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Abstract

This paper addresses the issues involved in software agents

making trade-offs during automated negotiations in which

they have information uncertainty and resource limitations.

In particular, the importance of being able to make trade-

offs in real-world applications is highlighted and a novel

algorithm for performing trade-offs for multi-dimensional

goods is developed. The algorithm uses the notion of fuzzy

similarity in order to find negotiation solutions that are ben-

eficial to both parties. Empirical results indicate the bene-

fits and effectiveness of the trade-off algorithm in a range of

negotiation situations.

1. Introduction

Negotiation is a key form of interaction in multi-agent

systems. It is important precisely because the agents are au-

tonomous; that is, they decide for themselves what actions

they should perform, at what time, and under what terms

and conditions. Since such agents have no direct control

over one another, they must negotiate in order to manage

their interdependencies. Thus, we view negotiation as a

process by which a joint decision is made by two or more

parties. The parties first verbalise contradictory demands

and then move towards agreements [9].

Automated negotiation exists in many shapes and forms:

ranging from simple auctions in which agents merely have

to bid truthfully [17], to complex strategic models in which

agents argue for positions and aim to persuade their oppo-

nents of the value of a particular course of action [8]. In

this work, however, we are interested in a particular class

of negotiation: service-oriented negotiation [14]. In such

negotiations, a producer and a consumer have to come to

a mutually acceptable agreement over the terms and condi-

tions under which the producer will execute some problem
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solving activity for the consumer. Specific issues that need

to be agreed include the price of the service, the time at

which it is required, the quality of the delivered service and

the penalty to be paid for reneging upon the agreement.

In previous work [4], we investigated the design of

reasoning mechanisms that enable agents to act competi-

tively (obtain deals that are good for themselves) in service-

oriented negotiations in which they have limited knowledge

and computational resources. However, based on our expe-

riences in the domains of business process management [6]

and telecommunications network management [3], we find

that in some cases there is also a need for agents to act in a

more socially responsible manner. Thus, some of the agents

in the business process management application are part of

the same overarching organisation and some of the agents

in the telecommunications application are from the same

network operator. In such cases, the agents are concerned

both with the outcome of the negotiation for themselves and

for their negotiation opponent. In short, they care about eq-

uity and social welfare [2], as well as their individual utility.

This requirement leads us to consider designing models that

can uncover win-win negotiation solutions [10], again in the

presence of limited knowledge and computational bound-

edness. Win-win negotiation refers to bargaining situations

where both parties search for solutions that “squeeze out”

more gains (either mutually or individually) than the cur-

rently agreed deal.

The particular mechanism for win-win negotiation that

we explore here is that of agents making trade-offs. Intu-

itively, a trade-off is where one party lowers its scores on

some negotiation issues and simultaneously demands more

on others. Thus, an agent may accept a service of lower

quality if it is cheaper or a shorter deadline if it receives

a higher price. Such movements are intended to generate

an offer that, although of the same value to the proposer,

may benefit the negotiation opponent and hence increase

the overall joint gains [10] between the two agents.

The contribution of this work is twofold. Firstly, extant

work on automated negotiation has largely ignored the issue



of making trade-offs. Even when it has been dealt with, the

advocated approach is based on assumptions that are un-

realistic for real-world settings (section 4). Secondly, we

present a novel algorithm for making trade-offs, in the pres-

ence of information uncertainty and resource boundedness,

for multi-dimensional goods based upon the notion of fuzzy

similarity [18]. Moreover, this algorithm is analysed theo-

retically (to determine its complexity) and evaluated empir-

ically (to ascertain its operational performance).

The remainder of the paper is structured in the follow-

ing manner. Section 2 presents our algorithm for mak-

ing trade-offs in service-oriented negotiations (including the

complexity analysis). Section 3 provides an empirical eval-

uation of our trade-off mechanism. Section 4 compares our

approach to previous work on automated negotiation and

section 5 outlines our conclusions and future work.

2. Making Trade-Offs

In our previous mechanism [4], agents proposed a se-

ries of contracts that had diminishing value to themselves

(here we term such mechanisms responsive). However, in

choosing to make a trade-off negotiation action, an agent is

seeking to find a contract that has the same value to itself as

its previous proposal, but which is more acceptable to (has

higher value for) its negotiation opponent. When doing this,

the agent would like to know its opponent’s utility function

in order to find the counter proposal that maximises the op-

ponent’s return. However, in our scenarios, this function is

private and so a similarity function is used as an approxima-

tion.

