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Using sigLASSO to optimize cancer mutation
signatures jointly with sampling likelihood
Shantao Li 1,2, Forrest W. Crawford3,4,5,6 & Mark B. Gerstein 1,2,6,7✉

Multiple mutational processes drive carcinogenesis, leaving characteristic signatures in

tumor genomes. Determining the active signatures from a full repertoire of potential ones

helps elucidate mechanisms of cancer development. This involves optimally decomposing the

counts of cancer mutations, tabulated according to their trinucleotide context, into a linear

combination of known signatures. Here, we develop sigLASSO (a software tool at github.

com/gersteinlab/siglasso) to carry out this optimization efficiently. sigLASSO has four key

aspects: (1) It jointly optimizes the likelihood of sampling and signature fitting, by explicitly

factoring multinomial sampling into the objective function. This is particularly important when

mutation counts are low and sampling variance is high (e.g., in exome sequencing). (2)

sigLASSO uses L1 regularization to parsimoniously assign signatures, leading to sparse and

interpretable solutions. (3) It fine-tunes model complexity, informed by data scale and bio-

logical priors. (4) Consequently, sigLASSO can assess model uncertainty and abstain from

making assignments in low-confidence contexts.
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M
utagenesis is a fundamental process underlying cancer
development. Examples of mutational mechanisms
include spontaneous deamination of cytosines, the

formation of pyrimidine dimers by ultraviolet (UV) light, and the
crosslinking of guanines by alkylating agents. Multiple endogen-
ous and exogenous mutational processes drive cancer mutagen-
esis and leave distinct fingerprints1. Notably, these processes have
characteristic mutational nucleotide context biases2–6. Sequencing
cancer samples at presentation revealed all mutations accumu-
lated over lifetime; these include somatic alterations generated by
multiple mutational processes both before cancer initiation and
during cancer development. In a generative model, multiple latent
mutational processes generate mutations over time, drawing from
their corresponding nucleotide context distributions (mutation
signature)4,5. Here, a mutation signature is a multinomial prob-
ability distribution of mutations of a set of nucleotide contexts. In
cancer samples, mutations from various mutational processes are
mixed and observable by sequencing.

By applying unsupervised methods such as non-negative
matrix factorization (NMF) and clustering to large-scale cancer
studies, researchers have decomposed the mutation mixture
and identified at least 30 distinct mutational signatures2,7.
Many signatures have been linked with mutational processes
with known etiologies, such as aging, smoking, or ApoBEC
activity. Investigating the fundamental processes underlying
mutagenesis could help elucidate the initiation and develop-
ment of cancer.

A major task in cancer research is to leverage signature
studies on large-scale cancer cohorts and efficiently select and
attribute active signatures to new cancer samples. A popular
previously published method, deconstructSigs,8 decomposes
the mutation profile into a signature mixture using binary
search to iteratively test coefficients one-by-one and then hard
pruning signatures with low estimated contribution to achieve
sparsity. Other approaches use linear programming9 or iterate
all combinations by brute force10. None of these approaches
explicitly formulates sampling uncertainty into the model or
uses efficient regression techniques. Moreover, no off-the-shelf
implementation of these methods, besides deconstructSigs, is
available.

Although we do not fully know the latent mutational pro-
cesses in cancer samples, we can make reasonable and logical
assumptions that facilitate our method design. Here, we aimed
to design a computational framework, sigLASSO, which could
meet these criteria. First, we assumed that the set of estimated
mutational mechanisms should be small, as de novo studies
indicate that not all signatures can be active in a single sample
or even a given cancer type. In most cancer samples, only a few
signatures are identified in the original de novo discovery stu-
dies. An ideal tool should generate solutions that follow this
sparse distribution. Moreover, the number of detectable
mutation signatures is limited by the amount of data support.
Too many signatures lead to overfitting and unstable solutions.
We aimed for a sparser solution as it explains observations in a
simpler fashion. Second, the estimated mutational mechanisms
should be biologically interpretable and reflect some cancer
type specificity. For example, we should not observe UV-
associated signatures in tissues that are not exposed to UV.
Likewise, we only expect to observe activation-induced cytidine
deaminase mutational processes, which are biologically
involved in antibody diversification, in B-cell lymphomas.
Finally, we felt the solution should be robust and the data
should control the model complexity.

In particular, reliably recovering the signature composition is
challenging when the mutation number is low8. Low mutation
count results in high sampling variance, leading to an unreliable

estimation of the mutation context probability distribution, which
is the target for signature fitting. A desirable signature identifi-
cation tool should model the sampling process and take sampling
variance into consideration.

