtime, information about the domain is posted to these models for each 

agent-waste pair separately. The likelihood an agent has an intention with respect to a given waste is 

read off one of the nodes in the network, and the intention with the highest value for a given agent-waste 

pair is taken to be the most likely one for that agent. New information is posted to the BN whenever a 

relevant change in the world is detected. 

Two BNs were developed, one which infers crane intentions and one which infers tug intentions. To-

gether, the two BNs can infer seven goal types; JOINT LIFT (<crane><waste>), LIFT (<waste>), 

JOINT LOAD (<crane><waste>), and LOAD (<waste>) for the cranes, and BRING (<small barge> 

<waste>), ID (<waste>), and TRANSFER (<small barge ><large barge>) for the tug. In this paper, we 

restrict our analysis to the portion of the crane network that predicts the Cranes’ intentions to lift wastes. 

This BN is shown in Figure 3; it models the likelihood that a crane operator has the intention to lift (or 

jointly lift with the other crane operator) a specific toxic waste.  
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Figure 3: Schematic of BN used to infer Crane Lift Intentions (information is posted to numbered 

nodes) 

The information used to determine if a crane has an intention to lift a waste is: 

• The size of the waste (which determines whether a single crane can lift the waste, or the support 

of another crane is required). (Node 1) 

• The type of equipment required by the waste and the type of equipment the crane has. (Nodes 2 

& 3). 

• Whether the cranes are close to or heading towards the waste. (Nodes 4-7). 

• If the crane actor is currently holding a waste. (Node 8). 

As portrayed in Figure 3, the BN combines a procedural model of the task-domain with domain-specific 

heuristics that indicate which of those actions are most likely.  For example, a procedural constraint is 

that an individual crane cannot lift a waste unless it either has the right type of equipment, or the waste 

does not require equipment; this information is captured in three nodes, “Need Equip,” “Has Equip,” and 

“Equip.” These three nodes do not represent a simple rule, because the equipment requirements for a 

waste might not be known, and hence it is necessary to explicitly handle this kind of uncertainty.  

Heuristic factors interact with the procedural model to differentially weight those wastes that are possi-

ble lift candidates. For the cranes, these factors are how close the ship is to a waste, how close the cur-

rent heading of the ship is to a path that will intersect with a waste, and whether or not the operator is 

already holding an object. This heuristic information in part reflects the physical constraints of the do-

main; a ship must be close to a waste before it can be lifted. 

As a whole, the BN models users that have a certain degree of proficiency with the domain. It is ex-

pected that such users understand the rules of the game, and will only try to lift wastes that they can.  It 

is also expected that these users will proceed in a generally predictable fashion. That is, they will not 

zig-zag wildly upon an approach to a domain object, and they will not randomly pick up wastes and put 

them down again. It would be possible to incorporate additional models for less proficient users, or 

model users’ domain concepts more precisely (e.g., Horvitz, 1998). The focus of this work, however, is 

upon solving the difficulties in acquiring the user information necessary to drive the user model at run-

time. 
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3 Representational problems in VesselWorld 

Any piece of software may be considered to be part of a representational system. A representational sys-

tem has three essential ingredients (Norman, 1991): 

1. The represented world (that which is to be represented); 

2. The representing world (a set of symbols); 

3. An interpreter (which includes procedures for operating upon the representation). 

The representing world mediates the interaction between the interpreter and the represented world, and 

in so doing constrains the types of interaction that are possible between the two. As applied to software, 

the software system is a representational medium that constrains both how information in the repre-

sented world is viewed, and what procedures are available to the user for interacting with this world.   

For adaptive systems, software can be seen to function as a mediating layer in two distinct but intersect-

ing representational systems. First, and most clearly, it mediates the interaction between the user and 

domain (which may include other users), transforming the represented world so as to (hopefully) better 

support domain activity. The software system also mediates the interaction between the designer of the 

adaptive component and the user. In this later case, software very much constrains what information the 

designer can acquire about the user at runtime (St. Amant, et al., 2003). 

Here, representational deficiencies in VesselWorld are considered from both perspectives.  The problem 

from the user’s perspective, which is most traditionally thought of as an HCI problem, is considered 

first. The problem from the perspective of the adaptive component designer, which is a user knowledge 

acquisition problem, is then described. Both these kinds of problems are exactly those which Coordinat-

ing Representations can solve. Following the analysis of these problems, it is shown how the introduc-

tion of a CR in VesselWorld does just that. 

3.1 Problems from the user’s perspective 

During a VesselWorld problem solving session, users must search for and discover information about 

the waste barrels that are floating in the harbor. Because each user has different locally available infor-

mation, and recovering wastes requires the coordinated efforts of multiple users, it is necessary that par-

ticipants communicate to establish mutual knowledge about the wastes. Managing and maintaining this 

shared information comprises a significant portion of the work that users must do during a VesselWorld 

session.  

VesselWorld initially provided two tools to support this work. The chat window allows users to commu-

nicate information about objects in the domain. It provides a scrollable history that records the entire 

dialogue during a given chat session, so that users can more easily recover information that may have 

been missed or is forgotten. The other tool is a “marker” facility, which allows individual users to anno-

tate their own private maps (each user can only see their own markers).  A marker consists of a high-

lighted point on the map, and a free-form text message for recording information (see Figure 2).     

These tools reflect the designers’ initial vision of users’ representational needs for managing domain in-

formation and establishing mutual knowledge about waste barrels. It was expected that users would pub-

lish local information via the chat window, and use the marker facility to record all waste information. 

During actual system use, it was found that these tools did not provide users with sufficient support. 

These representational deficiencies were most clearly manifest in specific features of the users’ runtime 

dialogue. 
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One such feature was explicit talk about coordination, as shown in Figure 4. In the example Crane2 sug-

gests that the participants work out a shorthand for referring to waste information (line 3).  Such explicit 

talk reveals a perceived need by the users for some form of coordinating structure. 

1. Tug1: There are two waste sites near me, 
one at 120/415, one just SE of it. 

2. Crane1: what sixze/ equi[p?  

3. Crane2: hmm shall we come up with a short 
hand for a waste info?   

4. Tug1: The Se one is small, needs a 
Dredge, the first is small, and need NO 

equipment. Does that mean I can pick it 

up? 