���� Basics of Service�Oriented Negotiation

This sub-section outlines the basics of our service-

oriented model (refer to [4] for more details). Let i

(i � fa� bg) represent the negotiating agents and j (j �
f�� ���� ng) be the issues under negotiation (eg price, de-

livery time, quality of service and penalty). Further, let

xij � �minij �maxij � be a value for issue j that is accept-

able to agent i. We limit ourselves to considering issues

for which negotiation amounts to determining a value be-

tween an agent’s defined delimited range. Each agent has

a scoring function V i
j � �minij �maxij � � ��� �� that gives

the score agent i assigns to a value of issue j in the range

of its acceptable values. For convenience, scores are kept

in the interval ��� ��. The relative importance that an agent

assigns to each issue under negotiation is modelled as a

weight, wi
j , that gives the importance of issue j for agent

i. We assume the weights of both agents are normalized,

i.e.
P

��j�n w
i
j � �, for all i in fa� bg. An agent’s scoring

function for a contract—that is, for a value x � �x�� ���� xn�

in the multi-dimensional space defined by the issues’ value

ranges is then defined as: V i�x� �
P

��j�n w
i
jV

i
j �xj�

For analytical purposes we restrict ourselves to an addi-

tive and monotonically increasing or decreasing value scor-

ing system.

���� Formulating Trade�O�s

An agent will decide to make a trade-off action when

it does not wish to decrease its aspirational level (denoted

�) for a given service-oriented negotiation. Thus, the agent

first needs to generate some/all of the potential contracts

for which it receives the score of �. Technically, it needs

to generate contracts that lie on the iso-value (or indiffer-

ence) curve for � [10]. As all these potential contracts have

the same value for the agent, it is indifferent amongst them.

Given this fact, the aim of the trade-off mechanism is to find

the contract on the iso-curve that is most preferable to the

negotiation opponent (since this maximises the joint gain).

More formally, an iso-curve is defined as:

Definition 1 Given an aspirational scoring value �, the iso-

curve set at level � for agent a is defined as:

isoa��� � fx j V a�x� � �g (1)

From this set, the agent needs to select the contract that

maximises the joint gain. However, since an agent does not

know its opponent’s utility function some form of approxi-

mation is needed. The heuristic we employ is to select the

contract that is most “similar” to the opponent’s last pro-

posal (since this may be more acceptable to the opponent).

To compute similarity we use the concept of fuzzy similar-

ity [18]. Asuming we have a formula like “if p then q”,

fuzzy similarity is an approximation heuristic that supports

reasoning of the kind “if aproximately p then aproximately

q”. This technique was chosen because it allows an agent

to approximately model the closeness of two contracts in

decision making.

A trade-off can now be defined as:

Definition 2 Given an offer, x, from agent a to b, and a

subsequent counter offer, y, from agent b to a, with � �
V a�x�, a trade-off for agent a with respect to y is defined

as:

trade � o� a�x� y� � arg max
z�isoa���

fSim�z� y�g (2)

where the similarity, Sim, between two contracts is defined

as a weighted combination of the similarity of the issues:

Definition 3 The similarity between two contracts x and y

over the set of issues J is defined as:

Sim�x� y� �
X
j�J

wjSimj�xj � yj� (3)



with
P

j�J wj � � and Simj being the similarity function

for issue j. These weights represent the level of importance

the agent believes its opponent places on the various issues.

For example when reasoning about what deal to offer, an

oil company negotiator, when interacting with an ecologist,

may safely assume that the pollution risks are given greater

weight by the ecologist than the oil production costs.

