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Using simulated annealing to solve a multiobjective assembly line

balancing problem with parallel workstations

P. R. McMULLEN² * and G. V. FRAZIER³

This research presents a Simulated Annealing based technique to address the
assembly line balancing problem for multiple objective problems when paralleling
of workstations is permitted. The Simulated Annealing methodology is used for
23 line balancing strategies across seven problems. The resulting performance of
each solution was studied through a simulation experiment. Many of the prob-
lems consisted of multiple products, which were sequenced in a mixed model
fashion, task times were assumed to be stochastic, and parallel workstations
were permitted. Two primary performance objectives were of most interest:
total cost (labour and equipment) per part, and the degree to which the desired
cycle time was achieved. Other traditional line balancing and production perform-
ance measures were also collected. This paper demonstrates how Simulated
Annealing can be used to obtain line balancing solutions when one or more
objectives are important. The experimental results showed that Simulated
Annealing approaches yielded signi® cantly better solutions on cycle time per-
formance but average solutions on cost performance. When cycle time perform-
ance and total unit cost are weighted equally, performance rankings showed that
Simulated Annealing approaches still showed better mean performance than the
other approaches.

1. Introduction and literature review

1.1. Background
Assembly line balancing is an area of research that has received relatively little

attention in recent years. With the number of simplifying assumptions that most
traditional line balancing approaches make, it is unsurprising that production man-
agers today are often reluctant to use these old approaches. Modern production
environments are often fast paced and ¯ exible, and an increasing number of com-
panies are adopting JIT techniques. In these new environments, many traditional
line balancing approaches may lead to poor solutions. The motivation for this
research was to investigate the problem of balancing a production or assembly
line in a realistic, modern manufacturing environment.

Several common assumptions for line balancing problems were relaxed in this
research to re¯ ect a production environment that might exist in a successful com-
pany today. First, the assumption of deterministic task times was relaxed. Since
people commonly perform many tasks in a production line, task times are assumed
to be somewhat stochastic to re¯ ect reality better. Second, the assumption of a single
objective was relaxed. Because individual task times are uncertain, the resulting cycle
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time is uncertain. Two primary objectives were then emphasized in the study, the
extent to which the desired cycle time was achieved and the total design cost of the
production line (equipment cost and labour cost).

A third common assumption that was relaxed was the limit of one worker per
workstation. As competitive pressures push companies to shorten lead times and
increase e� ciencies, higher output levels of production lines are desired (shorter
cycle times). As the cycle time decreases, it may become shorter than the longest
task duration at some point. The most e� ective solution is usually to duplicate the
workstation so that two or more workers are performing the same set of tasks in
parallel. The use of parallel workstations also provides greater ¯ exibility in designing
the production line. When parallel workstations are allowed, the additional cost of
equipment then becomes important. Managers are interested in minimizing the total
design cost of the line (both labour cost and equipment cost).

Finally, the common assumption of a single product type was relaxed. As manu-
facturing ¯ exibility becomes more important, multiple product production lines are
more common. Both single product lines and multiple product lines are considered in
this study. Further, since a common JIT technique is mixed-model product sequen-
cing, this approach was used here. It should be noted that the relaxation of these
assumptions is intended to re¯ ect a more realistic manufacturing environment.

1.2. Simulated annealing
This study evaluated many line balancing strategies under this new environment,

both existing and new strategies. One new approach involves Simulated Annealing to
obtain good line balancing solutions. Simulated Annealing is a search technique that
is useful for solving combinatorial optimization problems. It attempts to avoid being
trapped at local optima in its search for the global optima. Simulated Annealing gets
its name from the physical annealing of solidsÐ heating a solid to a very high
temperature and then cooling it at a slow rate, spending a relatively large amount
of time near the freezing point of the solid. When this heating and subsequent slow
cooling occur, the particles within the solid rearrange themselves. The purpose of
annealing is for the particles to arrange themselves in such a way that the solid
possesses some desired attribute, such as high strength or surface hardness.