In this work, we formulated the task as a joint optimization
problem with L1 regularization. First, by jointly fitting sig-
natures and the parameters of a multinomial sampling process,
sigLASSO takes into account the sampling uncertainty. Coop-
eratively fitting a linear mixture and maximizing the sampling
likelihood enables knowledge transfer and improves perfor-
mance. Specifically, signature fitting imposes constraints on the
previously unconstrained multinomial sampling probability
distribution. Conversely, a better estimation of the multinomial
sampling probability improves signature fitting. This property
is especially critical in high sampling variance settings, for
example, when we only observe low mutation counts in whole-
exome sequencing (WES). Existing methods use continuous
relaxation, which makes the model invariant to different
mutation counts. Second, sigLASSO penalizes the model com-
plexity and achieves variable selection by regularization. Reg-
ularization is essential for this fitting problem with a large
amount of signatures to achieve proper variable selection and
avoid overfitting. Using regularization to promote sparsity and
prevent overfitting is also a standard practice in de novo sig-
nature discovery. A few recent examples are rule-based con-
straints (SigProfiler), a Bayesian variant of NMF that penalizes
on model complexity (SignatureAnalyzer11) and L1-based
regularization (SparseSignatures12). The most straightforward
way to do this would be to use the L0 norm (cardinality of
active signatures), but this approach cannot be effectively
optimized. Conversely, using the L2 norm flattened out at small
values leads to many tiny, non-zero coefficients, which do not
resemble the sparse signature distribution in the original de
novo studies and are hard to interpret biologically. sigLASSO
uses the L1 norm, which promotes sparsity. The L1 norm is
convex, and thus allows efficient optimization13,14. In addition,
this approach is able to harmoniously integrate prior biological
knowledge into the solution by fine-tuning penalties on the
coefficients. Compared with the approach of subsetting sig-
natures before fitting, our soft thresholding method is more
flexible to noise and unidentified signatures. Finally, sigLASSO
is aware of data complexity such as mutational number and
patterns in the observation. It is able to abstain (decline to
assign mutational processes under high uncertainty) and defer
to the human researcher to decide. Our method is automatically
parameterized empirically on performance, allowing data
complexity to inform model complexity. In this way, our
approach also promotes result reproducibility and fair com-
parison of data sets.

In sum, sigLASSO exploits constraints in signature identifi-
cation and provides a robust framework for scientists to achieve
biologically sound solutions. sigLASSO also can empower
researchers to use and integrate their biological knowledge and
expertise into the model. Unveiling the underlying mutational
processes in cancer samples will enable us to recognize and
quantify new mutagens, understand mutagenesis and DNA
repair processes, and develop new therapeutic strategies for
cancer9,15–18.

Results
The signature identification problem. Mutational processes
leave mutations in the genome within distinct nucleotide con-
texts. We denoted the total number of contexts as n. Typically,
we considered the mutant nucleotide context and looked
one nucleotide ahead and behind each mutation, dividing the
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mutations into n= 96 trinucleotide contexts. Each mutational
process carries a unique signature, which is represented by a
multinomial probability distribution over mutations of trinu-
cleotide context (Fig 1a).

Then there are K latent mutational processes. Large-scale pan-
cancer analyses identified K= 30 COSMIC signatures by NMF
(with Frobenius norm penalty) and clustering2,3. Here, our
objective was to leverage the pan-cancer analysis and decompose
mutations from new samples into a linear combination of
signatures. Mathematically, we formulated the following non-
negative regression problem, maintaining the original Frobenius
norm:

W ¼ arg min
W2Rþ

M�SWk k22 ð1Þ

The mutation matrix, M contains mutations of each sample
cataloged into n trinucleotide contexts. miði¼1:::nÞ 2 M denotes

the mutation count of the ith category. S is a n × K signat-
ure matrix, containing the mutation probability in 96 trinucleo-
tide contexts of the 30 signatures. W is the weights
matrix, representing the contributions of 30 signatures in each
sample.

Sampling variance. In practice, this problem is optimized using
continuous relaxation for efficiency and simplicity,8 neglecting
the discrete nature of mutation counts. This approach essentially
transforms observed mutations into a multinomial probability
distribution, making model estimation insensitive to the total
mutation count. However, the total mutation count has a critical
role in inference. Assuming mutations are drawn from a latent
probability distribution, which is the mixture of several muta-
tional signatures, the mutations follow a multinomial distribu-
tion. The total mutation count is the sample size of the
distribution, thus greatly affecting the variance of the inferred
distribution.

For instance, 20 mutations within the 96 categories give us
very little confidence in inferring the underlying mutation
distribution. By contrast, if we observed 2000 mutations, we
would have much higher confidence. Methods using continuous
relaxation treat these two conditions indifferently. Here, we
aimed to use a likelihood-based approach to acknowledge the
sampling variance and design a tool sensitive to the total
mutation count.

sigLASSO model. We divided the data generation process into
two parts. First, multiple mutational signatures mix together to
form an underlying latent mutation distribution. Second, we
observed a set of categorical data (mutations), which is a reali-
zation of the underlying mutation distribution. We used
mi(i = 1…n) to denote the mutation count of the ith category.
The vector ~p is the underlying latent mutation probability dis-
tribution with pj, denoting the probability of the jth category. The
total number of mutations is N.

To achieve variable selection and promote sparsity and
interpretability of the solution, sigLASSO adds an L1 norm
regularizer on the weights ~w (i.e., coefficients) of the signatures
with a hyperparameter λ. LASSO is mathematically justified
and can be computationally solved efficiently14. Adding an L1
norm regularizer is equivalent to placing a Laplacian prior on
~w19. ~c is a vector of K penalty weights (c1, c2, … cK), each
indicating the strength to penalize the coefficient of a certain
signature. This vector should be tuned to reflect the level of
confidence in the prior knowledge. For example, a smaller
penalty weight represents a stronger prior, reflecting higher
confidence and vice versa.

Overall, from the generative model, we can determine the
likelihood function for a single sample.

L ¼Pð~mjS~wÞ Pð~wÞ
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Our objective function is to maximize the log-likelihood function,
which is given as:
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Here, α= 1/σ2. We can infer α from the residual errors from
linear regression (see parameter tuning). Meanwhile, because of
its continuous nature, ~c can also be effectively learned using
patient information (e.g., smoking status, tumor size, or
methylation status). We also used~c to perform adaptive LASSO20

by initializing ~c to 1/βOLS, where βOLS are the coefficients from
non-negative ordinary least square. Our aim was to obtain a less-
biased estimator by applying smaller penalties on variables with
larger coefficients.

sigLASSO is aware of the sampling variance. By jointly opti-
mizing both the sampling process and signature fitting, sigLASSO
is aware of the sampling variance and infers an underlying
mutational context distribution ~p. The underlying latent dis-
tribution is optimized with respect to both sampling likelihood
and the linear fitting of signatures (Fig. 1b). In low mutation
counts, the uncertainty in sampling increases and thus the esti-
mated underlying distribution moves closer to the least square
estimate (Fig. 1c). In contrast, when the total mutation count is
high, the estimate of the distribution is closer to the MLE of the
multinomial sampling process.