Figure 4: Explicit talk about coordination 

Another feature of user chat was the emergence of explicit conversational patterns for managing domain 

information.  For example, one group would perform a “marker check” when there were discrepancies 

among individual’s local waste information, in which all of the known wastes would be validated. First, 

an actor would announce a marker check, and then proceed to transcribe all of her local waste informa-

tion into the chat window. The other actors would confirm or contradict this information according to 

their own private views of the world. The transcription process that this group of actors undertook in-

volved a significant amount of mundane work. However, users made the decision that this was less work 

than trying to recover from errors that were caused by inconsistent information about the world.  

Recurring coordination problems were also indicative of a representational deficiency in the system. 

Frequently, one actor’s reported perceptions raised questions from another actor, possibly about the size 

or location of a waste. This was usually caused by a lack of precision in communicating about locations, 

leading to difficulties in resolving references to objects. Sometimes, these errors would lead to one actor 

moving to the area of the waste in dispute to resolve the problem.  

The coordination problems and dialogue features described above can be generally described as ground-

ing problems (Clark, 1995). The creation and maintenance of common ground forms a substantial por-

tion of the work that goes into conversation (Fergusson, et al., 1996; Traum 1994). Research has also 

demonstrated that technological media have impacts on grounding (Clark & Brennan, 1990; Brennan, 

1998; see also Clark & Wilkes-Gibbs, 1990).  

To a degree, our analysis methodology (see Alterman, et al., 2001 and Feinman & Alterman, 2003 for 

more detail) builds upon some of this earlier work on the grounding process. Our analysis elucidates 

those coordination problems that lead to the design of domain specific CRs, and grounding problems are 

one type of coordination problem that CRs can address. Critically, CRs solve two problems in the design 

of adaptive groupware. They address coordination problems for collaborating users, and they can also 

address a knowledge acquisition problem. In the following, the knowledge acquisition problems in Ves-

selWorld are examined more carefully.   

3.2 Problems from the adaptive component designer’s perspective. 

The BN introduced in Section 2 is a model of the behavior the designer expects of users in different 

situations at runtime. For instance, the designer expects that if the two cranes are approaching a large 

waste and are not carrying anything, there is a good chance they will attempt to jointly lift the waste. In 

order for this model to function, information about the user and the user’s runtime context is required. 

Some of this information can be derived from the plan steps users submit (where the users are, what di-
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rection they are heading in, what they are holding).  However, a significant portion of the required in-

formation about wastes (where they are, what size they are, what equipment they require) is only avail-

able in the users’ discussion about the domain. This information is very hard to extract automatically.  

Figure 5 is a portion of the chat logs taken from a typical planning session in VesselWorld. Note that 

users sometimes refer to toxic wastes by coordinates on the shared map (e.g. “105, 420”).  In the first 

line of the example, Crane2 announces a waste at (120, 420). In lines 2-4, Crane1 asks for clarification 

about the specifics of the waste. In lines 5-6, the tug replies (having apparently already investigated that 

toxic waste barrel) with corrected coordinates (105, 420) and specific information about the waste. In 

line 8, Crane2 thanks the Tug operator for the clarification, and the Tug closes the conversational turn in 

line 9. 

1. Crane2: I found a waste at 120 
420 

2. Crane1: ok 

3. Crane1: what type of waste? 

4. Crane1: large,small? 

5. Tug1:   105 420 needs a dredge, 
i think that is where 

you are 

6. Tug1:   small 

7. Crane1: ok 

8. Crane2: Thanks for checking 

9. Tug1:   no problem 

Figure 5: Excerpt from chat during VesselWorld session 

This dialogue illustrates some of the problems in automatically extracting the domain information re-

quired as input to our intent inference procedure. In order to associate information appearing in separate 

utterances with a single concrete waste, it is necessary to correctly resolve references. However, because 

the dialogue occurs between three active participants, the conversational turns that might be used to nar-

row the reference resolution scope are hard to identify. Furthermore, referring expressions can change 

from utterance to utterance even within the same conversational turn. For example, line 1 refers to the 

waste as “120 420” and line 5 refers to the same waste as “105 420.”  People can sometimes handle such 

ambiguities, but this is problematic for automatic reference resolution algorithms. 

Within user groups, some structural conventions for referring to domain objects do emerge, but the type 

and use of this structure varies widely between and within groups.  Some groups are explicit in defining 

a shorthand; other groups converge to common conventions over time. Within groups, referential styles 

vary between participants and over time. Oftentimes, multiple conventions will co-exist. In Figure 6, a 

section of a transcript is shown for a group that exhibits this behavior. In the segment of dialogue shown, 

the players are announcing waste barrels they have found. In this group Crane2 always includes an “@” 

between the type and the location portions of the referring expression, and a question mark is used to 

indicate that equipment requirements for the waste are unknown. Crane1 usually places the type descrip-

tion before the location, and the tug places a type description after the location.  The participants never 

converge to a common convention 
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1. Crane1: l 543 204  

2. Crane1: s 562 150  

3. Crane2: X?@150,559  

4. Tug1:   1 395 lg dredge 

5. Crane2: s?@190,434 

6. Crane2: s?@202,336 

7. Crane1: sm 394 71 

8. Crane1: large 395 22 

Figure 6: Different ways of referring to wastes, within one group 

For purposes of knowledge acquisition, the problem with such inconsistencies is that it is very difficult 

to produce a single rule or set of rules to identify referring expressions within chat.  Rather than devel-

oping specialized algorithms to deal with the nuances of three-way, live chat in the VesselWorld do-

main, it would vastly simplify our task if users were to enter all the information the system needs in a 

common, structured form. Although this might seem like it would unnecessarily burden the user, below 

we will see that this is not the case. 

4 Using  CRs to fix representational problems 

VesselWorld has representational deficiencies from the both the user’s and the adaptive component de-

signer’s perspectives. In mediating the interaction between the users and domain, it does not offer the 

right kind of support for managing information about wastes. In mediating the interaction between the 

designer and the users, it does not provide structured access to the runtime information required for suc-

cessful intent inference. The analyses performed above led to the design of a Coordinating Representa-

tion, which is a solution to both of these problems. 

There are other approaches to designing of collaborative artifacts that address various issues in collabo-

ration. Cognitive work analysis (Vincente, 1999) advocates a host of ethnographic methods for develop-

ing interfaces that address collaborating users’ needs.  Activity theorists focus on the need for mediating 

artifacts that address tensions in the larger activity system (e.g. Engeström, 2000). Suthers (2003) ap-

proaches the design problem from the perspective of the teacher, as a way to improve the process of col-

laborative inquiry. However, no existing framework draws together design problems from the perspec-

tives of both the user and the adaptive component designer. 