Simulated Annealing has been adapted as a search-based technique to solve
combinatorial optimization problems. It has become a popular tool for solving
problems where mathematical programming formulations become intractable.
Analogous to its use with the physical annealing of solids, the combinatorial opti-
mization problem solution undergoes a series of changes while looking for an
improved solution (according to some objective function). As Simulated
Annealing starts, an initial solution is generated and used as the ® rst current sol-
ution. A control parameter, T, is speci® ed which is analogous to the annealing
temperature. This t̀emperature’ is systematically decreased, or c̀ooled’ according
to a cooling rate, CR. As the temperature drops, neighbouring solutions to the
current solution are found. If the objective function value is superior to that of
the current solution, the neighbouring solution becomes the new current solution.
If the neighbouring solution provides an objective function value inferior to that of
the current solution, the neighbouring solution may still become the current solution
if a certain acceptance criterion is met. A distinctive feature of Simulated Annealing
is that inferior solutions are sometimes accepted as the current solution to try and
prevent getting trapped at local optima. Through the occasional acceptance of infer-
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ior solutions which meet the acceptance criteria, the search moves to a di� erent
location on the continuum of feasible solutions in an e� ort to reach the global
optimum. The process of ® nding neighbouring solutions and accepting these as
current solutions if acceptance criteria are met is repeated according to the cooling
pattern until some stopping criteria is met. Kirkpatrick et al. (1983), Eglese (1990)
and Goldberg (1989) provide further basic descriptions of Simulated Annealing, in
addition to informative examples.

Suresh and Sahu (1994) developed one Simulated Annealing approach for line
balancing. They considered the problem of stochastic task durations but did not
allow parallel workstations or consider multiple products. Also, they only considered
single objective problems. For one set of problems they minimized a smoothness
index used by Moodie and Young (1965). For a second comparison the authors
minimized the probability of line stopping, used by Reeve (1971). Suresh and
Sahu found that Simulated Annealing performed at least as well as the approaches
by Moodie and Young and by Reeve. They also mentioned future plans to incorpo-
rate multiple objectives into their Simulated Annealing approach.

1.3. Description of research
Aside from the primary objectives of cycle time performance (percentage of

desired cycle time actually achieved) and design cost performance (sum of total
labour cost and total equipment cost), several other performance measures were
also examined in this study. Traditional line balancing performance measures and
production performance measures included average work in process inventory level
(WIP), average ¯ ow time per unit, average throughput, average utilization of system
resources, percentage of parts at each workstation completed within the desired cycle
time, and average unit labour cost. While the authors consider these measures to be
of secondary interest but not primary design objectives, some companies might wish
to optimize one or more of these measures instead. In order to evaluate line balan-
cing approaches using these performance measures a production simulation experi-
ment was performed.

To summarize, this paper presents a Simulated Annealing approach to solve
assembly line balancing problems and then describes a simulation experiment com-
paring 23 line balancing strategies or approaches. The type of line balancing problem
addressed consists of stochastic task times, multiple product types scheduled in
mixed-model fashion, the allowance of parallel workstations, and the use of multiple
objectives. The two primary objectives were the extent to which the desired average
cycle time was achieved, and the total design cost of labour and equipment.
Performance of the di� erent rules was also evaluated using several other measures
as well. The following sections provide background information on line balancing
with parallel workstations and on Simulated Annealing, describe the research meth-
odology of this study, present the experimental design and results, and o� er conclu-
sions based on the research results.

2. Assembly line balancing and parallel workstations

Assembly line balancing is the practice of placing de® nable units of work
(referred to as tasks) into cohesive groups (referred to as work centres) in accordance
with some goal. This goal typically takes on one of two forms. The ® rst is minimiza-
tion of workers required, known as a Type I problem, and the second is minimiza-
tion of the amount of time elapsing between the completion of two consecutive jobs
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(cycle time), known as a Type II problem. The research presented here is closest to
the Type I problem since the desired cycle time is assumed to be speci® ed by manage-
ment.

Regardless of the type, assembly line balancing problems have some general
constraints that apply here:

�a task will not be assigned to a work centre until all of its predecessors have
been assigned;

�a task can be assigned to only one work centre;

�all workers on the assembly line possess the same level of skill;

�all tasks are independent of each other;

�changeover times between di� erent products are negligible.

Speci® c to this research is the subject of paralleling of tasks within work centres.
The vast majority of assembly line balancing literature addresses the case where only
one worker is permitted to occupy a work centre (non-paralleling). With this sce-
nario, tasks can be placed into a work centre provided that the total time required by
the tasks does not exceed the speci® ed cycle time. Figure 1 shows an example of non-
paralleling. In this example, tasks 3, 5, 6 and 9 will be performed by a single worker
in work centre 2, and the total duration of all four tasks will be less than the speci® ed
cycle time. (To clarify the language used from here on, each worker has a work-
station where he or she can perform one or more tasks. Each task requires a di� erent
piece of equipment. Each work centre consists of either one workstation for the case
of non-paralleling or multiple parallel workstations.) Since four tasks are performed
by a single worker, it is assumed that four pieces of equipment are required.