We illustrated how the mutation count affects the estimation of
~p using a simulated data set (five signatures, noise level: 0.1, see
“Methods”). When the sample size was small (≤100), high
uncertainty in sampling pushed the inferred underlying muta-
tional distribution ~p far from the MLE in exchange for better
signature fitting. When the sample size increased, lower variance
in sampling dragged~p close to the sampling MLE and forced the
signatures to fit even with larger errors.

Because linear fitting and sampling likelihood optimization
mutually inform each other, concurrently learning an auxiliary
sampling likelihood improves performance. We compared the
accuracy of the estimation of ~p with and without this joint
optimization (Fig. 1d). As expected,~p estimation in low mutation
count performed worse. sigLASSO was able to achieve a lower
MSE in estimating both ~p (with noise) and the underlying true
signature mixture (noiseless).

Performance on simulated data sets. We first evaluated
sigLASSO on simulated data sets. Both sigLASSO (with and
without priors) and deconstructSigs performed better with
higher mutation number and lower noise (Fig. 2a, Supple-
mentary Figure 1). A decrease in mutation number leads to an
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increase of uncertainty in sampling, which is mostly negligible
in the high mutation scenarios. As expected, the MSE jumped
to the 0.05–0.3 range regardless of the noise level when the
mutation number was low. We observed a similar pattern in
support recovery (i.e., precision/recall/accuracy). Thus, the
error is dominated by undersampling rather than embedded
noise. Despite giving a simpler, sparse solution, sigLASSO with
priors outperformed sigLASSO with no priors and decon-
structSigs in both MSE and support recovery. In support
recovery, sigLASSO with priors showed a 5–10% gain in

accuracy compared with deconstructSigs. sigLASSO with no
priors also had better support recovery performance, measured
by accuracy, than deconstructSigs. Overall, sigLASSO main-
tained a higher precision level when the mutation number
decreased and/or the noise increased, which shows its ability to
abstain (decline to assign signatures) and provide some control
on the false positive rate. Notably, sigLASSO with priors
maintained an accuracy above 0.8 in all simulation settings.
Moreover, the precision of sigLASSO was minimally affected by
the number of signatures.
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Although the recall was slightly lower with sigLASSO than
deconstructSigs in noisy settings, in very low and no noise
situations sigLASSO achieved, a higher recall owing to its ability
to adapt to different noise levels. By contrast, deconstructSigs,
which assumes a fixed noise level, overly pruned the signatures in
the post-fitting step when the noise was low. At last, adding
correct priors helped boost both precision and recall significantly.

We next explored how different priors affect sigLASSO’s
performance. Our experiments showed that using known
signatures as priors to tune the weights boosts performance.
Priors improved performance even when we included only a
small fraction of true signatures or blended in a large number of
wrong signatures (Fig. 2b, Supplementary Figure 2). As the
fraction of true signatures given as prior knowledge increased
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from zero, the performance immediately started improving and
continued to do so. When more false signatures were mixed
with true signatures given as prior knowledge, the performance
slowly deteriorated. However, even with 1.5 times false
signatures mixed in with true ones, the performance was
slightly better (~2% in accuracy) than the baseline that used no
priors. Stronger priors had larger boosting effects on the
solution, as expected.

WGS scenario using renal cancer data sets. We next moved
from synthetic data sets to real cancer mutational profiles, which
are likely noisier than simulations and exhibit a highly non-
random distribution of signatures.

We benchmarked the two methods using 35 WGS papillary
kidney cancer samples21. The median mutation count was 4528
(range: 912–9257). We found that without prior knowledge, both
sigLASSO and deconstructSigs showed high contributions from
signatures 3 and 5 (Fig. 3a, b). deconstructSigs also assigned a

high proportion to signatures 8(9.9%), 9(6.9%), and 16(4.7%).
Signatures 3, 8, 9, and 16 were not found to be active in pRCC in
previous studies and currently no biological support connects
them to pRCC2. As expected, sigLASSO resulted in sparser
solutions than deconstructSigs (mean signatures assigned: 3.40
and 4.43, respectively). Adding prior from COSMIC (kidney
cancer combined) helps sigLASSO to put more weight on
Signature 5, and increase the number of signatures assigned to
4.06.

However, if we naively subset the signatures and took the
ones that were found to be active in previous studies, the
signature profile was completely dominated by signature 5, to
which only ~10% mutations on average were assigned with
other signatures. Moreover, the model assigned highly similar
signature profiles to all samples. This finding suggests an overly
simple, underfitted model.

To show that sigLASSO is sensitive to fitting uncertainty, able
to abstain, and is robust, we performed subsampling on 30 pRCC
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size, with no replacement) of 30 WGS pRCC samples that have more than 3000 mutations. The left panel shows the fraction of signature-fitted mutations.