Following the results from [16], a similarity function that

satisfies the axioms of reflexivity, symmetry, and t-norm

transitivity can always be defined as a conjunction (mod-

elled, for instance, as the minimum) of appropriate fuzzy

equivalence relations induced by a set of criteria functions

hi. A criteria function is a function that maps values from

a given domain into ��� ��. Correspondingly, the similarity

between two values for issue j, Simj�xj � yj�, is defined as:

Definition 4 Given a domain of values Dj , the similarity

between two values xj � yj � Dj is:

Simj�xj � yj� �
�

��i�m

�hi�xj� � hi�yj�� (4)

where fh�� � � � � hmg is a set of comparison criteria with

hi � Dj � ��� �� and � is an equivalence operator. In

our case, the criteria functions are given in section 3.1 and

�� j h�xj� � h�yj� j is used as the equivalence operator

(since this is a straightforward measure of the absolute Eu-

clidean distance between two points). The conjunction can

be any t-norm function.

To illustrate the modelling of similarity in a given do-

main, consider the example of colours. Dcolours �
fyellow� violet�magenta� green� cyan� red� � � �g. In or-

der to model how similar two given colours are, we can

consider different perceptive criteria. For instance, there are

‘warm’ colours and ‘cold’ colours. With respect to this cri-

terion, yellow and orange are more similar that yellow and

violet. We could also consider the criterion of visibility (as

well as many others). Green is the colour with the worst vis-

ibility and yellow and cyan are those with the best. We can

use these two criteria to model our example as (we present

functions extensively as sets of pairs (input, output)):

ht � f�yellow� ����� �violet� ����� �magenta������
�green������ �cyan� ����� �red� ����� � � �g

hv � f�yellow� ��� �violet� ��	�� �magenta���
��
�green������ �cyan� ��� �red� ����� � � �g

where ht and hv are, respectively, the comparison functions

corresponding to temperature (warm is 1, cold is 0) and vis-

ibility (maximum is 1, minimum 0).

With these functions, and using min as conjunction, we

can obtain by simple arithmetic that:

Simcolour�yellow� green� �
min��� j ht�yellow�� ht�green� j�

�� j hv�yellow�� hv�green� j� �
� min���
� ���� � ���

or, Simcolour�cyan� violet� � min����� ��	� � ��	

���� The Trade�O� Algorithm

The trade-off algorithm performs an iterated hill-

climbing search in a landscape of possible contracts. The

search proceeds by successively generating contracts that

lie closer to the iso-curve (representing the agent’s aspira-

tion level), followed by the selection of the contract that

maximises the similarity to the opponent’s last offering.

The algorithm terminates when the last selected contract

lies on the iso-curve.

The algorithm starts at y, the oponent’s last offer, and

moves towards the iso-curve associated with the agent’s last

offer, x, in S steps. Each step starts by randomly generating

N new contracts that have a utility E greater than the con-

tract selected in the last step yj (or y� � y if it is the first

step). N is referred to as the number of children. Each new

contract yj�� so generated satisfies v�yj��� � v�yj� � E.

From the generated children contracts, the one that max-

imises the similarity with respect to the oponent’s contract

y is selected. E is computed as the overall difference be-

tween the value of x and y divided by the number of steps.

That is, E � v�x��v�y�
S

. Below we present the algorithm

responsible for generating a new random contract. This al-

gorithm will thus be invoked N times at each step in order

to compute the best trade-off contract (giving SN calls in

total). The algorithm generates children by spliting the gain

in utility, E, randomly among the set of issues under nego-

tiation.

inputs: yj � /* last step best contract. y� � y */

E; /* step utility increase */

v��; /* value scoring function */

output: yj��; /* child of yj */

begin

(1) Ei �� � � v�yi��

(2) Emax ��
P

wiEi�
(3) � � ����Emax

if �Emax � E  �� then

(4) k �� ��En �� ��
while �En � E� do

k �� k  ��

(5) rki �� random��� Ei��

(6) En �� En 
P

i
wir

k
i �

(7) Ei �� Ei � rki �
endwhile

(8) Ei ��
�Pk

j��
r
j
i

�
E
En

�

(9) y
j��
i �� v��i

�
vi�y

j
i � Ei

�
�

else raise error

end

In more detail: (1) maximum utility gain per issue, (2)

total maximum utility gain, (3) setting of the average num-



ber of iterations, (4) initialization of steps and of gained util-

ity, (5) generation of a random value for utility gain for each

issue, (6) update the utility gained in iteration k, (7) fix the

utility potential gain for next iteration, (8) normalization,

and (9) compute the value for each issue in the new con-

tract.