When the sum of task durations in a work centre exceeds the speci® ed cycle time,
either one or more tasks must be removed from the work centre, or else duplicate
workstations (and workers) can be included in the work centre. This latter alterna-
tive is referred to as paralleling, where the same task set is assigned to each work-
station within the work centre. The amount of paralleling necessary is dependent
upon the ratio of total task durations within the work centre to the cycle time. Figure
2 shows an example of three parallel workstations within a work centre. The same
four tasks occupy the work centre as in ® gures 1± 3, 5, 6 and 9. In this case, however,
three workers each perform all four tasks in parallel. Also, since there are three
workers in this work centre and four tasks for each worker, it is assumed that 12
pieces of equipment are required. For additional discussions of paralleling of work-
stations within work centres see Pinto et al. (1975, 1978, 1981).
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3. Methodology

3.1. Assembly line balancing and mixed-model problems
The general assembly line balancing heuristic used here to generate initial sol-

utions is based upon Gaither’s Incremental Utilization Heuristic (1996), with mod-
i® cations (McMullen, 1995). Gaither’s text has detailed examples. It should be noted
that any line balancing heuristic could be used to obtain an initial feasible solution.
In the event of mixed-model problems, composite durations for each task are com-
puted using weighted averages. The weights used are proportional to the contribu-
tion to product-mix of products involved in the mixed-model problem. In the event
of single-product models, the given task durations are used directly for composite
task durations and weighted averages are not needed. Regardless of whether mixed-
models or single-product models are used, the composite task durations are used as
the task durations. The line balancing is then performed according to the Gaither
heuristic.

3.2. Objective functions
During the iterative Simulated Annealing process, the user speci® es an objective

functionÐ a goal, so to speak. A variety of objective functions were investigated to
use with the Simulated Annealing approach. A list of variables is summarized ® rst,
followed by descriptions of the objective functions and a description of the
Simulated Annealing steps.

Ei value of objective function i (chosen objective),
r total number of work centres,
ti duration of task i (which is assigned to work centre j )
^s i estimated standard deviation of task i,
^s j estimated standard deviation of work centre j,
C desired cycle time (as speci® ed by management),
cv coe� cient of variation,
wj number of workers required in work centre j,

Çwj integer-adjusted workers required in work centre j,
qj number of tasks in work centre j,
mj number of pieces of equipment required in work centre j,
L labour cost per worker in $/year,
Q equipment cost per piece in $/year,
pj probability of lateness in work centre j.
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Prior to the presentation of the objective functions, it should be noted that objective
functions 1, 2 and 3 address a single objective, while objective functions 4, 5 and 6
address multiple objectivesÐ both design cost and lateness.

3.2.1. Minimize design cost (objective function 1)
The objective function presented below is to minimize the total cost associated

with the assembly line balancing solution. Speci® cally, this objective is concerned
with minimizing the sum of costs associated with both labour requirement and
equipment requirement. The objective function is

Min: E1 å
r

j=1

( Çwj L + mjQ) . (1)

The number of workers required in work centre j is the ratio of assigned work (the
sum of task durations) in work centre j divided by the speci® ed cycle time. This value
is rounded upward to the nearest integer value if the ratio is not an integer. If the
ratio takes on an integer value, wj is not adjusted to Çx j . The logic for this is that
`whole’ workers must be assigned to a work centre. Mathematically, this is

wj =
1
C å

n

i=1 i Î j
ti( )[ ], (2)

and

Çwj = 1 + int (wj) . (3)

The number of machines (or pieces of equipment) required for work centre j is the
product of the number of workers in work centre j and the number of tasks in work
centre j. Hence

mj = Çwjqj . (4)

For example, ® gure 2 shows that three workers are required for work centre 2
( Çwj = 3), and four tasks are assigned to the work centre (q2 = 4). This means that
12 machines are required for this work centre (m3 = 3 ´ 4 = 12).

3.2.2. Minimize smoothness index (objective function 2)
The intent of the objective function presented below is to minimize the s̀mooth-

ness’ across all work centres. This objective function is basically the paralleling
equivalent to the s̀moothness index’ as presented by Moodie and Young (1965)
and also used by Suresh and Sahu (1994), which did not permit for paralleling of
tasks. This s̀moothness index’ is intended to distribute work into the work centres as
evenly as possible. The s̀moothness index’ for the paralleling case is as follows:

Min: E2 =
ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê

å
r

j=1

( Çwj - wj)
2.

wvvu (5)

3.2.3. Minimize probability of lateness (objective function 3)
When the stochastic nature of task durations is considered, there is a possibility

that the actual task duration could exceed its expected duration, which implies the
possibility of lateness (Silverman and Carter 1984, 1986). This particular objective
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function is to minimize lateness across all work centres. Consider a group of tasks
that have been assigned to work centre j. In this study a ® xed coe� cient of variation
is assumed. The estimated standard deviation for a task is computed from the
expected task duration and coe� cient of variation, cv, as