Results using all mutations are shown in box. The right panel shows the agreement (mean fraction of the consensus after binarizing whether a signature

exists or not) among the methods. All p≤ 2 × 10−6 (paired two-sided Wilcox test between sigLASSO (and sigLASSO, no prior) and deconstructSigs). Box

edges are the 25th and 75th percentiles and whiskers indicate the 1.5× IQR or max/min, which ones are smaller. d A dot chart showing the mean fraction of

mutation signatures in each sample, grouped by two tools and histological subtypes (adenocarcinoma/squamous). Signatures that contributed individually

<0.05 in all four cases are grouped into "others''.
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samples (mutation counts ≥3000, Fig. 3c). As the sample size
decreased, sigLASSO assigned fewer mutations with signatures
(mean fraction dropped from 0.93 (all mutations) to 0.55 (20
mutations)), reflecting the greater uncertainty in fitting. This
quality allows the user to be aware of the uncertainty in the
solutions.

Moreover, the model complexity also declined accordingly
(Supplementary Figure 3). The mean number of signatures
assigned by sigLASSO decreased from 4.06 to 1.67, representing
simpler models. Last, the performance of sigLASSO was robust
and stable, as evidenced by stable outputs even in low sampling
counts. Multiple subsampling runs showed high agreement in
active and inactive signatures (~0.95 across all subsample sizes).

In contrast, deconstructSigs was unable to reflect model
uncertainty. Surprisingly, as the mutation number decreased,
the fraction of fitted mutations in deconstructSigs unexpectedly
increased from 0.83 (all) to 0.97 (20 mutations). The model
complexity, as reflected by the mean number of signatures
assigned also increased from 4.43 to 4.70. The agreement between
subsamples dropped significantly as the subsampling size
decreased, indicating the solution is unstable and potentially
overfitted.

WES scenario using esophageal carcinoma data sets. We next
aimed to evaluate the two methods on 182 WES esophageal
carcinoma (ESCA) samples with >20 mutations. The median
mutation count was 175.5 (range: 28–2146), which is con-
siderably lower than WGS but typical for WES.

In sigLASSO, the L1 penalty strength was tuned based on
model performance. In a low mutation count setting, ESCA WES
data set, the model variance was high, which pushed up the
penalty. As expected by its ability to abstain, sigLASSO assigned a
lower fraction of mutations with signatures than deconstructSigs
(median: 0.68 and 0.90; interquartile range (IQR): 0.56–0.75 and
0.86–0.94, respectively, Supplementary Figure 4). deconstructSigs
did not achieve 100% assignment because it performed a hard
normalization of the coefficients after an unconstrained binary
search and then discarded signatures that had ≤6% contribution.
The leading signatures were 1, 16, 17, 3, and 13 in sigLASSO and
1, 17, 16, 6, 13, 3, and 2 in deconstructSigs.

deconstructSigs has been applied to distinguish between two
different histological types of esophageal cancer8. We demon-
strated that sigLASSO generates a sparser but comparable result
with wider signature 1, and 16 gaps between the subtypes (Fig. 3d,
Supplementary Figure 5). The adenocarcinoma subtypes had
higher fractions of signature 1 and 17, and lower fractions of
signature 3, 13, and 16.

Performance on 8893 TCGA samples. We ran sigLASSO and
deconstructSigs with step-by-step set-ups on 8893 The Cancer
Genome Atlas (TCGA) tumors (33 cancer types, Supplementary
Table 11) with more than 20 mutations (Fig. 4, Supplementary
Figure 6). The median mutation number is 100, IQR is 52–200.

Simple non-negative regression resulted in an overly dense
matrix. Applying an L1 penalty made the solution remarkably
sparse. Then, by incorporating the prior knowledge, the signature
landscape further changed without significantly affecting the
assignment sparsity. The change was inconsistent with the priors
given. With low-count WES data (upper quartile: 200 and 96
mutational contexts), we expect the signature assignment to be
very sparse as the uncertainty is high, the model should from
making assignments. sigLASSO indeed assigned low number of
signatures to the samples (median number of signatures assigned
per sample: 1, IQR: 1–2). In comparison, the solutions of
deconstructSigs were less sparse (median number of signatures

assigned per sample: 4, IQR: 3–5). In all, 18.5% samples were
fitted by deconstuctSigs with six signatures or more, compared
with 0.4% by sigLASSO. We provide a kidney cancer example and
detailed paired analysis in the Supplement (Supplementary
Figure 7, 8).

When the mutation number cutoff increases to 50, the above
results of the two methods still stand (Supplementary Figure 9).
We also released all of the signature results of 8893 TCGA
samples on the sigLASSO GitHub site.

Using the large-scale tumor signature profiles, we further
explored the correlation of smoking signature and smoking status
using annotations from a previous study15. In lung adenocarci-
noma (LUAD) samples, smoking samples carry significantly
higher signature 4 (“smoking signatures”) fractions than non-
smoking ones (median: 0 and 0.68, respectively, p ≤ 1 × 10−15,
Wilcoxon rank test, Supplementary Figure 10). Similarly, in lung
squamous cell carcinoma (LUSC) samples, we observed high
fractions of signature 4 in smokers, but because only 3.5% of the
LUSC cohort are nonsmokers (6/171), we were underpowered to
draw a statistical significance. In non-lung cancer samples (N=
1500), we also found a weaker but statistically significant trend of
higher signature 4 in smokers (mean: 0.008 and 0.038,
respectively, p= 3.3 × 10−8, Wilcoxon rank test, Supplementary
Figure 10). This result is in agreement with previous studies on
smoking signatures15.

sigLASSO is computationally efficient. sigLASSO iteratively
solves two convex problems. The ~w�step can be solved using a
very efficient coordinate descent algorithm (glmnet)14. The
~p�step is solved by a set of quadric equations. We observed
empirically that the solution quickly converges in a few iterations
even with low mutation numbers. Meanwhile, deconstructSigs
uses binary search instead of regression to try every coefficient by
looping through all signatures at each iteration.