���� Algorithmic Complexity

When analysing the complexity of our algorithm the first

thing to note is that it includes a call to a random number

generator inside the main loop (step 5). This has a direct

impact on the number of iterations, and hence on the time

the algorithm will take. Assuming the random number gen-

erator is probabilistic in nature, we cannot make a ‘big-O’

analysis of the complexity [1]. However, what we can com-

pute is an “average case” assuming that the random genera-

tor is perfect.

Let n be the number of negotiation issues. Steps 1, 5, 6,

7, 8, and 9 all need a time which is O�n� (� � i � n). The

time used by the algorithm will be proportional then to the

number of iterations, k, of the while loop, multiplied by the

cost of each iteration (which, as said, is O�n�). That is, it

will be proportional to kn. Let us derive how large k can

be. The while loop will terminate when En becomes big-

ger than E. We know that before entering the loop for the

first time Emax �
P

i �iEi and Emax � E � �. En is

the weighted addition of the portions rki generated by each

iteration. On average, and assuming perfect random num-

ber generation, at every iteration we will increment En by

half of each issue’s maximum potential utility gain given

to the random generator, that is,
P

i
Ei

� . Thus, in the first

iteration, the algorithm will consume a half of Emax, i.e.

En � ��
P

i �i
Ei

� which is Emax

� . In the second, a half of

the remaining amount, that is a half of Emax

� , i.e. Emax

� . In

general, we’ll consume Emax

�k
at step k and leave Emax

�k
for

the next step. That is, En at step k is En � Emax �
Emax

�k
.

We can then compute the average value for k as a func-

tion of the difference between Emax and E. Given that

we stop when En � E, we have Emax �
Emax

�k
� E,

that is, Emax � E � Emax

�k . The step before we had
Emax

�k��
� Emax � E. Taking this latter inequality, it is

easy to see that k � � � log Emax

Emax�E
. As we consider that

Emax � E � � is true, we have k � � � logEmax

�
. A pol-

icy to decide which value to assign to � could be to fix its

value as a percentage of Emax. For instance, making � a

�	 of Emax would mean that k � � � log Emax

����Emax
, that

is k � � � log��� � 
; eight iterations on average. Sum-

marising, if we fix � as a percentage c of Emax, we can see

that the average number of iterations is k � �� log �
c
. Thus,

on average the total time of the algorithm is proportional to

�� � log �
c
�n.

3. Experimental Analysis

Having developed and analysed our trade-off algorithm,

the next step is to evaluate its operational performance. To

this end, we wish to obtain two types of empirical infor-

mation. One set of experiments seek to investigate the pa-

rameters of the trade-off algorithm in generation of a single

offer, while the other set seeks to investigate the process

of negotiation when agents use trade-off and/or responsive

mechanisms. The former, referred to as single-offer experi-

ments, aim to evaluate the kernel of the trade-off algorithm.

The latter, refered to as meta strategy experiments, deal with

the dynamics of the algorithm when interacting with other

mechanisms.

���� Experimental Procedures

Both types of experiments involve an offer/offers from

one negotiator, a player, to another, the opponent. Further-

more, both experiments involve negotiation over four quan-

titative issues �price� quality� time� penalty�. The reser-

vation values of each issue for both agents are consid-

ered to be the same. The importance weight vectors of

the agents (section 2.1) are fixed throughout the negotia-

tion: W player � ����� ���� ����� ����� and W opponent �
����� ���� ����� ����1. The value function V a

i used by agent

a for issue i is a linear scoring function of the following

type:

V a
i �xi� �

�
maxa

i
�xi

maxa
i
�mina

i

if decreasing
xi�mina

i

maxa
i
�mina

i

if increasing

where increasing and decreasing refer to the direction

of change in score as the value of that issue increases. For

example, increasing the price of the service decreases the

score for a client, but increases it for a seller.

Other input variables of the trade-off algorithm were set

in the following way. The discriminatory power—the mag-

nitude of the difference between the input and output—of

the criteria function (equation 4) was set so that it exhib-

ited two properties. Firstly, that it has more discrimination

within the issues’ reservation values (as compared to values

outside this range), since most of the negotiation will take

place in this region. Thus, maximal discrimination should

be between an issue’s min and max values (section 2.1).

