
Using Shor’s algorithm on near term Quantum computers: a reduced version

Martina Rossi,1 Luca Asproni,1 Davide Caputo,1, 2 Stefano Rossi,1 Alice
Cusinato,1 Remo Marini,3 Andrea Agosti,3 and Marco Magagnini1

1Data Reply s.r.l., Corso Francia, 110, 10143 Turin, ITALY
2Department of Mathematics and Physics - University of Salento, Via Arnesano, 73100 Lecce, ITALY

3Generali Italia S.p.A., Via Marocchesa, 14, 31021, Mogliano Veneto, ITALY

Abstract

Considering its relevance in the field of cryptography, integer factorization is a prominent appli-
cation where Quantum computers are expected to have a substantial impact. Thanks to Shor’s
algorithm this peculiar problem can be solved in polynomial time. However, both the number of
qubits and applied gates detrimentally affect the ability to run a particular quantum circuit on the
near term Quantum hardware. In this work, we help addressing both these problems by introduc-
ing a reduced version of Shor’s algorithm that proposes a step forward in increasing the range of
numbers that can be factorized on noisy Quantum devices. The implementation presented in this
work is general and does not use any assumptions on the number to factor. In particular, we have
found noteworthy results in most cases, often being able to factor the given number with only one
iteration of the proposed algorithm. Finally, comparing the original quantum algorithm with our
version on simulator, the outcomes are identical for some of the numbers considered.

I. INTRODUCTION

The security of many asymmetric cryptographic
systems relies on the difficulty of some mathematical
problems [1]; this entails an exponential time for finding
the private key. Among them, integer factorization
represents the core of the RSA cryptosystem [2]. More
specifically, RSA encryption and decryption mechanisms
apply modular exponentiation using three values: e, n,
and d. The couple (e, n) represents the public key, while
d is the private key. n is computed as the product of
two large prime numbers, p and q, while d is derived
from these factors. Therefore, if Bob wants to send an
encrypted message to Alice, he must use her public key.
Alice will obtain the plain message applying the same
modular exponentiation using d. As a consequence, the
security of the private key d depends on the difficulty of
finding p and q from n. However, the state-of-the-art
classical fastest approach to solve this problem is the
Number Field Sieve sub-exponential algorithm [3, 4],
which requires a number of operations that exponen-
tially increases with the dimension of the number to be
factored.

As a consequence, the development of Shor’s algo-
rithm [5] in the Quantum Computing field proves
particularly interesting. Indeed, this approach solves
the integer factorization problem in polynomial time.
Therefore, Shor’s algorithm is the focus of many studies
that aim to implement it on Quantum Processing Units
(QPUs). Most of them propose an ad-hoc quantum cir-
cuit for N = 15 [6–11] executed on different technologies
such as photonic systems or superconducting qubits.
Qubit recycling, which consists in re-setting qubits to
|0〉 after using them [12], is applied in [13] to factor

N = 21, while a simplified version of the algorithm is
proposed in [14] to factor 51 and 85 as examples of
products of Fermat primes. A compiled version of Shor’s
algorithm is described in [15], where specific values
of the parameter a are considered, since they always
produce a trivial period.

Implementing the general Shor’s algorithm on quantum
hardware is challenging both because of the number
of required qubits and the circuit depth. This second
aspect can be particularly problematic because the
quantum decoherence limits the number of gates that
can be applied on each qubit. Moreover, the deeper the
circuit, the greater is the introduced error. This explains
the large presence of specific solutions for certain values
of N or a in the literature. In this context, we propose
an approximated version of Shor’s algorithm that helps
addressing the qubits and depth problems previously
described. This reduces the hardware requirements in
terms of supported depth; therefore, it is possible to
factor bigger numbers on near term QPUs, compared
to the classical version of Shor’s algorithm. Finally, we
did not consider specific values for N or the parameter a.