By profiling sigLASSO and deconstructSigs (Fig. 5), we noticed
that neither total mutation numbers nor signature numbers
remarkably affected the running time of sigLASSO. With a high
mutation number, sigLASSO was 3–4 times faster than
deconstructSigs; with a low mutation number (50 mutations),
these two tools showed a comparable computation time.
Noticeably, despite using less time sigLASSO employs empirical
parameterization and alternative optimization, which regresses
the signature-fitting problems hundreds of thousands of times
with different parameters in a typical run. Therefore, by carefully
designing an effective algorithm, the core fitting step of sigLASSO
is orders of magnitudes faster than deconstructSigs. This enables
sigLASSO to probe the data complexity and accordingly tune the
model complexity.

Discussion
Studies decomposing cancer mutations into a linear combination
of signatures have provided invaluable insights into cancer biol-
ogy4–6,22. Indeed, researchers have gained a better understanding
of one of the fundamental driving forces of cancer initiation and
development, mutagenesis, by inferring mutational signatures
and latent mutational processes.

A practical problem for many researchers is how to leverage
results from large-scale signature studies and apply them to a
small set of incoming samples. Although this might seem to be a
simple linear system problem, core challenges include (1) pre-
venting over- and underfitting on only one sample, often with
very few mutations (especially in WES), (2) achieving proper
variable selection from a large amount of recognized signatures,
and (3) promoting interpretability.
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First, with less than a few hundred mutations, sampling variance
becomes a significant factor in reliably identifying signatures.
Therefore, the fitting scheme should be aware of the sampling
variance, which is especially pronounced in low mutation count
scenarios (WES or cancer types with low mutation burden). Ideally,
the tool should be able to attribute the signatures by flexibly infer-
ring the underlying true mutation distribution given the sampling
variance and the signature-fitting performance. Second, the large
number of available signatures necessitates a proper variable selec-
tion, especially with a limited amount of observed data. Signature
studies on large-scale cancer data sets have revealed that mutational
signatures are not all active in one sample or cancer type; in most
tumor cases, only a few signatures prevail. A recent signature
summary suggested that 2–13 known signatures are observed in a
given cancer type (based on 30 COSMIC signatures), which might
include hundreds and even thousands of samples. Therefore, sparse
solutions are in line with previous de novo studies, and are biolo-
gically sound and interpretable. In addition, sparse solutions can
give better predictions owing to lower estimator variance. Third, a
desirable method should be parameterized according to the data
complexity to achieve optimum fitting. Finally, mutational sig-
natures are not orthogonal owing to their biological nature. Colli-
nearity of the signatures will lead to unstable fittings that change
erratically with even a slight perturbation of the observation.

deconstructSigs was the first tool that could identify signatures
even in a single tumor. Instead of regression, this tool uses binary
search to iteratively tune coefficients. To achieve sparsity, decon-
structSigs performs post hoc pruning with a preset 6% cutoff value.
The mutation spectrum is normalized before fitting, thus making
mutation counts invariant to the model. Moreover, the binary
search operates on unbounded coefficients and uses a hardcoded
upper and lower bounds, which provides no guarantee of finding
the optimal solution. Finally, the greedy nature of stepwise coef-
ficient tuning is prone to eliminating valuable predictors in later
steps that are correlated with previously selected ones23.

Here, we describe sigLASSO, which simultaneously optimizes
both the sampling process and an L1 regularized signature fitting.
By explicitly formulating a multinomial sampling likelihood into
the optimization, we designed sigLASSO to take into account the
sampling variance. Meanwhile, sigLASSO uses the L1 norm to
penalize the coefficients, thus achieving effective variable selection
and promoting sparsity. By fine-tuning the penalizing terms using
prior biological knowledge, sigLASSO is able to further exploit
previous signature studies from large cohorts and promote sig-
natures that are believed to be active in a soft thresholding manner.

Jointly optimizing a mutation sampling process enables
sigLASSO to be aware of the sampling variance. By additionally
modeling an auxiliary multinomial sampling process and
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Fig. 4 Performance on 33 TCGA cancers. Active signatures (total contribution >0.1%) in 33 cancer types using different methods. Only 27 cancer types
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taken from COSMIC, and provided with our "sigLASSO'' R package.
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corresponding distribution, we demonstrated that sigLASSO
achieves better and more stable signature attribution, especially in
cases with low mutation counts. In cancer research, WES data are
abundant, but it also suffers from undersampling in signature
attribution. In these cases, sigLASSO generates more reliable and
robust solutions. We showcase the successful application of
sigLASSO on 8893 TCGA WES samples. Overall, sigLASSO
achieves better sparsity than deconstructSigs and promote
structures in the previous signature studies by injecting priors
into the optimization process. The final signature distribution of
neither sigLASSO nor deconstructSigs is identical to the original
signature studies, which is probably owing to biases in the ori-
ginal signature discovery, sequencing/variants calling, and

unknown hypermutational processes. We noticed deconstructSigs
assigned signatures to 100% of the mutations in most samples,
while in sigLASSO assignment fraction correlated with cancer
types. This abstain pattern indicates the presence of potentially
unknown signatures and cancer subtypes.