Several CRs were developed for VesselWorld (Alterman, et al., 2001). The CR that addresses the repre-

sentational problems described above is called the Object List (Figure 7). The Object List is a 

WYSIWIS (What You See Is What I See) component that helps users to manage domain information 

and coordinate references. It displays the same data in tabular format for each user.  Users enter and 

maintain all of the data in the Object List. Each row of data contains several fields of information, in-

cluding a user assigned name, the status, and the location of the associated object. The location field 

may be filled in by clicking first on the field and then on the object on the map. The size, equipment, 

action, and leak fields are filled in using drop-down menus. A free text field (“Notes”) is also provided 

for each entry so that any other relevant information may be communicated. Entries in the Object List 

can be displayed on the World View (Figure 2) as icons that are annotated with the name that is in the 

“Name” field. 
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Figure 7: The Object List  

There is nothing exotic in the design of the Object List. It is remarkable as the product of a repeatable 

design methodology that is explicit guidance for the creation of shared artifacts which simplify coordi-

nation for users and make intent inference easier. In the following, empirical data is provided that dem-

onstrates the Object List indeed achieves both of these goals. 

4.1 Improvements from the user’s perspective 

In all user experiments, the Object List was heavily used, and the coordination problems described 

above were no longer observed. The Object List had significant qualitative impacts upon the way users 

coordinated information about toxic waste barrels. Figure 8 compares sample dialogues from users who 

did not have access to the Object List (the left column) to those that did (the right column). It is immedi-

ately apparent that the group that had the Object List spent far less time talking about the details of each 

waste. None of their discussion appears to be designed to exchange information about the wastes per se, 

but rather is focused on strategizing. 
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Without the Object List With the Object List 

1. Crane2:  what was small at 275, 
400?   

2. Tug1:  sX   

3. Crane2: ahve sX at 450 above that  

4. Tug1:  mD at 400 350    

5. Tug1:  yes, there is an sX at 275 
250 as well   

6. Crane2: I have two amall at 275, 
400 and 275, 450 are these the 
same?   

7. Tug1:  no, there are two sX there  

8. Tug1:  well, there are actually 
three in almost a line from n-s   

9. Crane2: at 400 and 450? what about 
the 275, 250?  

10.Crane2: ok, so the southern exists? 

11.Crane2: I'm almost there, nothing 
at 275, 250  

12.Tug1:  300 350, 250 400, and 275 
250 are my markers  

13.Tug1:  argh  

14.Tug1:  I mean 275 450  

15.Crane2: ok, those sound good 

16.Tug1:  i don't know why I kee do-
ing that. 

1. Crane1: I got an XL! 

2. Tug1: I got nothing, you luck 
basrstartd. 

3. Crane2: I got an Xl and an L, mommy!  
;) 

4. Tug1: Merry christmas kids…. 

5. Crane1: I’ll map North third? 

6. Tug1: I’ll take middle 3rd. 

7. Crane2: I’m at south-central. Tug, 
where are you? 

8. Tug1: I’m jus nw of the barge, let me 
put that on the map… 

9. Tug1: actually more w than n. 

10.Crane2: With the LB in the corner, 
maybe our best bet is moving the SB 
NW and loading it with all the NW 
corner’s goodies, which CRANE1: can 
map 

11.Crane1: not a bad plan… 

12.Tug1: Ok, I’ll make a bit of a sweep 
around here while CRANE1: looks 
around. 

13.Crane1: Tug, can you pick up the SB 
at your earlier opp? 

14.Tug1: CRANE2: can map up on the way? 

Figure 8: Dialogue from users before an after the introduction of the object list 

Figure 9 depicts the information users entered into the Object List during the dialog in the right hand 

column of Figure 8.  This demonstrates that the information previously exchanged via the chat tool has 

now been offloaded into the Object List. 

 

Figure 9: Object List created during dialogue in Figure 8 

To assess the impact of coordinating representations quantitatively, a formal study was performed com-

paring the performance of teams with and without CRs (Alterman, et al., 2001). Each test group con-

sisted of three teams of three subjects. Subjects were a mix of area professionals, mostly in computer-

related industries, and undergraduate students; all were paid a flat fee for the experiment. 
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The results of this study, shown in Table I, compare the final five hours of play for each group (by 

which time performance had stabilized), and these results were normalized over a general measure of 

complexity for each of the problems solved. The performance of the test group that had the CRs was 

better across several measures: amount of chat, number of errors committed, number of system events 

generated (an indicator of interface work), and clock time. 

Table I: Improvement of CR groups over non-CR groups; final 5 hours of play 

Indicator Improvement (reduction) 

Communication 57%  (p<0.01) 

Domain Errors 61%  (p<0.2) 

System Events 38%  (p<0.06) 

Clock time 49%  (p<0.01) 

The most significant effect is the 57% reduction in communication generated. This confirms the obser-

vation that a significant amount of communication was offloaded into the CRs. Also highly significant is 

the 49% reduction in clock time. Only slightly less significant is the reduction in system events (mouse 

clicks, etc.), down 38%. Additionally, overall domain errors (errors in performing domain actions which 

led to a toxic spill) were reduced by 61%. The variance of this measure was quite high due to the overall 

low frequency of this kind of error; this reduced its confidence below statistical significance (p<0.2). 

The above results demonstrate that the introduction of the Object List modifies the representational sys-

tem from the user’s perspective in ways that improve the ability of the collaborators to coordinate in-

formation.  It is shown in the following how the Object List also addresses the representational needs of 

the designer. 

4.2 Improvements from the adaptive component designer’s perspective 

The Object List captures information about the world that would otherwise be exchanged in chat, and 

transforms it into a form that can be easily used in the intent inference process described above. In addi-

tion to information about where the wastes are, what equipment they need, and what size they are, the 

Object List also provides the system with a set of user-assigned labels. These labels can be used to mine 

chat for additional information about users’ intentions. Detailed information about how chat information 

was used can be found in Appendix A. 

The relative utility of information from the Object List for performing intent inference is evaluated in 

the following. This is done by comparing the ability of the BN to predict user lift actions in historical log 

files across several information conditions. Before presenting results, the evaluation methodology is de-

scribed in detail.  