Shor’s algorithm is firstly presented in Section II
and its implementation using 2n + 3 qubits [16] is
described in Section III. Section IV introduces our
reduced version; this is firstly tested on simulator,
to compare its performance with the original circuit.
Moreover, performance on QPU was studied as well.
The overall results are collected in Section V, while
these are thoroughly discussed in Section VI. Finally,
conclusions and future works are presented in Section
VII.

ar
X

iv
:2

11
2.

12
64

7v
1 

 [
qu

an
t-

ph
] 

 2
3 

D
ec

 2
02

1



2

II. SHOR’S ALGORITHM

The integer factorization problem can be solved
applying the algorithm proposed by Shor in 1994
[5]. This procedure combines classical and quantum
computation; it consists in a classical pre-processing, a
quantum circuit and a classical post-processing of the
output of the quantum circuit. More specifically, the
factorization problem is translated in an order-finding
procedure. Given the function f(x) = axmodN , where
{a ∈ R|1 < a < N}, the order of f(x) is defined as
the smallest positive integer r such that armodN = 1.
The order-finding problem is solved applying the Quan-
tum Phase Estimation (QPE) to the unitary operator
Ua|x〉 = |(a · x)modN〉 [17]. Therefore, this is the
quantum core of the overall algorithm.

Considering an odd integer N , which is not a prime
power, Shor’s algorithm identifies a factor with prob-
ability at least 1 − 1

2k−1 , where k represents the total
of prime factors of N [5]. The detailed procedure is
described in the following [17]:

Shor’s algorithm

1. Preliminary checks on N : verify that N is not even
or a prime power; return the trivial factor in this
case.

2. Generate a random integer a such that 1 < a < N
and compute d = gcd(N, a). If d > 1, it is already
a factor of N ; thus, return d.

3. Execute the order-finding procedure which applies
the Quantum Phase Estimation circuit and the con-
tinued fraction algorithm to estimate r.

4. If r is even, compute d1 = gcd(ar/2 − 1, N) and
d2 = gcd(ar/2 + 1, N). Verify that d1 and d2 are
non-trivial factors. Otherwise, restart the algo-
rithm from 2.

III. ORIGINAL IMPLEMENTATION

Considering the overall Shor’s algorithm, the im-
plementation of the QPE circuit represents the most
critical part. More specifically, the QPE classical
procedure uses two quantum registers to estimate the
phase of an eigenvalue of a unitary operator, applied
on the related eigenstate [21]. The first register will
contain the measured phase at the end of the execution;
therefore, the precision required by the phase estima-
tion determines the number of qubits in the register
[17, 22, 23]. Typically, this register uses 2n qubits, where
n = blog2(N)c + 1 and N is the number to be factored.

Conversely, the second register contains the eigenstate
used for the phase estimation; for the specific case of the
order-finding problem, a convenient eigenstate is |1〉.

The first register is initialized in superposition, us-
ing Hadamard gates; then, these qubits are used to
control different unitary operators that realize the
modular exponentiation required by the order-finding
procedure. Thanks to the phase kickback, the phase
of the unitary operator is in the first register at the
end of this step. Then, the Inverse Quantum Fourier
Transform is applied to obtain the phase value in the
computational basis, before measuring it.

Considering the classical implementation, each qubit
in the first register controls only one unitary operator;
therefore, a first optimization consists in using only one
control qubit [16, 24]. This qubit is iteratively initialized,
then controls one unitary operator, undergoes a partial
Inverse Quantum Fourier Transform and it is measured.
After the measurement, the qubit is re-initialized to
|0〉. This sequence of operations is repeated 2n times,
to obtain the same precision on the phase measured,
compared to the extensive approach. This optimized
version of the order-finding circuit is illustrated in Figure
1.a.