As the cost of WGS drops rapidly, we expect an even greater
number of cancer samples to be sequenced24. The vast amount of
cancer genomics data will give scientists larger power to discern
unknown or rare signatures. The growing number of signatures
will eventually make the signature matrix underdetermined (when
k > 96, i.e., the number of possible mutational trinucleotide con-
texts). A traditional simple solver method would give infinitude
(noiseless) or unstable (noisy) solutions in this underdetermined
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linear system. However, by assuming the solution is sparse, we
were able to apply regularization to achieve a simpler, sparser, and
more stable solution. Furthermore, sigLASSO is very efficient and
thus able to handle a larger number of samples and signatures, as
well as hyperparameter optimization.

Moreover, sigLASSO does not specify a noise level explicitly
beforehand, but instead empirically tunes parameters based on
model performance. By contrast, deconstructSigs specifies a noise
level of 0.05 to derive a cutoff of 0.06 to achieve sparsity. In
general, sigLASSO lets the data itself control the model com-
plexity and leave any post hoc filtering to users. Abstention is a
desired trait in machine learning models. In addition to the
objectives, the model learns what it knows and what it does not
(KWIK: Knows What It Knows),25 In both subsampling and
simulation experiments, sigLASSO is able to abstain under high
uncertainty, providing solutions with consistently high precision
and robustness under various scenarios.

Next, owing to the collinearity nature of signatures, pure math-
ematical optimization might lead algorithms to select wrong sig-
natures that are highly correlated with truly active ones. To
overcome this problem, sigLASSO allows researchers to incorporate
domain knowledge to guide signature identification. This input
could be cancer type-specific signatures or patient clinical infor-
mation (e.g., smoking history or chemotherapy). Furthermore, we
transformed the binary classification (active or inactive) to a con-
tinuous space, with weights indicating the strength of the prior.
These weights could be effectively learned using patient information
or other assays (e.g., RNA sequencing or methylation arrays).
Moreover, sigLASSO can adapt to sparsity promoting schemes in de
novo discovery tools through priors. For example, Sparse-
Signatures12 also uses L1 regularization but does not penalize on
background signatures. sigLASSO could use this piece of informa-
tion in its priors to better assign signatures when working together
with SparseSignatures. We showcased the performance of
sigLASSO on real cancer data sets. Although we lack the ground
truth of the operative mutational signatures in tumors, we have
several reasonable beliefs about the signature solution. sigLASSO
produced signature solutions that are biologically interpretable,
properly align with our current knowledge about mutational sig-
natures, and well distinguish cancer types and histological subtypes.

We also implemented elastic net with hyperparameter opti-
mization in sigLASSO. Elastic net blends L2 with L1 regulariza-
tion and in principle demonstrates better performance and
stability than LASSO on strongly correlated features26. We found
that elastic net did not improve the performance (measured as
meaningful reduction in MSE in cross-validation) in our simu-
lations using the current 30 COSMIC signatures, likely because
the correlations between them are not too high. However, with
more cancer samples sequenced every day, researchers will gain
power to discern highly correlated mutational processes and grow
the size of the signature set significantly. Therefore, elastic net
might be beneficial in the near future.

Finally, sigLASSO uses quadratic loss, which follows the pre-
vious de novo studies2,3,5. By doing so, sigLASSO is unbiased in
detecting signatures in cancer samples. Nonetheless, the initial
discovery suffers from several limitations. First, the actual num-
ber of mutational processes is likely higher than 30, the current
number of COSMIC signatures. This is because the power of the
de novo discovery is bounded by the amount of available data.
Second, the nature of mutagenesis leads to some mutational
processes being more prevalent than others. Some of the sig-
natures are cancer type specific. The original signature discovery
did not use a balanced data set with equal numbers of cancer
types. Third, the original NMF objective function employs
quadratic loss, which might lead to bias towards flat signatures
over spiky ones. In addition to the original NMF approach,

researchers have proposed other decomposition methods for
signature discovery. For example, SomaticSignatures27 uses PCA.
Because the loss function is also quadratic, we expect sigLASSO to
work seamlessly with SomaticSignatures.

Our simulation reveals that sigLASSO does not have a dis-
cernable preference to assign to either spiky or smooth signatures
(Supplementary Figure 12). However, we found that the signature
distribution from sigLASSO and deconstructSigs cannot be fully
explained by the current signature knowledge. Further research
probing the biological foundation of the signatures and quanti-
fying biological priors will help advance our understanding and
improve the interpretability of signature assignments. Meanwhile,
as there are still many unsolved issues in signature discovery, we
advocate that sigLASSO should also be used with discretion and
its results interpreted cautiously.

sigLASSO exploits the previously overlooked mutation sampling
uncertainty and formulates a framework that jointly optimizes the
objective (i.e., signature fitting with L1 regularization) and the
sampling likelihood. In biological experiments, low-count observa-
tions on discrete variables are common. For example, in single cell
RNA sequencing (scRNAseq), the measured discrete mRNA counts
are often very low or even zero (owing to undersampling). Our joint
optimization approach could have further implications in these
scenarios. We, indeed, find some similar work in scRNAseq28,29.
Another method for de novo signature discover, EMu, formulates
the discreet mutational process as a Poisson generative model30.
When the total mutational count is fixed, such a Poisson generative
model is equivalent to our multinomial sampling process. Our work
also could be extended to mutagenesis modeling and parameter
estimation—for example, in estimating the nucleotide-specific
background mutation rate in cancer.

Methods
Optimizing sigLASSO. The negative log-likelihood is convex in respect to both~p
and ~w when evaluated individually. Hence, the loss function is biconvex. Instead of
using a generic optimizer, we exploited the biconvex nature of this problem and
effectively optimized the function by using alternative convex search, which
iteratively updates these two variables31.