4.2.1 Evaluation Methodology 

To evaluate the utility of information from the Object List, the BN was trained and tested under four in-

formation conditions using a single dataset (described in Table II), and its performance was compared 

across these conditions. The dataset consists of time-stamped information derived from the log files col-

lected from each use session in the dataset.  It contains the state information required by the BN.  State 

information includes information about each waste (position, size, and equipment needs), the users’ lo-

cations and heading, and wastes as they are lifted. The dataset also contains information about refer-

ences made by users during chat to objects that are listed in the Object List. 
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Table II: Dataset for the evaluations 

Team Sessions 
Avg. # of wastes per 

problem 
Total Hours 

Team 1 10 11.7 9.9 

Team 2 6 11 8.4 

Team 3 9 14.3 9.1 

Team 4 16 14.5 8.7 

All 41 13.5 34.3 

Each condition changes the amount and quality of information about wastes in the dataset. The four in-

formation conditions, and the information available under each condition, were:  

1. Perfect Information – Under this condition, the dataset contains complete and accurate infor-

mation about the position, size, and equipment needs for every waste at each point in time. Per-

fect information is not typically available at runtime, but it can be derived from the problem files 

which define the initial problem configuration for a usage session. This is an ideal case, and pro-

vides a baseline against which to compare the other information conditions. 

2. Object List – Under this condition, the dataset contains information about the position, size, and 

equipment needs for wastes that are entered in the Object List, as it becomes available. This in-

formation is subject to errors, duplication, and omissions. Compared to the Perfect Information 

condition, performance of the BN under this condition is indicative of the quality of the informa-

tion users provide via the Object List. 

3. Perfect info + Chat – All of the information in the Perfect Information condition, plus the oc-

currence of names of objects (as entered by users into the Object List) in chat. More precisely, 

there is an entry in the dataset for each time a word appears in chat matches one of the labels for 

a waste in the Object List (see Appendix A). This condition is used to investigate how much pre-

dictive information references to wastes in chat add. 

4. Object List + Chat – Information from the Object List condition, plus the occurrence of names 

for objects in chat. This condition represents the best possible runtime performance of our infer-

ence procedure without information from problem files. 

Because the dataset contains different information under each condition, the probability distribution 

stored in the BN may be optimal for one information condition but not another. If the evaluation were to 

be performed using a single probability distribution for all data conditions, results might reflect the 

“preference” of that particular probability distribution, rather than the utility of information contained in 

the dataset. 

To overcome this problem, the probability distribution of the BN was fit to the dataset in each informa-

tion condition before testing. To train the network, each dataset is compiled into a series of cases. A case 

consists of values for each non-hidden node in the BN (see Section 2.1), and each case represents a 

change in the relevant information about the world. During the training phase, values for the “Will Lift” 

node were extended back in the dataset from each actual lift for a ten minute time window.  The size of 

the time window was based on initial experimentation, and chosen to maximize the performance of the 

BN. 

The EM(η) algorithm (Bauer, et al., 1997) was used to train the network, and the same starting parame-

ters for the BN were used in each case.  The EM(η) algorithm is a generalized version of the standard 
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EM algorithm with a learning parameter. When 1.0 < η <2.0, the EM(η) algorithm is significantly faster 

than the standard EM algorithm, but still has good convergence properties.  For all of our training ses-

sions, η=1.8. Algorithm performance was further optimized by posting only unique cases to the net-

work, and weighting each unique case in the training set according to the number of times it occurred. 

For the evaluation, two performance metrics were calculated: the correct goal rate (CGR), which is the 

proportion of correctly guessed goals; and the false positive rate (FPR), which is the proportion of 

guesses that were false. A guess is made whenever a relevant state variable changes. Any uninterrupted 

sequence of correct guesses leading up to the step immediately preceding the execution of the predicted 

goal is counted as a single correct goal. The total number of goals is the number of wastes lifted. Thus,  

CGR  = correct goals / total goals 

FPR = incorrect guesses / total guesses 

4.2.2 Evaluation 

The evaluation was performed solely to compare the utility of different information sources for intent 

inference, and in particular, the utility of the information derived from the object list. These performance 

metrics are not indicative of how well the intent inference procedure performs within the context of a 

specific adaptation. Studies of our adaptive component are documented in the next section. 

The results of the evaluation are shown in Table III, and reflect average performance across all teams for 

each of the four data conditions. A two-factor ANOVA was used to evaluate the effects of the two vari-

ables (Perfect Info vs. Object List, and with or without Chat information) for both CGR and FPR. The 

analysis revealed no significant interactions between the variables. For the CGR, the effects of both vari-

ables were significant, but for the FPR, only performance differences between the Perfect Info and Ob-

ject List conditions were significant. These results were corroborated via further analysis using paired t-

tests. In general, this analysis indicates that that the algorithm performs better when perfect information 

is available, and that chat information reliably increases the number of lift actions correctly inferred. 

Chat information does not, however, reliably reduce false positives given this training and testing meth-

odology.       

Table III: Intent inference results for different information sources  

Correct Goal Rate With Chat Without Chat p-value 

Perfect Info .87 .83 

Object List .77 .70  
p<.03 

p-value p<.001  

False Positive Rate With Chat Without Chat p-value 

Perfect Info .51 .53 

Object List .58 .60  
p=.4 

p-value p<.001  

The “Perfect Info” case, in the top row of the table, provides a baseline against which results for the 

other conditions may be compared. It is a rough indicator of the best the intent inference procedure can 

do, given only complete information about the state of the world. Across the four teams in the dataset, 

the Correct Goal Rate for the “Perfect Info” case ranged from .77 to .91 for this condition. There was a 

weak correlation between problem size (number of toxic wastes) and individual team performance 

(r=.23), reflecting the fact that it is more difficult to make good guesses when there are more options to 

choose from. In general, these metrics indicate that the inference procedure is effective.  
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As expected, the intent inference procedure does not perform as well with information from the Object 

List alone. However, results from the “Object List” condition were still good, and demonstrate that use 

of the Object List was reliable enough to be useful for intent inference.  

The “Perfect Info + Chat” condition demonstrates that references add significant information that cannot 

be derived from knowledge about the state of the domain. Thus, regardless of access to state information 

(for instance, if there were intelligent sensors placed in the world) the Object List adds information that 

still improves intent inference.  

The combination of reference information from chat and domain information from the Object List (the 

“Object List + Chat” condition) improves the performance of the procedure to a point where it is nearly 

as good as the “Perfect Info” condition. These results confirm that, by modifying the representational 

properties of the media between the user and adaptive component designer, high quality runtime infor-

mation can be made available for intent inference. 

To demonstrate that this information is sufficient to drive a useful adaptive support mechanism at run-

time, an adaptive component was implemented and its use evaluated. These results are described in the 

following section. 