We parameterised this reservation value requirement by the

independent variable �. When � is low, the function should

be maximally discriminative for values within the issue’s

1Generally speaking, the differences in these weights are one of the key

elements that provide the opportunity for joint improvements (the other be-

ing the different shapes of the scoring functions). For example, an increase

in price may have little effect in value for the player, but relatively more

for the opponent.



reservation limits (mutatis mutandis when � is high). Sec-

ondly, we also want to experiment with different discrimi-

natory power within the reservation range (to support differ-

ent similarity measures for different issues). For example,

for one issue it may be desirable to have maximal discrim-

ination at the centre of the reservation values, whereas for

another issue maximal discrimination may be desired at the

extremes of the reservation values. We parameterise this

requirement using the variable �. When � is high, more

discrimination is placed towards the maximum of the reser-

vation values (mutatis mutandis when it is low). The fol-

lowing function satisfies these two requirements:

h�x� �
�

	
atan

��
� j x�min j

x�min

���� x�min

max�min

����
�

� �

	

tan�	�
�

�
� ���



�

	

�
(5)

In this case, in order to be quite discriminatory, � was

fixed at ��� for all issues. For all issues, we fixed the

different �s to be equal, �price � �quality � �time �
�penalty � �, to have linear criteria functions �h�

is� that

have equal discrimination power across the issue’s reserva-

tion values. We chose to make � and � constant to reduce

the number of free variables in the experiments. However,

normally the setting of values for � and � reflects the agent’s

domain knowledge.

3.1.1 Single-Offer Experiment Variables

In these experiments the independent variables were: i) the

number of children generated at each step in hillclimbing to

the iso-curve, ii) the number of steps taken to reach the iso-

curve and iii) the information that is available to an agent

regarding the importance (or weight) the opponent places

on each issue in computing the contract’s value (equation

3). Values for the first and second variables control the

amount of search performed by the trade-off algorithm. Ex-

periments were run where the number of children was se-

lected from the set f�� ���� ���g. The number of steps to

the iso-curve was selected from the set f�� ��g. In the third

set of dependent variables, an agent can have perfect, par-

tial, imperfect or uncertain information on how the other

agent weights the issues that are input into its similarity

function (equation 3). In experiments with perfect infor-

mation, the algorithm, in computing similarity, is given the

other agent’s weights for different issues (cardinally correct

information). Partial information games are where the al-

gorithm is given the correct order of importance but not the

actual issue weights (ordinally correct information). Im-

perfect games represent the situation where the algorithm

is given no information about the other’s weights. Finally,

uncertain information games represent cases where the al-

gorithm is given undifferentiated weights for each issue, in

this case ������ ����� ����� �����. The dependent variable in

all our experiments is the generated contract for both agents.

The experimental procedure consisted of inputting two

contracts, representing x and y, into the algorithm under

each of the dependent variable environments and observ-

ing the execution trace of the algorithm for an offer from

the player to the opponent. All input contracts (x and

y) were subject to the general constraint that vplayer�y� �
vplayer�x� and vopponent�x� � vopponent�y�. This ensured

trade-offs are possible by ruling out all those contracts that

are already of a higher value to either party. The control

set was generated by chosing the preferred child randomly

at each step approaching the iso-curve (as opposed to using

the similarity criteria).

3.1.2 Meta Strategy Experiment Variables

The aim of these experiments was to empirically evalu-

ate the outcome and dynamics of negotiation when agents

used either a trade-off mechanism or a responsive mech-

anism or a combination of the two in the course of ne-

gotiation (that is, a meta strategy of which mechanism to

select in order to generate a series of counter-proposals).

The first offer of both agents was generated using respon-

sive mechanisms, since the trade-off mechanism requires

at least one offer from the opponent. After that, an agent

is faced a choice of which mechanism to select. Since

there can be an infinite number of meta strategies (as many

as potential sequences of chosings between responsive and

trade-off types of counterproposals), the meta strategies

considered in these experiments were limited to the set

fresponsive� smart� serial� randomg. Responsive sim-

ply selected the responsive mechanism for generating an

offer throughout negotiation. This was included to com-

pare the trade-off mechanism against an agent that always

concedes utility. A smart strategy consisted of deploying

a trade-off mechanism until the agent observed a deadlock

in the average closeness of offers between both agents as

measured by the similarity function. That is, the distance

between the offers was not reducing. Under these circum-

stances, the value of the previously offered contract, V a�x�,
was reduced by a predetermined amount, here ����, thereby

lowering the input value of � into the trade-off mechanism.