Algorithm 1.
sigLASSO algorithm

1: initialization: p0i  pmle
i ¼

miPn

i¼1 mi

; t ← 0

2: while t < tmax do

3: ~wtþ1  argmax α
2

Pn

i¼1
pti �

PK

k¼1
sikwk

� �2

� λ
PK

k¼1
ckwk

(~w-step)

4: ~p
tþ1  argmax

Pn

i¼1
milog pi � α

2
pi �

PK

k¼1
sikw

tþ1
k

� �2
( )

(~p-step)

5: ifk~ptþ1 �~p
tk22<ϵ then

6: break

7: t ← t+ 1

8: return ~wtþ1

Specifically, to begin the iteration, we initialized~p using MLE. We started with
the ~w�step, which is a non-negative linear LASSO regression that can be efficiently
solved by glmnet.14 λ is parameterized empirically.

Next, we solved the ~p with a Lagrange multiplier to maintain the linear
summation constraint

Pn
i¼1 pi ¼ 1. The non-negative constraint of pi is satisfied by

only retaining the non-negative root of the solution.
Intuitively, in the~p�step, we tried to estimate~p by optimizing the multinomial

likelihood while constraining it to be not too far away from the fitted~p. If we only
used the point MLE of~p based on sampling and did not perform the~p�step, the
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model would assume the sampling is perfect and become insensitive to the total
mutation counts. The trade-off in the~p�step between the multinomial likelihood
and the square loss reflects the sampling error. The sampling size (sum of mi), the
goodness of the signature fit (as reflected in α), and the overall shapes of~p all affect
the tension between sampling and linear fitting.

Optimizing the p
!
-step. In the~p-step, we tried to solve the following problem with

~pi from the ~w�step.

~p ¼ argmax
Pn

i¼1
fmilog pi � α

2
ðpi � ~piÞ

2g

s:t:8pi ≥ 0;
Pn

i¼1
pi ¼ 1; ~pi ¼

PK

k¼1
sikwk

ð4Þ

We added the Lagrangian multiplier Λ to satisfy the linear constraint of
Pn

i¼1 pi ¼ 1 and took the derivatives with respect to pi (i = 1, 2. . . n) and Λ. This
resulted in n + 1 equations.

p21 � Λ

α
þ ~p1

� �
p1 �

m1

α
¼ 0

¼

p2i � Λ

α
þ ~pi

� �
pi �

mi

α
¼ 0

¼

p2n � Λ

α
þ ~pn

� �
pn �

mn

α
¼ 0

Pn

i¼1
pi ¼ 1

ð5Þ

The roots of the first n quadratic equations are given by

pi ¼
ð~pi þ Λ

α
Þ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~pi þ Λ

α
Þ2 þ 4

mi

α

q

2
ð6Þ

α= 1/σ2 is strictly positive and mi is non-negative. Therefore, if mi= 0, there
exists only one zero root and pi = 0 iff. mi= 0. If mi > 0, there is exactly one
negative and one positive root. Because we required ∀pi ≥ 0, we only kept the
positive root. The second derivative of the log-likelihood is � mi

pi
� α, which is

strictly negative. Therefore, the root we found is a non-negative maximum.
We plugged all the roots into the last equation (i.e., the linear constraint) and

used the R function uniroot() to solve Λ.

Parameter tuning. We tuned λ by repeatedly splitting the nucleotide contexts into
training and testing sets and testing the performance. Because mutations of the
same single-nucleotide substitution context are often correlated, we split the data
set into eight subsets. Each subset contained two of each single-nucleotide sub-
stitution. We then held one subset as the testing data set and only fit the signatures
on the remaining ones. After circling all eight subsets and repeating the process 20
times, we used the largest λ (which leads to a sparser solution) that gave an MSE
0.5 or 1 SD from the minimum MSE. λ was tuned whenever~p deviated far from the
estimation from the previous round. By adaptively learning ~p, sigLASSO avoids
overestimating the errors in the signature fitting and thus allows a higher fraction
of mutations to be assigned with signatures. We fixed λ when the deviation was
small to avoid the inherited randomness in subsetting affecting convergence.

α= 1/σ2, σ2 is estimated using σ2 ¼ SSE
ðn�kÞ, where k is the number of non-zero

coefficients in the LASSO estimator and SSE is the sum of squared errors32. sigLASSO
updates α after every LASSO linear fitting step. To avoid grossly overestimating σ2

(thus underestimating α) in the initial steps when~p is far from the optimum, we set a
minimum α value. In addition, because in practice factors such as unknown
signatures violate the assumptions of linear signature regression, α tends to get
overestimated. So we multiplied it by a confidence factor that represents how
confident we are about the goodness of the signature fit. By default, we set min α=
400 and the confidence factor to 0.1. Users can further tune these values based on the
strength of prior belief of noise level and confidence level of the signature model.

Option for elastic net. Adding an L2 regularizer (i.e., elastic net) might improve
and stabilize the performance when variables are highly correlated26. Therefore, we
also implemented elastic net in sigLASSO. The objective function then became:

‘ ¼
Xn

i¼1
milog pi �

α

2
pi �

XK

k¼1
sikwk

 !2( )

� λ
XK

k¼1
ckðγwk þ ð1� γÞw2

kÞ ð7Þ

We tuned the hyperparameter γ by grid search together with λ. We always
picked the largest γ and the largest λ (for better sparsity) that gave an MSE that was
0.5 SD from the minimal MSE. In simulations, we did not find that introducing L2
regularization added additional benefits. The model gave almost identical solutions
to using L1 only. Nonetheless, we kept elastic net as an option in highly correlated
signature scenarios to the user in our implementation.