5 An Adaptive Component 

As described in Section 2.1, planning in VesselWorld is a laborious and error prone operation, and user 

errors are frequently the result of forgotten plan steps or joint plans that have become unsynchronized. 

The adaptive component was thus designed to help users formulate basic individual and joint plans.  Us-

ing the intent inference procedure, the system can provide a small set of likely plans from the hundred or 

so that are possible at any point in time.  

 

Figure 10: The adaptive component  

The interface to the component is shown in Figure 10. It displays inferred plausible domain goals for 

each of the users. Like the Object List, it is a WYSIWIS component, so each user can see the other us-

ers’ goals as well. Users can select plausible goals from their own column to have the system automati-
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cally generate a plan. The component can generate individual as well as shared plans. If the information 

in the Object List is correct, the generated plans are guaranteed to be correct.  

The detailed function of the adaptive component is as follows: 

1. Each time state information is updated (e.g., when plans are executed, information is added to 

the Object List, an object reference appears in chat, etc.) the system offers each user up to five 

plausible goals, displayed in order of priority and color-coded according to the system’s “confi-

dence” in that prediction. Each user can only select goals from their column.  

2. When the user selects a goal, it is copied into the top row, which displays each user’s currently 

confirmed goal. The user then has the option to request an automatically generated plan that will 

accomplish the selected goal (the “Get Plan” button shown in Figure 10). 

3. The system generates a plan that the user can inspect. In cases where the goal involves multiple 

actors, the other actors are invited to join the plan. If all invited actors accept the invitation, a 

plan is generated; if invited actors do not accept the invitation, the requesting user is so informed. 

4. If the user accepts the plan (by clicking the “Accept” button in Figure 10), it is automatically 

copied into the user’s planning window for execution. 

If the plan is generated from correct state information, no user modifies the state in such a way that con-

flicts with the generated plan, and the plan is executed to completion, it will succeed in achieving the 

desired goal. 

5.1 User Studies 

We performed a formal study with four teams to evaluate the use of the adaptive component and its ef-

fects on performance. Two of the teams were given access to the adaptive component, and the others 

were not. The participants were a mix of students and local-area professionals, with varying degrees of 

computer proficiency. Each team was trained for two hours in use of the system, and then solved ran-

domly chosen VesselWorld problems for approximately ten hours. To alleviate fatigue concerns, the ex-

periment was split into four three-hour sessions.  

For the teams with the component, the inference procedure used information from the Object List and 

chat (the Object List + Chat condition) to infer user goals and construct plans. The following results re-

port on the last 5 hours of play time for each group, by which time performance of the users had stabi-

lized.   

5.1.1 The component was heavily used 

All groups used the component to generate plans within the system. On average, users confirmed a goal 

every 1.5 minutes (SD=46 seconds), requested a plan for each confirmed goal, accepted 71% of plans 

requested (SD=19%), and completed the execution of 83% (SD=6.75%) of these plans. Overall, this in-

dicates that roughly 59% of confirmed goals resulted in a plan that was executed to completion. For each 

problem solving session, one quarter of all plan steps submitted to the server were generated by the 

component (SD=8%).  

The component generated plans for 43% (SD=15%) of the domain goals it could have predicted for the 

Cranes (some goals, like “search the harbor” were not inferred). It was not possible to obtain a similar 

statistic for the Tug operator because it is difficult to recognize the tug’s goals in the collected log files 

(goals for the tug are not bracketed by easy to detect plan steps like “LIFT” and “LOAD”).  
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5.1.2 The component improved users’ performance in the domain task 

The groups that had the component had 45% (p<.10) fewer joint errors (failures during joint actions) per 

minute than the groups that did not. This difference is not significant at the .05 level because of the 

small sample size and overall low proportion of joint errors. A reduction in joint errors corroborates 

prior analysis of use of the VesselWorld system, which indicated that joint errors were usually the result 

of plan submissions becoming unsynchronized (Alterman, et. al, 2001). Because the component gener-

ates coordinated plans in advance, users could simply submit each step and be assured that actions 

would be coordinated.   

5.1.3 The component reduced cognitive effort 

To measure the change in cognitive effort between the two populations, the amount of time it took users 

to execute plans and the amount of interface work were evaluated. It was found that the amount of clock 

time taken by users between submitting steps of automatically generated plans was 57% less (p<.01) 

than in groups without the adaptive component, but that there were no significant differences in the 

number of mouse clicks per waste. Because the reduction in clock time for groups with the component 

cannot be explained by a reduction in the amount of interface work, we conclude that the component 

reduced the cognitive effort of the collaborators. 

As stated in Section 1.2, these studies show that the adaptive component was heavily used, improved 

user performance, and reduced cognitive effort during plan execution. This is verification that collabo-

rating users can generate enough structured information when using a coordinating representation to 

drive useful intelligent support. We conclude that the approach to adding intelligent support demon-

strated here was successful for this domain.  

6 Summary of the Methodology 

This work has demonstrated how the design of a groupware system can be modified to address the needs 

of two intersecting representational systems. This is done by adding structure to the system in the form 

of a Coordinating Representation.  The CR helps users coordinate and improves performance in the do-

main task. It also renders information previously exchanged via an unstructured communication channel 

accessible for use in an adaptive support system.  

Clearly, much in this approach rests on the design of the CR. To facilitate the application of the ap-

proach to other domains, a repeatable design methodology for CRs with the necessary properties has 

been developed (Alterman et al., 2001, Landsman & Alterman, 2005; Feinman & Alterman, 2003).  This 

methodology can be summarized in four steps: 

1. Transcripts are collected of runtime user behavior.  

2. These transcripts are analyzed in order to identify weak spots in the user’s representational sys-

tem.   

3. This analysis is used to develop coordinating representations that people will use, and that im-

prove coordination. 

4. Information collected by the CRs is leveraged to drive adaptive components. 

Transcript collection has roots in ethnography and interaction analysis. Traditionally, ethnography has 

relied upon in situ observation. Suchman & Trigg (1991) and Goodwin & Goodwin (1996) explored the 

use of video recordings in capturing and analyzing naturally occurring workplace activity. While video 

 20



is a very powerful technique for studying a work practice, it is a resource intensive process. For the eth-

nographer, groupware makes life much easier, because a large portion of the relevant activity is medi-

ated by the system itself, and can thus be passively recorded and analyzed offline.  