^s i = cv(ti) . (6)

Based upon the expected total duration of all tasks within work centre j, the expected
number of workers is Çwj and the actual number of workers used is Çwj . The expected
number of workers, wj , can be thought of as the expected value of a normally
distributed random variable with a standard deviation of:

^s j =
ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê ê

å
r

i=1,i Î j

^s i

C( )
2

.
wvvu (7)

If the actual amount of work assigned exceeds the capacity of the number of workers
assigned, lateness will occur. This probability of lateness can be estimated by inte-
grating the normal distribution function as follows:

pj =
1
ê ê ê ê ê ê2pÏ ò

¥

Y
e- .5z2

dz, (8)

where Y is the normalized critical value:

Y = Çwj - wj
^s j

. (9)

With all of the supporting parameters presented, the objective to minimize late-
ness across all work centres can now be de® ned:

Min: E3 = Õ
r

j=1

pj . (10)

The objective function here attempts to generate layouts successful in completing
jobs in a timely fashion. The objective function, E3, is a proxy for lateness of the
entire assembly line, obtained by multiplying the lateness measure of all work centres
involved in the layout of interest.

It should be noted that whenever the minimize lateness criteria is used, normal
rules of integration cannot be used to approximate pj. As a result, numerical inte-
gration is usedÐ the trapezoidal rule with 500 subintervals.

3.2.4. Minimize composite function (objective functions 4, 5, and 6)
As is usually the case when multiple objectives are important, some trade-o�

among the objectives can be expected. For example, a solution which attempts to
minimize cost, E1, would probably result in a solution which performs poorly with
regard to system lateness, E3. Because of such trade-o� s, three composite functions
are presented which attempt to minimize the weighted sum of two previous objective
functions. The ® rst composite objective function, E4, is

Min: E4 = E1 + 1.67E3. (11)

The normalizing weights were determined by sampling many solutions for di� erent
problems in terms of E1 and E3, so that each component of this objective function
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would make an equal contribution, on average, to the value of E4. For each of the
seven problems, 50 Simulated Annealing based solutions were sampled and average
values of E1 and E3 computed. Coe� cients were then determined such that for the
average size problem both E1 and E3 make similar contributions to the value of E4.
Both coe� cients were then divided by the E1 coe� cient, so that the E1 coe� cient is
unityÐ this procedure resulted in the E3 coe� cient being 1.67.

The second composite objective function, E5, changes the weighting of E3 so that
the probability of lateness makes three times the contribution to E5 on average as
does design cost. The objective function is

Min: E5 = E1 + 3 ´ 1.67E3. (12)

The last composite objective function, E6, does the same as the second, except that
the weights are reversed so that design cost makes three times the contribution to E6

as does the probability of lateness. The objective function is

Min: E6 = 3 ´ E1 + 1.67E3. (13)

The choice of relative weights used for E4, E5 and E6 is admittedly arbitrary. The
purpose here is to show that a decision-maker can select any set of relative weights
desired for di� erent objectives to re¯ ect best the relative importance of each objec-
tive. The authors are not suggesting that a particular set of weights is best, but rather
are demonstrating that di� erent weighting schemes for multiple objectives can be
easily incorporated into the Simulated Annealing line balancing heuristic.

Also, objective function E2 was not included in any composite objective functions
because preliminary results showed E1 and E3 to have better overall performance
than E2. E2 was included in the experiment only because Moodie and Young (1965)
and Suresh and Sahu (1994) used a similar s̀moothness index’ in their research, and
the authors here wanted to evaluate the performance of such an objective function.

3.3. Simulated annealing heuristic
The Simulated Annealing heuristic consists of eight algorithmic steps described

below. Following the description is a ¯ owchart that graphically shows the logic of
this approach.

Step 1. Initialize the model by specifying a cycle time (C), a control parameter (T), a
cooling rate (CR), a number of iterations for each level of T (Nmax), and a
stopping criteria (Tmin). Also generate an initial feasible solution for the
problem, and choose an objective function for optimization. This initial
solution becomes the ® rst `current’ solution and the ® rst `best’ solution
used for the search technique. Calculate the objective function value for
this initial solution. The objective function value for the current solution
will be referred to as Ec, and the objective function value for the best sol-
ution will be referred to as Eb.