Data simulation and model evaluation. We downloaded 30 previously identified
COSMIC signatures v2 (http://cancer.sanger.ac.uk/cosmic/signatures). We created
a simulated data set by randomly and uniformly drawing two to eight signatures

and corresponding weights (minimum: 0.02). The reason for picking up to eight
signatures is because (1) empirically, in cancer signature studies, most samples have
only a few signatures. (2) We further confirmed the sparsity of signatures by
running deconstructSigs on large-scale TCGA data and found 99.96% samples got
assigned with eight or less signatures. (3) Moreover, biologically, we believe that it
is unreasonable for more than eight of the processes to act simultaneously in one
sample. Many of these processes describe biological disjoint conditions, e.g., smoke,
UV radiation and tissue-specific cellular processes. We simulated additive Gaussian
noise at various levels with a positive normal distribution of up to 25 (1–25,
uniformly drawn) randomly selected trinucleotide contexts. Then, we summed all
the signatures and noise to form a mutation distribution. We sample mutations
from this distribution with different mutation counts.

We ran deconstructSigs according to the original publication8 and sigLASSO,
both with and without prior knowledge of the underlying signature. To evaluate
their performance, we compared the inferred signature distribution with the
simulated distribution and calculated MSE. We also measured the number of false
positive and false negative signatures in the solution (support recovery).

Illustrating sigLASSO on 8893 TCGA samples. To assess the performance of our
method on real-world cancer data sets, we used somatic mutations from 33 cancer
types from TCGA. We downloaded MAF files from the Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov/). A detailed list of files used in this study
can be found in Supplementary Table 1.

We extracted prior knowledge on active signatures in various cancer types from a
previous pan-cancer signature analysis (http://cancer.sanger.ac.uk/cosmic/signatures).

sigLASSO software suite. sigLASSO is implemented as an R package “siglasso”. It
accepts processed mutational spectrums and VCF files. We provided functions to
parse mutational spectrums from VCF files as well as some visualization methods
in the package. “siglasso” allows users to specify biological priors (i.e., signatures
that should be active or inactive) and their weights. “siglasso” uses 30 COSMIC
signatures by default. Users are also given the option to supply customized sig-
nature files. It is computationally efficient; using default settings, the program can
successfully decompose a whole genome sequencing (WGS) cancer sample in less
than a few seconds on a regular laptop. For time profiling purposes, we ran siglasso
and deconstructSigs on an Intel Xeon E5-2660 (2.60 GHz) CPU. We employed the
R package “microbenchmark” to profile the function call siglasso() and which-
Signatures(). For each setup, we generated 100 noiseless simulated data sets and
repeated the process 100 times for each evaluation.

We made siglasso source code available at http://github.com/gersteinlab/siglasso.

Evaluation criteria for signature assignment. One of the limitations of cancer
signature research is that the ground truth of real samples typically cannot be
obtained. Previous large-scale signature studies have relied largely on mutagen
exposure association from patient records and biochemical knowledge on muta-
genesis. Here, besides using simulation, we illustrated the outputs of different
models and compared the results on real data set with existing signature knowledge
and distributions. Although no gold standard exists to evaluate the performance,
we do have a few reasonable expectations about the solution:

Sparsity: one or more signature should be active in a given cancer sample and
type. However, not all signatures should be active. A sparse distributed signature
set among cancer samples and types is defined in previous de novo discovery
studies. Any signature-fitting tool should follow and produce a similar signature
distribution. Moreover, mutational processes are discrete in nature and tied with
certain endogenous and environmental factors. An obvious example is that the UV
signature should not exist in unexposed tissues. Existing signature-identifying
methods aim to implicitly achieve sparse solutions by dropping signatures with
small coefficients or pre-selecting a small signature subset for fitting.

The ability to abstain (decline to assign signatures to all mutations): signature
assignment issues are often undefined owing to collinearity of the signatures and a
larger number of possible signatures. Overfitting is a serious concern, especially
when the mutation counts are low (e.g., WXS or cancer genomes with fewer
mutations) or the fitting is poor (e.g., unknown mutational process or sample
contamination causing high noise). A good solution should refuse to fully assign
signatures to every mutation when it does not have enough confidence to do so
and, instead, defer to the human researchers to decide.

Robustness: solutions should be robust and reproducible. Signatures are not
orthogonal, thus simple regression might lead to solutions that change erratically
when a small perturbation is made in the observation. Moreover, the solution
should reflect the level of ascertainment. Especially in WES, low mutation count is
often a severe obstacle for assigning signatures owing to undersampling. In
particular, under low mutation count, not all of the operative signatures would be
reliably discovered. It is better to abstain under high uncertainty.

Biological interpretability: the solution should be biological interpretable.
Because of the biological nature of collinearity in the signatures, simple
mathematical optimization might pick the wrong signature. Researchers now tackle
this problem by simply removing the majority of predictors they believe to be
inactive. sigLASSO allows users to supply domain knowledge to guide the variable
selection in a soft thresholding manner, leaving space for noise and rare or
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unknown signatures. For instance, we expected to find divergent signature
distributions in different cancer types, which is reported in previous de novo
discovery studies. Various tissues have divergent endogenous biological features,
are exposed to diverse mutagens, and undergo mutagenesis in dissimilar fashions.
Signature patterns should be able to distinguish between cancer types. This can be
achieved by using different cancer type-specific priors.

These expectations are not quantitative, but they help direct us to recognize the
most plausible solution as well as the less-favorable ones.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are avaiable from Genomic Data

Commons Data Portal (https://portal.gdc.cancer.gov/). A detailed list of files used in this

study can be found in Supplementary Table 1.

Code availability
We make the code publicly available at github.com/gersteinlab/siglasso.
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