To perform the kind of ethnographic analysis required to identify representational deficiencies in 

groupware, it is helpful to be able to replay transcripts, rewind when necessary, easily locate high-level 

task events (e.g., the submission of plans), and add annotations. To provide this functionality, a compo-

nent-based software framework called THYME was developed (Landsman and Alterman, 2005). 

Groupware systems built using THYME automatically log all usage data, and replay tools can be rapidly 

generated. The replay tools provide a console similar to that on a VCR, but with all of the above fea-

tures. 

Two techniques have been developed to analyze transcripts. One of them, which was described briefly 

in Section 3.1, examines users’ recurrent activities to identify weak spots in an existing representational 

system (Alterman et al., 2001).  The other technique examines co-reference chains (Feinman & Alter-

man, 2003). To perform this later analysis, the analyst identifies and tags all references to objects, plans, 

and other entities of interest in a logged dialogue. Metrics are then calculated for the distribution and 

lifespan of each type of reference and these metrics are used to identify the need for supporting struc-

ture. Empirical evidence has been collected demonstrating that these analysis techniques can be used to 

make predictions about the type of structure that will be useful (Feinman, 2006). 

These analyses guide the development of CRs that address representational needs of both the user and 

the designer. Because CRs fix problems with an existing representational system for the users, they will 

improve the users’ ability to stay coordinated, and users will use them. This article has demonstrated 

how the structure introduced by CRs can than be leveraged to introduce adaptive support. 

7 Balancing User Effort and Adaptive Component Designer Effort 

As discussed above, adaptive software can be viewed as the mediating layer in two intersecting repre-

sentational systems.  This situation is depicted in Figure 11. In the diagram, the software system is pre-

sented as a composition of three components. This is intended as a descriptive conceptual breakdown 

only, and is based loosely upon early adaptive software models that grew out of user-interface manage-

ment systems (e.g. Hefley & Murray, 1993).  
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Figure 11: Two intersecting representational systems 

The three components of this model are; 

The interface - Contains the signals and controls that the user interacts with directly.  It is analogous 

to Norman’s (1991) surface representation.  

The domain model - The system’s internal representation of the task-domain. It defines the function-

ality of the system. The domain model is very often implicit in the code that makes up a system, 

rather than represented concretely.    

The adaptive component - May contain a user model, domain knowledge, an inference engine, and 

other technology related to run-time adaptation.  It serves as a proxy that supports the time delayed 

interaction between the designer and user. It encapsulates the designer’s assumptions about the 

user’s potential needs at runtime, what information is needed to recognize those needs, and how 

they should be met. 

There are two representational systems in the diagram.  In one, software mediates the interaction be-

tween the user and the domain; this is the user’s perspective.  In the other, the software mediates the in-

teraction between the user and designer of the adaptive component; this is the designer’s perspective. 

This conceptualization highlights what are often considered competing design requirements for adaptive 

systems (Schneiderman, Maes; 1997). The choices that are made with respect to the balance between 

these requirements are reflected in the design of the interface. These choices have consequences for the 

amount of work the user must do, and the resources expended in developing the system. 

Several other systems are examined here with respect to the balance struck between these competing 

design requirements. This balance is characterized by the degree to which specific interface features are 

incorporated to meet the design requirements from either perspective. The set of features meeting design 

criteria from the user’s perspective are referred to as a task-language. A task-language is devoted to 

supporting user’s manipulation and interpretation of the domain-task.  In VesselWorld, a user plans a 

step to move his ship closer to a waste using the task language.  

The set of features meeting the designer’s criteria (from the perspective of the intent inference engine) 

are referred to as a meta-language. A meta-language is not the task-language itself, but is rather a set of 
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interface features that allow the user to tell the system about the task being performed. VesselWorld 

does not have a meta-language (c.f. Alterman, 2000). 

7.1 Task Languages 

Task-languages are designed to mediate and support user action in a domain. Examples of task-

languages include direct manipulation and command-line interfaces. In the case of groupware, a chat 

window is part of the task-language, because it mediates the user’s coordination with other users (part of 

the domain task). Some user-adaptive systems infer user’s needs by monitoring their task interaction 

alone. These systems contain few or no meta-language operators (Figure 12).  

 

Figure 12: Adaptive system with task-language 

In such systems, the feasibility of and effort involved in developing the adaptive component depend 

upon how easily interaction data can be interpreted against the backdrop of available task and domain 

knowledge. For example, the SmartEDIT system (Lau et al., 2000) is a programming by demonstration 

system that can infer user plans for making syntactical edits to a document. The system does employ a 

minimal meta-language that requires the user to segment the execution trace into training examples, but 

its inference mechanism interprets task-level information directly.   

SmartEDIT’s inference mechanism (a version space algorithm) is successful for two reasons. All rele-

vant user information is readily available by monitoring changes to the text buffer, the cursor location, 

and the clipboard contents. Furthermore, a set of domain operators that cover a large portion of the syn-

tax editing task-domain are readily specified. For such well-defined domains, the costs associated with 

knowledge engineering can be relatively small.   

Recommender systems are a different class of user-adaptive software that require minimal or no meta-

languages.  Among the most widely used of these (e.g. Amazon.com; Google), knowledge acquisition 

depends only upon a user’s task level behavior – browsing, purchasing, or searching. The two most 

commonly used inference techniques in widely deployed recommender systems are collaborative filter-

ing (Goldberg, et. al, 1992) and text-based information retrieval. For collaborative filtering, domain 

knowledge is based upon statistical patterns of many users performing similar (browsing, purchasing, or 

searching) behaviors. Text-based information retrieval depends upon statistical patterns of words in a 

large corpus of documents that others have created.  In both cases, the bulk of the knowledge engineer-

ing effort is offloaded to external sources. 

Generally then, for adaptive systems that employ a task-language: 
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User effort to engage the adaptive component is low. The user is willing to use the interface; this is the 

sole interface through which the user interacts with the domain.  This does not imply that the system is 

easy to use; it only means that knowledge acquisition does not introduce much extra work for the user. 

Adaptive component design effort is domain dependent. Often, importing a sufficient amount of do-

main knowledge into the system requires a significant investment of engineering effort, though some-

times this domain knowledge is available from external sources.  

7.2 Meta Languages 

When the system cannot extract enough information from the user’s interaction with a task-language to 

support adaptation, a meta-language can be included. Examples of meta-languages include preference 

dialogs used to configure a system’s behavior, or a natural language interface to an agent. The defining 

feature of a meta-language is that its primary role is to address the knowledge acquisition needs of the 

designer. 