Step 2. From the current solution, generate a feasible neighbouring solution. This is
done via a trade or a transfer. A trade is ® rst considered, but if a trade is not
possible, then a transfer is considered. Regardless of the strategy used to
generate a neighbouring solution, crew-size, equipment requirement, and
other relevant measures must be re-calculated to determine the result of
the trade in terms of the objective function. One of the following options
is then taken.
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Option (a): Trade. Trade tasks between two adjacent work centres. A
work centre is selected randomly, and it is determined whether or not the
® nal task within this work centre (referred to as task X) can be exchanged
with the ® rst task in the next work centre (referred to as task Y). This
determination is made by examining the precedence relationship between
the two tasks in question. If the precedence relationship shows that task Y
is permitted to precede task X, the trade is considered feasible. Otherwise,
the trade is not feasible and option (b) is explored. Figures 3 and 4 show an
example of a trade. Suppose work centre 6 is randomly selected. It is deter-
mined that task 22 can precede task 20, so the trade is executed. Figure 4
shows the results of the trade. This example assumes that the same number
of workers are still required in each work centreÐ ® ve workers and 16 pieces
of equipment are still required, but the smoothness index and probability of
lateness will most likely have changed as the result of the trade. Proceed to
step 3.

Option (b): Transfer. Transfer a task from one work centre to another, and
update the number of workers and pieces of equipment required as a result
of the transfer. A work centre is selected at random, and the last task in this
work centre is transferred to the next work centre as the ® rst task. This will
be referred to as a `regular’ transfer. As an example, refer to the scenario in
® gure 3. Work centre 6 has been randomly selected for a transfer. Task 20
will be transferred to work centre 7. Figure 5 shows the result of this type of
transfer. In terms of the objective function, ® ve workers are still required.
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The transfer results in ® ve additional required pieces of equipment, which
will likely result in changes in the objective function value (21 - 16 = 5) .

A regular transfer is not always possible. Consider the situation shown in
® gure 6. If work centre 9 is randomly selected for a transfer, the lone task in
the work centre would be transferred to work centre 10, leaving work centre
9 empty.

Instead of leaving an empty work centre, both work centres will be f̀used’
into one. This is referred to as a c̀ompression’ transfer, which results in the
same number of workers. Figure 7 shows the result of work centres 9 and 10
undergoing a compression transfer. For this example, the objective function
would re¯ ect the same number of workers and ® ve more pieces of equipment
(12 - 7 = 5) as a result of the compression transfer.

When the ® nal work centre of a line balancing solution is randomly
selected for a transfer, special measures must also be taken. Figure 8
shows an example of the ® nal work centre for a line balancing solution.
In this situation, transferring the ® nal task out of the work centre (Task
40) would result in the creation of a new work centre.

This is referred to as an èxpansion’ transferÐ the ® nal task in the ® nal
work centre becomes the lone task in a new work centre. Figure 9 shows the
result for this example. The expansion transfer in this example results in a
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solution with one additional worker and one less piece of equipment.
Whichever type of transfer is performed, proceed to step 3. (In the case
where the last work cell is selected for a transfer and that cell only has
one task, a compression transfer would not be attempted and the algorithm
would proceed to step 6.)

If a trade or transfer has been executed, use this neighbouring solution
(which will be referred to as a test solution) to calculate the value of the
objective function. This objective function value is referred to as Et Ð the
objective function value of the test solution. Proceed to step 3.

Step 3. Calculate the di� erence between the objective function values of the test
solution and the current solution. This di� erence will be referred to as the
ènergy change,’ d E, and is calculated from the formula
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d E = Et - Ec. (14)

If the value of the energy change is negative (Et < Ec) Ð the test solution
provides a lower objective function value than the current solutionÐ then
the test solution is accepted as the new current solution along with its associ-
ated layout and objective function value. In this case, proceed to step 4.
Otherwise, proceed to step 5.

Step 4. If the objective function value of the new current solution (Ec) is less than
that of the best solution (Eb), then the best solution is replaced by the new
current solution. Regardless of whether or not the best solution is replaced
with the current solution, proceed to step 6.

Step 5. Generate the Metropolis criterion for accepting a test solution with an
objective function inferior to that of the current solution. This criterion
provides the following probability of an inferior test solution being accepted
as the current solution

P(a) = exp (- d E /T ) . (15)

Where - d E is the negative di� erence in the energy change and T is the
current temperature (or control parameter). Next, a uniformly distributed
random number (Ran) from the interval (0, 1) is generated. If the value of
Ran is less than the probability of the inferior test solution being accepted as
the current solution, hence

if Ran < (a),then (16)

the test solution is accepted as the current solution along with its associated
layout and objective function value (Metropolis et al. 1953). Otherwise, the
current solution remains unchanged. Regardless of the action taken, pro-
ceed to step 6. It should again be emphasized that the reason an inferior
solution is occasionally accepted as the current solution is to ® nd other
locations on the continuum of feasible solutions and avoid being trapped
at local optima.

Step 6. If the current iteration number (N) is equal to the maximum number of
iterations (Nmax) for the current level of the control parameter (T ), then
proceed to step 7. Otherwise, increment the iteration number (N) by 1 and
return to step 2.