As it is described in [16], each unitary block is composed
by three macro-components: a controlled-multiplier, a
controlled swap and an inverse controlled-multiplier.
Every multiplier is obtained as a sequence of adder
modulo N. Moreover, there is a Quantum Fourier
Transform (QFT) at the beginning of the block and an
Inverse QFT at the end, since quantum adders operate
in the Fourier basis. Finally, modular adders are realized
manipulating a classical adder and using 2 ancilla qubits.
Regarding these two last qubits, the former is used to
expand the quantum register of the adder, to prevent
overflow; the latter is necessary to obtain a modular
adder from classical adders. It is clear that each unitary
block is a complicated sub-circuit; therefore, 2n unitary
blocks entail a considerable depth.

Recycling one qubit significantly reduces the over-
all number of qubits needed. More specifically, this
circuit requires 2n + 3 qubits, where most of them are
manipulated in the unitary block; indeed, only one
qubit is used as control qubit. However, this circuit
has the same depth of the more extensive version of
the order-finding circuit. Consequently, the circuit in
Figure 1.a would face some challenges in running on
real hardware, even if the number of qubits allowed it.
Moreover, there might be an additional issue regarding
the implementable gates. The partial Inverse QFT
requires quantum gates controlled by classical bits whose
values are the outcome of previous measurements; for
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Figure 1: Structure of the quantum circuit that implements the proposed version of Shor’s algorithm. (a)
quantum circuit implementation for Shor’s algorithm using only one control qubit. The control qubit is repeatedly initial-
ized and measured to obtain each bit of the estimated phase. Ri gates rotate the control qubit to apply a partial Inverse

Fourier Transform, depending on the outcome of the previously measured values. More specifically, Rj =

(
1 0
0 eiθj

)
and

θj = −2π
∑j
k=0

mk

2j−k+1 [16, 18]. The original quantum circuit is illustrated with graphical description of how it is subdivided
in sub-circuits. Each unitary block has three macro-components: a controlled multiplier, a controlled swap and an inverse
controlled multiplier which uses the modular inverse of a. The input qubits of the unitary block are initialized to |1〉. This
unitary block is approximated with the circuit detailed in (b). The corresponding graph highlights the macro components.
The quantum adder gate ΦAdd(a) [19] is described in (c), while the controlled multiplier ΦCMULT (a) [19, 20] is illustrated
in (d). These last three circuits consider n = 4 for greater clarity; the architecture can be easily generalized to any value of n.

example, these gates are not currently implementable on
the IBM hardware.

IV. PROPOSED APPROACH

The goal of the proposed approach is to reduce the
circuit depth, starting from the 2n + 3 order-finding
circuit previously described. The first change consists
in splitting the overall circuit into 2n sub-circuits. As
it is illustrated in Figure 1.a, each sub-circuit initializes
the control qubit, applies one unitary block, executes
the partial Inverse QFT and measures the control qubit.

This first approximation aims to tackle both the depth
issue and the use of potentially problematic gates, not
always implementable in current hardware.

However, even these reduced circuits can be too
deep and consequently we still have quantum decho-
erence issues. This is mostly due to the operations
in the unitary block implementation. Therefore, we
thoroughly investigated the circuit composition for the
unitary operator in order to identify which elements
could be approximated without significantly affecting
the accuracy of the outcome.

As previously mentioned, each unitary block is com-
posed by a controlled-multiplier, a controlled swap
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Figure 2: Success probability heat maps comparing the performance of the proposed approach with the original
circuit. Each graph considers all the feasible values of ’a’ for N ∈ {15, 21, 33, 39, 51, 57}. The success probability is computed
considering the frequency with which the corresponding circuit factorized N in one iteration of the algorithm, using the given
’a’. The study considers 10 repetitions for each couple (N, a) and these are executed on the IBM ’ibmq_qasm_simulator’
simulator.

and an inverse controlled-multiplier. Figure 1.b shows
the structure of the approximated unitary operator,
where the quantum register x is initialized to |1〉, while
the register b is set to |0〉; we firstly focused on the
controlled-multiplier. Because of this initialization, the
initial QFT applied on |b〉 can be simplified in a sequence
of Hadamard gates. Moreover, only one adder is ap-
plied on |b〉, since only one qubit of |x〉 is different from 0.