 

Figure 13: Adaptive system with meta-language 

Meta-languages cover the spectrum from formal to natural, and may support a more or less objectified 

interaction with the adaptive component. The Collagen system (Rich & Sidner, 1998; Lesh, et al., 1999) 

is an example of a system that used a formal meta-language to support an objectified interaction with an 

agent. Collagen is a middleware framework for the development of collaborative agents that can provide 

guidance and offload some user work in the domain task. In its initial formulation, Collagen included a 

formal meta-language called ADL (Artificial Discourse Language) (Sidner, 1994). The user provided 

the system with information about her goals via a menu-driven interface to ADL (which provided a list 

of valid dialogue moves), and the intelligent component then used this information to provide support in 

the form of suggestions about next steps and contextual reminders.  

In Collagen, ADL reduces development costs in two ways.  It provides the system with structured in-

formation about the user’s intentions. It also enforces a particular interaction between the user and adap-

tive component, so that domain knowledge and the algorithms associated with its use can be represented 

in a portable and domain independent way. In this manner, Collagen forms an adaptive systems frame-

work that can greatly reduce development costs in the long-term.  

A drawback with the formal / objectified approach is that the user is required to manage two tasks in-

stead of one. One is her desired domain task, and the other is explaining her actions to the system. This 

second task is made even more cumbersome when it requires the use of a formal language. As was noted 

by Collagen’s developers, “it is often more efficient and natural to convey intentions by performing ac-

tions” (Lesh et al., 1999; page 23).  
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One way to avoid requiring that the user manage two tasks is to combine the meta-language with the 

task-language, so that the interaction no longer objectifies the adaptive component and the user is free to 

focus on the domain task.  For example, the Epsilon collaborative learning environment requires inter-

locutors to use sentence openers that represent speech acts during chat, and this structure is in turn used 

to identify problems with the collaborative process (Soller, 2004).  The task and meta-language are co-

incident in Epsilon, but still distinct, as the structure that is added to the task-language is done so solely 

to address designer’s knowledge acquisition needs. This kind of approach can lead to interference with 

the user’s domain-task.  

Natural meta-languages (which rely upon natural language understanding) can be employed to avoid 

problems with formal languages; they provide a rich source of information about the user, and poten-

tially require little or no training to use. Interaction via a natural meta-language usually requires an ob-

jectified adaptive component (a conversational “agent”), which potentially raises the same “two-task” 

problem as above.  However, sufficiently advanced natural language would allow the user to choose the 

best modality for the task at hand without ever having to focus on the meta-task of making herself un-

derstood. 

The major drawback with natural language understanding is that technology is not yet advanced enough 

to scale beyond special purpose applications (Zukerman & Litman, 2001). This results in additional 

work from both the user and designer’s perspective. To the user, the interface may appear to support a 

wider range of conversational moves and vocabulary than it actually does, and the user is left to navigate 

a dialog through trial and error (Schneiderman, 1998).  For the designer, a good deal of effort must go 

into building the language recognition facility, and input to the intelligent component cannot be easily 

constrained, and so may be more difficult to process. 

Numerous approaches have been developed to manage the tradeoffs when employing meta-languages. 

For example: 

• Mixed initiative systems, such as Lookout (Horvitz, 1999) try to calculate the trade-off between 

the benefit provided by the adaptive system and the additional work the meta-language requires 

from the user.  An assumption in this approach is that at certain points, the user may want to en-

gage an intelligent agent, and that this can be recognized with a sophisticated enough domain 

task model and processing of the task-language. 

• Some systems adapt the meta-language itself over time by allowing the user to introduce or re-

define terms. For instance Pan, et al., (2005) describe a system in which the system and the user 

adapt to one another to achieve a common vocabulary.  This form of two-way adaptation is an 

interesting take on end-user-programming (Nardi, 1993), and may lower the bar for casual users 

that would not otherwise be interested in customizing the system’s behavior.    

• Multi-modal systems incorporate other input modalities along with limited natural language 

processing to improve system comprehension.  The CASIS system (Leong, et al., 2005) uses 

contextual cues like room temperature, ambient noise, and room activity to reduce error rate in 

speech recognition. Such systems are still in early phases of research, and require specialized 

hardware in controlled settings, but offer significant performance gains over mono-modal meta-

languages. 

Generally then, for adaptive systems that employ a meta-language: 

User effort may be too high. Whether or not people are willing to use a meta-language depends on the 

potential benefit and the design of the language. Using a meta-language can disrupt the domain task, 
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either by requiring the user to manage an additional task, or by interfering with the task-language. 

Meta-languages can trade reduced design costs for additional user effort. 

Adaptive component design effort can be reduced by implementing a meta-language, although this de-

pends on the type of language used. Often, a designer’s efforts to make a meta-language more appeal-

ing to the users, as with the case of natural languages, ultimately results in more overall work (for both 

the designer and the user) than the meta-language saves in terms of making inference easier.  

7.3 Coordinating Representations: Combining Task and Meta languages 

The approach described in this article employs a coordinating representation to serve the needs of both 

the designer and the user. The task and meta-languages are not merely coincident (as with the Epsilon 

system above).  Instead, the CR combines the task-language and meta-language into a single interface 

mechanism that serves both roles (Figure 14).  

 

Figure 14: Adding structure to a task language to enable intelligent support in groupware. 

The general idea of combining user needs and designer needs into a common interface tool is not re-

stricted to collaborative systems (see St. Amant, et al., 2003, for a discussion). However, as we have 

shown, groupware is particularly amenable to the approach because of the difficulty that users have in 

coordinating their activities. For VesselWorld, it was precisely the difficulty in maintaining common 

ground that makes the structure of the Object List so useful for users. This structure is equally useful 

from the designer’s perspective, because it renders the users’ task-relevant common ground accessible to 

runtime inference mechanisms.  

There are other systems that use coordinating representations in a similar manner, although their role is 

rarely given such a central focus. Jameson, et. al. (2003) describes a collaborative multi-agent system for 

scheduling a business trip, in which agents serve as proxies for users in a scheduling scenario. The role 

of the agent, and one of the main foci of that work, is to provide a social face to help users stay aware of 

others’ preferences and motivations. However, most of the information that is derived from the users 

comes from a coordinating representation that allows them to express their preferences and explore pos-

sible solutions to the constraint problem set up by the collaborative task. 
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Concept maps are a class of CRs that have proved useful in adaptive systems. Concept maps are visual 

representations of interlinked concepts that can be useful for people tying to communicate about large 

conceptual structures or coordinate knowledge engineering efforts (Novak & Gowin, 1984). Cañas & 

Carvalho (2004) describes several adaptive systems that use concept maps in collaborative settings.  One 

system uses the structure in a concept map, along with WordNet (Miller, 1990) to disambiguate word 

senses. Another system draws conclusions from the concept maps shared by students in a collaborative 

learning environment. These conclusions can help the students to identify weaknesses or inconsistencies 

in their own conceptual structures. 