A serial strategy involves alternating between the trade-off

and responsive mechanisms. Finally, the random meta strat-

egy randomly selected between the two mechanisms. The

parameters of the responsive mechanism (see [4]) were set

to produce concession behaviours, since being responsive

often involves concessions in the light of environmental

needs (e.g. time, resources etc.). For the trade-off algo-

rithm, the number of children and number of steps were set



to ��� and �� respectively and the similarity weights were

set at uncertain settings of ������ ����� ����� �����. Both ne-

gotiators were given a deadline of twenty offers.

���� Results

Figure 1 and the top row of figure 2 show the results

of varying, under different information inputs, the number

of children generated in single-offer experiments when the

number of steps to the iso-curve was set to ��. The bot-

tom row of figure 2 represents the case where the num-

ber of children was set to ���, but the trade-off algorithm

computed the iso-contract in a single step. The dot-dash

line represents the execution trace of the random control,

the solid line emanating from y the similarity based trade-

off execution trace, and the line joining ��� �� to ��� �� the

pareto-optimal line. The results show four major patterns.

Firstly, when moving to the iso-curve if the space of possi-

ble contracts is not explored sufficiently, � children (figure

1 top row) or � step (figure 2 bottom row), then the gains of

the opponent are small. More specifically, only when the

player has perfect information about the opponent’s eval-

uations and the trade-off mechanism operates in 1 step with

100 children will the mechanism improve the offer (from

the opponent’s perspective) (figure 2 E). The next best con-

tract for the opponent is when the player has the same

value as x (figure1 A). All other contracts generated by the

player when not fully exploring the search space (figures 1

B,C,D and 2 F) have lower value to the opponent than x.

Secondly, in nearly all cases, the similarity based trade-

off out performs the policy of randomly selecting a child

for the next step towards the iso-curve. However this pat-

tern does not hold for the cases of reaching the iso-curve

in one step under partial and uncertain information environ-

ments (figure 1 G and H). This is the result of chance, rather

than randomness being a better strategy in this type of envi-

ronment.

Thirdly, the opponent’s benefit increases as the algo-

rithm performs more search (� to ��� children). Further-

more, there is no significant difference between perfect and

partial information outcomes within the ��� and ��� result

categories. This indicates that our algorithm requires only

partial ordering information, rather than perfectly cardinal

orderings, in order to compute outcomes that are better for

the opponent.

Finally, for all environments and variable combinations,

imperfect information results in significantly poorer out-

comes for the opponent than the other information classes.

This is only to be expected since search is directed towards

erroneous directions.

Figure 3 presents the data for the meta-strategy ex-

periments. Individual offers between the player and the

opponent are depicted as circles and squares respectively.

The sequences of offers are joined by a solid line for the

player and a dotted line for the opponent. The final agree-

ment is depicted as the offer where the circle and square

meet.

The observed data exhibits two patterns. Firstly, there

is a clear rank ordering across meta-strategy pairings over

the summed joint value gained for the final outcome. The

highest joint gain is achieved in negotiations between two

smart meta-strategists. In this case the final outcome

is close to the pareto-optimal line, implying that such

a pairing of meta-strategies results in outcomes that are

most beneficial to both parties. The remaining rankings

for player� opponent pairings of meta-strategies are then

[smart,serial], [serial,serial], [smart,random], [smart,responsive],

[serial,responsive], [random,responsive], [random,random] with

respective joint gains of 1.27, 1.18, 1.146, 1.11, 1.076, 1.06,

0.99. In general, the higher joint utilities occur when at least

one of the agents is smart. The random meta strategists,

as expected, perform worst.