Step 7. Adjust the cooling temperature by using the following relationship

T = T ´ CR. (17)

If the new value of T is less than the stopping criteria (Tmin), then proceed to
step 8. Otherwise, re-initialize the current iteration number (N) to 1, and
return to step 2.

Step 8. The Simulated Annealing heuristic is complete. The best solution is that
corresponding to Eb.

Figure 10 summarizes the logic of this heuristic in a ¯ ow chart (logical nodes have
lines that are bolder than procedural nodes).
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3.4. Simple example of Simulated Annealing
A simple example of how Simulated Annealing can be used to address the

Assembly Line Balancing Problem is shown to lend support to the presented meth-
odology. Consider the 11-task problem by Mariotti (1970). The precedence relation-
ships and task durations are shown in ® gure 11.

Given a cycle time of 0.225 minutes per unit, an arbitrarily generated initial
solution is provided in table 1.

Equations (3) and (4) provide values for the number of workers and equipment
units respectively. In more compact notation, this solution can be expressed as
follows:

(AB)3,6 (CDEF)4,16 (GHI)3,9 (JK)3,6.
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Trade
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T=T*CR,
N=1

No

Stop

Yes

Et<Ec?

Current =
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Yes

No

Metropolis?

No
Yes

No

Ec<Eb?
No

Best =
Current

Yes

Figure 10. Flow-chart of Simulated Annealing heuristic.



The characters in parentheses represent the tasks in each work centre and the num-
bers following each set of parentheses represent the number of workers and equip-
ment units in each respective work centre. If the annual cost of a worker is assumed
to be $30 000 per year and the annual cost of an equipment unit is $3000, the total
annual cost is $501 000. The objective function used in this example is dedicated to
the minimization of design cost (section 3.2.1).

Using Simulated Annealing search parameters of an initial temperature of 50 000,
a cooling rate of 95%, and a single iteration at each level of the temperature
(T1 = 50 000, CR = 0.95 and Nmax = 1) , the ® rst few s̀teps’ using the heuristic as
described in section 3.3 are presented in table 2.

The ® rst column of this table provides the annealing temperature values. The ® rst
line of the second column is the current solution, while the second line is the test
solution. The third line of this column describes the type of action takenÐ for this
particular example, only transfers were executed (section 3.3, step 2b). Trades were
not executed because a small problem of this type has very few opportunities for
feasible trades with respect to precedence relationships. The ® rst line of the third
column is the cost of the current solution (Ec) and the second line is the cost of the
test solution (Et). Both values of cost are in 1000s. The fourth column of the table
states the decision made regarding acceptance of the test solution. If acceptance is
made via the Metropolis criterion (section 3.3, steps 3± 5), the associated probability
of acceptance is provided.
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A,
.45

B,
.10

C,
.15

D,
.22

E,
.19

F,
.31
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.20

J,
.41

K,
10.

Figure 11. Precedence relationships for the example problem.

Work centre Tasks Workers Equipment units

1 AB 3 6
2 CDEF 4 16
3 GHI 3 9
4 JK 3 6

Total 13 37

Table 1. An initial solution for the assembly line balancing problem.



When T is 50 000 (the ® rst row of the table), the test solution obtained by moving
task B to work centre 2 is accepted as current because the transfer results in an
improved value of the objective function. When T is 47 500, the current solution is
replaced by the test solution (obtained by transferring task F to work centre 3) due to
the fact that the Metropolis criterion was met. The Metropolis criterion was met
because a random number was generated that was in the interval (0, 0.5664), and the
criterion suggests that an inferior solution should be accepted with a probability of
0.5664. The ® nding of these `neighbouring’ solutions, along with their associated
costs and decision issues continues for several iterations as shown in table 2.

For this simple example, all instances result in acceptance of the test solutionsÐ
regardless of whether acceptance comes via improvement or the Metropolis cri-
terion. This, of course, will not be the case for all problems. It is important to
keep in mind that the acceptance of test solutions having objective function values
inferior to that of their corresponding current solutions depends on the value of T
and well as the di� erence between Ec and Et. For this example, the solution
(A)2,2(BCDE)3,12(FG)2,4(HIJK)4,16 is the one which results in the lowest cost
foundÐ $432 000 (the shaded region in table 2). It is important to note that this
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Solutions (current and test) and Cost
T description of action (000s) Decision

(AB)3,6(CDEF)4,16(GHI)3,9(JK)3,6 501 Accept test solution via
50 000 (A)2,2(BCDEF)4,20(GHI)3,9(JK)3,6 471 improvement{B is transferred to work centre 2