We also found a simplified version of the inverse
controlled-multiplier. The last QFT inside this block
which is usually applied on |b〉 is removed, since this
operation is not controlled by the control qubit and
the circuit is split. Finally, all the adders modulo N
considered in this circuit are replaced by a simple adder.
This last approximation entails a reduction of 2 qubits;
resulting in a circuit that requires 2n + 1 qubits. The
structure of the simple adder is described in Figure
1.c. This last simplification might produce the most
significant impact on the final outcome. However, the
benefits of a shallower circuit outweigh the problems
associated with a less accurate phase.

V. RESULTS

The performance of the proposed circuit was firstly
compared to the behaviour of the original 2n+ 3 circuit
on the IBM simulator ibmq_qasm_simulator. This
testing environment was necessary because the original
circuit can be executed only on a simulator; therefore,
a complete study of our circuit was realized on the
same setting, for a fair comparison. We defined the
success probability as the frequency of times (out of 10
experiments) where we could factor a given number N
in a single iteration, i.e. it factors immediately with

the given a. We tracked the results of each circuit for
multiple values of N and the parameter a. It is worth
noting that the proposed approach is always able to
factor in less than 10 tries. This information in collected
in Figure 2.

Overall, our approach has a high success probabil-
ity on simulator. Furthermore, we tested the circuit on a
real hardware as well. We executed it on the IBM QPU
ibmq_16_melbourne. Only few combination of N and
a were tested, to verify the effect of a noisy hardware
on our implementation. The outcomes are described in
Figure 3.

Figure 3: Success probability heat map of the opti-
mized version executed on QPU. The proposed approach
was tested on QPU for (N = 51, a = 44), (N = 33, a = 23),
and (N = 33, a = 25). This graph compares the performance
of the proposed circuit on different devices, considering the
same parameters.
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Figure 4: Cross section of the success probability for a given N , considering all the feasible values of ’a’. The
original circuit has a highly fluctuating behaviour with some values of ’a’ preventing factorization. Conversely, the proposed
version is characterized by a less varied tendency and a success probability greater than 0 for most of the ’a’ values which
correspond to failures in the original circuit.

VI. DISCUSSION

Considering the results illustrated in Figure 2, the
success probability of the optimized version is high and
similar to the performance of the original circuit, with
fewer combinations of (N, a) with 0 success probability.
This is particularly interesting because the approxima-
tion introduced on the estimated phase allows to succeed
in the factorization even for values of a that failed in the
original circuit.

The two heat maps show that the occurrences of
100% success probability in the optimized circuit are
lower, compared to the original approach. However, this
success probability is higher on average and more stable;
that is, the success probability of the reduced circuit
has a significantly lower standard deviation, compared
to the performance of the original circuit. This trend
is particularly clear examining Figure 4, where the
success probability is plotted for N = 57, considering
all the possible value for a. This performance index
significantly oscillates in the original circuit, with many
values of a that entail 0 success probability. Conversely,
the optimized circuit has a more stable performance.
Indeed, the average success probability for N = 57
is 68% in the original circuit, while it is 78% for the
optimized version.

The proposed approach outperforms the original
circuit in some situations. It is worth noting that for
two specific values of N , 15 and 51, the optimized circuit
performs equally to the original one. These two values
are product of Fermat numbers (3, 5, 17); therefore, this
behaviour could be further investigated in the future to
determine any potential correlation with the properties
of these numbers.

In addition to the observations above, for each value of
N , there are some a that entail 100% success probability
in the optimized version. Most of them correspond
to finding identical phases, compared to the original
version. This is further described in Figure 5 which
examines N = 33. Phases found for a = 5, a = 25
and a = 10 are illustrated, considering the original
circuit and the optimized version. When a = 5, the
original circuit outperforms the proposed version, while
a = 25 produces the opposite behaviour. Finally, a = 10
produces 100% success probability for both circuits and
it is clear that the same phases are found.