The other observable pattern relates to the number of

messages exchanged between agents using different meta-

strategies. This indirectly measures the communication

load a meta-strategy places on the agents. The observed

pattern is almost the reverse for the joint value outcomes

above, with a [smart,smart] pairing incurring the highest

communication cost (reaching a deal after 20 rounds), fol-

lowed by [random,random], [smart,responsive], [smart,random],

[smart,serial] (14 rounds), [serial,serial] (13 rounds), and [se-

rial,responsive], [smart,smart] (12 rounds). This observation

supports our intuition that higher joint utilities are gained

through greater search, which, in turn, involves more com-

munication between the agents.

In summary, these results indicate that unless agents

know, at least partially, the importance the other agent at-

taches to an issue, then the best policy for computing trade-

offs is to assign uncertain weightings to all issues. These

weightings can then be updated by some learning rule to-

wards partial or perfect information models, since a) in-

formation models are private and b) erroneous predictions

can result in poorer outcomes. Furthermore, engaging in

trade-off negotiation, particularly with a high search fac-

tor by both parties, results in higher joint gains. However,

this improvement is achieved at the expense of an increased

communication load.

4. Related Work

A number of approaches have been advocated for the

process of making decisions during the course of negotia-

tion. Chief amongst these is work on game theory. This

strand of work has produced a large number of sophisticated

and specialised models [11], which, although analytically

well formed, are generally inappropriate for our purposes
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Figure 1. Data for � children in �� steps (first row) and ��� children in �� steps (second row). A) &

E) Perfect information, B) & F) Imperfect information, C) & G) Partial Information, D) & H) Uncertain
information.
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Figure 2. Data for ��� children in �� steps (first row), and ��� children in � step (second row). A) &
E) Perfect information B) & F) Imperfect information, C) & G) Partial Information, D) & H) Uncertain

information.
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Figure 3. Dynamics of Negotiation Process for Meta Strategies: A) smart v. smart, B) smart v.serial,

C) smart v. random D) smart v. responsive, E) serial v. serial, F) serial v. responsive, G) random v.

random, H) random v. responsive.



(because they specify the solution properties and leave the

process of how to reach these points unspecified and be-

cause they generally violate our privacy of information re-

quirements). Strategic game theoretic models [12, 7], on

the other hand, do model the process of negotiation. How-

ever they often make unrealistic information assumptions

(eg that agents know each other’s type [5]) and they do not

model negotiation for joint gains. Overall, in contrast to

game theoretic models, our work is targeted more to open

systems, where information is sparse and computational re-

sources are limited. In such environments, a satisficing so-

lution is the best that can be hoped for.

Uncertainty in negotiation was also addressed by us-

ing decision theoretic models in the Persuader system [15]

where multi-attribute utility theory was combined with

case-based reasoning in contexts where the agent had no

previous cases to reason with. This dual approach is similar

to our work in that agents use both utility and similarity for

decision making. However, we use similarity rather than

utility to address the inherent uncertainties involved and, as

we have shown in section 3.2, this appears to be a better

choice in uncertain environments.

The process of negotiation has also been modeled as a

distributed constraint satisfaction problem [13]. In such

cases, an agent’s objectives are represented as constraints

together with their associated utilities. Strategies (e.g. com-

position, reconfiguration and relaxation operators) are then

used to modify these constraints, or the current solution, un-

til a final solution is reached. The relaxation of constraints

is similar to our previous work on concession mechanism

for negotiation, and the modification of the current solution

closely resembles the trade-off mechanism reported here.

However, in our work there is only one objective, namely

reaching a contract which maximises value. Therefore, our

approach is to develop reasoning mechanisms that deliber-

ate over raw values rather than objectives.

5. Conclusions and Future Work

This paper presented a formal model and a related algo-

rithm for carrying out trade-offs in automated negotiations.

The algorithm is designed to work in a distributed setting

in which agents have limited information about the prefer-

ences of their negotiation opponent and limited computa-

tional resources to devote to the negotiation process. An-

alytical and empirical evaluation showed our algorithm to

be effective in such cases. Moreover, even when compara-

tively little information is known about the opponent’s pref-

erences, our algorithm still finds reasonable trade-offs and

does so in an acceptable number of negotiation cycles.

For the future, we aim to use similarity measures to ma-

nipulate the set of negotiation issues at run-time, as well as

using fuzzy techniques to model an agent’s preferences and

its ratings of the importance of the negotiation issues.
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