(A)2,2(BCDEF)4,20(GHI)3,9(JK)3,6 471 Accept test solution via
47 500 (A)2,2(BCDE)3,12(FGHI)4,16(JK)3,6 498 Metropolis criterion{F is transferred to work centre 3 (P(A) = 0.5664)

(A)2,2(BCDE)3,12(FGHI)4,16(JK)3,6 498 Accept test solution via
45 125 (A)2,2(BCDE)3,12(FGH)3,9(IJK)4,12 465 improvement{I is transferred to work centre 4

(A)2,2(BCDE)3,12(FGH)3,9(IJK)4,12 465 Accept test solution via

42 869 improvement{H is transferred to work centre 4
(A)2,2(BCDE)3,12(FG)2,4(HIJK)4,16 432 Accept test solution via

40 725 (A)2,2(BCDE)3,12(FG)2,4(HIJ)4,12(K)1,1 453 Metropolis criterion{K transferred to new work centre 5 (P(A) = 0.5971)
(A)2,2(BCDE)3,12(FG)2,4(HIJ)4,12(K)1,1 453 Accept test solution via

38 689 (A)2,2(BCDE)3,12(FG)2,4(HI)2,4(JK)3,6 444 improvement{J is transferred to work centre 5

(A)2,2(BCDE)3,12(FG)2,4(HI)2,4(JK)3,6 444 Accept test solution via
36 755 (A)2,2(BCDE)3,12(FG)2,4(HI)2,4(J)2,2(K)1,1 435 improvement{K transferred to new work centre

(A)2,2(BCDE)3,12(FG)2,4(HI)2,4(J)2,2(K)1,1 435 Accept test solution via
34 917 (A)2,2(BCDE)3,12(FG)2,4(H)1,1(IJ)3,6(K)1,1 438 Metropolis criterion{I is transferred to work centre 5 (P(A)= 0.9135)

Table 2. Simulated Annealing iterations of the example problem.

(A)2,2(BCDE)3,12(FG)2,4(HIJK)4,16 432



`best’ solution was found after accepting a relatively inferior solution via the
Metropolis criterion, which is the basic strategy used with Simulated Annealing to
avoid being trapped at local optima.

4. Design of experiment

An experiment was designed to compare the Simulated Annealing solution with
solutions attained from other line balancing heuristics. Seven di� erent line balancing
problems (11, 21, 25, 29, 40, 45, and 74 tasks) were each solved by 23 di� erent
heuristics (six of these use Simulated Annealing), yielding 161 di� erent assembly
line layouts for analysis. Details of the seven problems are given in table 3.

For each of the seven problems, the desired cycle time was speci® ed to be 10
minutes between completed units. The durations for the tasks were created via a
random number generator. For each task, there was a 75% probability the task
duration would be uniformly distributed between 2 and 10 minutes, and a 25%
probability the task duration would be uniformly distributed between 10 and 15
minutes. The per-person labour cost (L ) was assumed to be $30 000 per year and
the per-machine equipment (Q) cost was assumed to be $3000 per year. The pre-
cedence diagram for the 11 task problem is from Mariotti (1970), for the 21 task
problem is from Tonge (1965), for the 29 task problem is from Buxey (1974), and for
the 45 task problem is from Kilbridge and Wester (1961). The 25, 40 and 74 task
problems were generated for this research. For the 29, 40, 45 and 74-task problems,
mixed-models are present. The product weights for these problems are presented in
table 3 and represent the portion each product type contributes to the total product
mix.

4.1. Mixed-model problems and production sequencing
Note that the last four of the seven problems described in table 3 have multiple

products made simultaneously during the production run. This is known as a mixed-
model problem and re¯ ects a practical issue pertaining to the design of assembly
lines in JIT systems. The following paragraph describes the sequencing approach
used for the mixed-model problems during the production simulations.

Consider the 74-task problem as an example. Four di� erent products are to be
made simultaneously. One possible way to sequence them is according to Sequence
A:

Sequence A: 1-1-1-1-2-2-3-4.
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Di� erent Product-mix Simulated build-up Iterations for each
Tasks products weights time (min) value of T (N max)

11 1 w1 = 1 500 10
21 1 w1 = 1 1000 25
25 1 w1 = 1 1000 25
29 2 w1 = 2, w2 = 1 3000 50
40 3 w1 = 3, w2 = 2, w3 = 1 3000 50
45 2 w1 = 2, w2 = 1 3000 50
74 4 w1 = 4, w2 = 2, w3 = 1, w4 = 1 3000 75

Table 3. Description of seven di� erent line balancing problems.



With this sequence, the products are not being introduced into the production
system at a steady rate, as would be desirable in many JIT systems. Another
approach is Sequence B:

Sequence B: 1-2-1-3-1-2-1-4.