As it is shown in Figure 3, success probability is lower
when executing the reduced circuit on the IBM QPU
ibmq_16_melbourne. This behavior matches our
expectations, since noise in quantum hardware may
introduce errors. However, despite the reduced success
probability, factorization was possible on QPU as well.

Beyond the study on the quality of results, we evaluated
the execution time of the optimized circuit on the
IBM QPU ibmq_16_melbourne. These outcomes were
compared to the performance of a brute force algorithm
on GPU. More specifically, we implemented the trial
division method where the target value N is divided
by all possible numbers until one factor is found. All
the odd numbers between 2 and

√
N can be considered

for this purpose. Tests have been performed on Google
Colaboratory and the final results are illustrated in
Table I. We acknowledge that there are faster algorithms
for prime factorization, such as the Number Field Sieve
[3, 4]; however, the goal was evaluating our quantum
circuit against a simple classical method.

According to Table I, the brute force algorithm outper-
forms the quantum circuit for these small numbers. Nev-
ertheless, we expect QPU running time to decrease with
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Figure 5: Phase histograms of specific couples (N, a) for the original circuit and the optimized version. Phases
were sorted according to their occurrences before plotting. (a) illustrates phases found by the two circuits when N = 33 and
a = 5; the first 5 phases allow factorization only in the original circuit. Differently, histograms represented in (b) consider
N = 33 and a = 25, and entail successful factorization only for the optimized version. Finally, (c) describes very similar phases
when N = 33 and a = 10; factors are found by both versions of the circuit.

N QPU (ms) GPU (ms)

15 1595600 0.016791
21 5443000 0.017274
33 3613700 0.015286
57 3975600 0.017027

Table I: Execution time comparison. The optimized cir-
cuit was tested on IBM QPU ibmq_16_melbourne, while
a trial division method was executed on GPU to factorize
15, 21, 33 and 57.

hardware improvements that should be available soon, es-
pecially in terms of fast interactions between classical and
quantum computing. Finally, the exponential growth in
execution times of brute force methods is not observed,
considering small numbers only.

VII. CONCLUSIONS

Integer factorization is a mathematical hard problem
that represents the core of the RSA cryptosystem.
While classical approaches require exponential com-
plexity, Shor’s algorithm offers a polynomial time
solution to this specific problem. However, both the
number of qubits and gates applied, required by the
quantum circuit, detrimentally affect the ability to
run this circuit on the currently available Quantum
hardware. Therefore, we proposed an approximated
version of Shor’s algorithm to tackle both these problems.

The introduced approach allows to factor numbers
grater than 15 using a general circuit. Regarding the
possible values of N , the upper bound depends on the
limitations of the considered hardware, in terms of qubits
and tolerated depth. As a consequence, we investigated
how the optimized circuit scales, when increasing the
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number to be factored. More specifically, we translated
our circuit in an equivalent one that can be executed
on a general-purpose quantum hardware with a very
limited set of gates (’cx’, ’id’, ’rz’, ’sx’, ’x’) and full
connectivity. Given n = blog2(N)c + 1, the circuit’s
depth can be approximated as 10n2 + 20n + 5. This
estimate is a lower bound, since QPUs with different
connectivity might introduce more gates to obtain the
equivalent circuit. For example, the circuit’s depth to
factor a key for RSA-1024 would be about 108; this
is approximately three times the depth experimentally
supported by the IBM QPU used to test the circuit.
The current quantum hardware suffers from limited
connectivity, together with fidelity issues [25]. However,
according to IBM’s roadmap, QPUs will address these
problems in the near future. This might help to further
improve the behaviour of the proposed approach.

With our approach, we were able to factor larger
numbers than current state of the art and it was often
possible to factor the given number with only one
iteration of the algorithm. The approximated circuit
may affect the accuracy of the phase estimation, but it
does not prevent factorization. For small enough N , in
some cases, approximated phases allow to factor with
values of a that do not work on the original circuit.
Therefore, the possibility to execute a reduced version
of Shor’s algorithm on near term quantum hardware
clearly outweighs the introduced approximation errors.
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