Generally then, for adaptive systems that employ coordinating representations: 

User effort is reduced. Communicating coordinating information, such as required in maintaining 

common ground, is part of the domain task in a groupware system. As set forth in Section 4.1, our 

empirical data proves that CRs can make this easier, and because CRs actually reduce user workload, 

users are willing to use them. 

Adaptive component design effort is low. Information can be easily leveraged for adaptation because it 

is highly structured, and germane to the users’ joint task. Our approach in VesselWorld used widely 

available AI techniques, and the data discussed in Section  5.1 validates the effectiveness of the resul-

tant adaptive system.  

8 Generality & Future Work 

Coordinating representations offer a means for merging two traditionally competing design requirements 

for user-adapted systems into a single representational medium. On the one hand, CRs can reduce user 

workload and improve coordination.  On the other, by structuring coordinating information, CRs provide 

the designer with a rich source of user and context information that can be leveraged by an adaptive 

support system at runtime. 

In our methodology, coordination problems become opportunities for knowledge acquisition. An ana-

lytical procedure has been provided to identify these problems, and it can be applied to any media that a 

community of actors uses to coordinate a recurring activity. Relatively complete usage data is required 

to perform the prescribed analysis procedure. In the case of groupware that mediates the majority of the 

users’ interactions, this may be achieved through the addition of logging utilities to the groupware sys-

tem itself.  For collaborations which extend outside of the media under investigation, more traditional 

forms of data collection (e.g. videotape) will be required. 

We have validated our approach via case studies that demonstrate its effectiveness in VesselWorld.  The 

coordination problems experienced by VesselWorld users are highly representative of those problems in 

other collaborative environments. Users have different information about the world and need to share 

this information to accomplish their joint task. Individuals change objects in the world and need to in-

form others of these changes. Users have different roles and responsibilities. The task requires close co-

ordination at times, but long term commitments are also a critical part of the activity.  

In this article, we’ve focused primarily upon problems related to grounding, but our analysis has re-

vealed other types of coordination problems as well. Alterman et al. (2001) document the problems us-

ers faced in sequencing closely coordinated activities and tracking long-term commitments, and describe 

CRs that were developed to address these problems. 

Similar kinds of problems have been described in the context of modern military applications. As net-

worked technology has become ubiquitous in the military, electronic chat has found its way into mis-
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sion-critical applications. Usage patterns reminiscent of the coordination problems in VesselWorld have 

been documented. Chat history is heavily relied upon to recall missed or forgotten information, and 

there are problems keeping track of mission orders (Heacox, et al. 2004). The need for adaptive chat 

mechanisms that are more aware of the user’s task so as to minimize interruptions (Cummings, 2004) 

has also been noted.  

Our approach is agnostic with regards to the particular inference technique that is used. Bayesian Net-

works were employed because they are easy to use, were sufficiently powerful for our needs, and many 

open-source and off-the-shelf implementations are available. Other techniques might have been used 

instead of or in addition to BNs. Sophisticated NLP algorithms could likely derive more mileage from 

references to wastes in chat than we were able to with our procedure. The training algorithms used to 

analyze the BN’s performance could be employed at runtime to adapt to user behavior over time.  More 

sophisticated planning algorithms and optimization routines could have been employed to produce effi-

cient plans given available waste information. The point is that a range of possibilities for building adap-

tive support cascade from the increased availability of structured information about the user. The ap-

proach is then limited by the relevance of the information to the adaptation goal, the power of available 

inference algorithms and expertise of the designer. 

The end result of applying our methodology to VesselWorld was a successful adaptive plan-generation 

component. This component is entirely domain specific, and may not be necessary or feasible in other 

domains. A natural extension to the existing methodology would offer guidance to the designer regard-

ing the type of adaptive support that may be desirable or feasible using coordinating information from 

CRs.  The development of such an extension is our current and future focus. 

An avenue we are actively exploring is the generation of awareness information that is generally not 

available in collaborative applications.  Much work on awareness has focused upon replicating informa-

tion that is lost in distributed settings, such as awareness of what is going on (Dourish & Belotti, 1992), 

who is around (Dourish & Bly, 1992), and what has changed in a shared environment (Gutwin & 

Greenberg, 1998).  Recently, Carroll, et al. (2003) has investigated the potential role of “activity aware-

ness” in collaborative applications. The term activity awareness describes awareness of how work is 

embedded within the context of the overall activity.  Coordinating representations are useful for generat-

ing the information required to provide this kind of awareness because they capture and structure infor-

mation that constitutes the users’ shared context. The computer, as a mediating artifact with significant 

abilities to summarize, sort, and synthesize structured data is in a good position to automatically com-

bine and provide this information as feedback to users.  

Appendix A: Using chat 

Users in VesselWorld often refer to wastes in chat using the labels they’ve assigned to objects in the Ob-

ject List. To incorporate this information into the intent inference procedure, we modified the BN based 

on the following analysis.  

Table IVdepicts the likelihood that a reference for an object will appear during the three consecutive five 

minute windows prior to a lift of that object at time t. In the table, “Joint” and “Single” refer to whether 

a waste requires both or just one crane operator to lift. In the ~Lift conditions, values reflect the likeli-

hood some waste is referred to prior to a lift of a different waste. 
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Table IV: Probability of reference preceding a lift at time t 

 t-5 to t t-10 to t-5 t-15 to t-10 

 Joint Single Joint Single Joint Single 

Lift .62 .42 .27 .15 .25 .08 

~Lift .15 .11 .10 .07 .08 .04 

There is about a sixty percent chance that waste will be referred to in chat in the five minutes preceding 

the lift if that waste requires assistance, and about a forty percent chance if that waste can be lifted sin-

gly. Chat references are predictive of lift actions for roughly a fifteen-minute window of time preceding 

a lift. On the basis of this analysis, we expanded our BN to include three five minute windows of chat 

history, with one node for each five minute window. The expanded network is shown in Figure 15.  

 

Figure 15: BN with nodes for chat added; added nodes are colored differently 
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