This sequence introduces products into the production system at a steadier rate than
Sequence A. Since this research assumes product changeovers are negligible
(Sequence B requires more changeovers than A), Sequence B would be preferable
to A due to its better compatibility with JIT systems. The methodology for this
mixed-model sequencing is presented by Ding and Cheng (1993), and is utilized
for all production sequencing here.

4.2. Output performance measures
The production performance for the 161 solution layouts was simulated using

SLAMSYSTEM v4.6 and FORTRAN v5.1 user-written inserts. The production
performance measures of interest were average WIP level, average ¯ ow-time,
system throughput, system utilization, on-time completion, average unit labour
cost, and cycle time performance. Each simulation run was for a set period of
time rather than for a set number of completed units. For this reason, total design
cost per unit was examined as well as absolute total design cost.

On-time completion is a measure of the layout’s ability to move units through the
individual work centres within a certain time frame, which in this case is the cycle
time. The measure is expressed in units of percentage of units completed on-time and
is referred to hereafter as POT. High values of POT are desired. Cycle time perform-
ance is the ratio of desired cycle time to actual cycle time achieved. This output is a
measure of the layout’s ability to move units through the system and is referred to
hereafter as CTR. Like POT, higher levels of CTR are preferred.

For all simulated production runs, statistics were reset after steady-state con-
ditions were attainedÐ build-up times are o� ered in table 3. This was done to avoid
any bias which may be associated with system start-up. The run was then continued
for 3000 simulated minutes and relevant statistics were collected. For each of the 161
layouts, 25 repetitions were made so that reasonable estimates of outputs could be
attained. This resulted in a database of 4025 records. Also, for each of the 161
layouts, a common random number seed was not used.

The main factor for this experiment was the heuristic used to generate the pro-
duction layouts. Twenty-three di� erent heuristics were used to generate production
layouts. Six of these resulted from the Simulated Annealing based objective func-
tions, and the other 17 are described in the next section.

4.3. L ine balancing heuristics used in the experiment
Many of the heuristics used in this study are a derivation of Gaither’s

Incremental Utilization Heuristic (1996). Generally speaking, for each iteration of
placing a task into a work centre according to precedence relationships, a list is
constructed of all tasks which are eligible for immediate assignment to a work
centre. From this list a task is selected based upon some rule, or heuristic. The
chosen task is not added to a work centre unless its addition results in an increase
in the work centre’s utilizationÐ hence the name ìncremental utilization. ’ Table 4
provides a brief description of all heuristics used in the experiment.
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4.4. Research questions
To guide the investigation of whether the Simulated Annealing solutions provide

desirable layouts in terms of both the resources required and the production per-
formance measures, two research questions were addressed.

(1) Do the 23 heuristics have an overall e� ect on the performance measures?

(2) If so, which of the 23 heuristics are most favourable in terms of both design
cost and production performance?

4.5. Computational experience
The Simulated Annealing procedure for all problems was performed using an

initial value of 10 000 and stopping criteria of 1000 for T, and a cooling rate (CR) of
0.95. Table 3 shows how many iterations were used at each value of T for each of the
seven problems.

The Simulated Annealing was performed using Microsoft Visual Basic for DOS
on a Pentium-75 Processor. Each solution required as little as one minute for the 11
task problems and as long as 20 minutes for the 74 task problems.
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Incremental
Label Heuristic utilization

1 Select task providing maximum incremental utilization Used
2 Select task randomly (Acrcus 1966) Used
3 Select task with longest duration Used
4 Select task with shortest duration Used
5 Select task providing minimum incremental utilization Used
6 Select task providing minimum probability for lateness within Used

work centre
7 Select task best composite of 5 and 6 Used
8 Select task according to lexicographic attributes Used
9 Single Mega work-centre Not used

10 Individual work centre for each task Not used
11 Select task having fewest followers Used
12 Select task having fewest immediate followers Used
13 Select task which is ® rst to become available Used
14 Select task which is last to become available Used
15 Select task having most followers Used
16 Select task having most immediate followers Used
17 Select task with highest Ranked Positional Weight Used

(Helgeson and Birnie 1961)
18 Simulated Annealing: Minimize Design Cost± E1 Not used
19 Simulated Annealing: Minimize Smoothness IndexÐ E2 Not used
20 Simulated Annealing: Minimize Overall System LatenessÐ E3 Not used
21 Simulated Annealing: Minimize Composite FunctionÐ E4 Not used
22 Simulated Annealing: Minimize Composite FunctionÐ E5 Not used
23 Simulated Annealing: Minimize Composite FunctionÐ E6 Not used

For detailed descriptions of the ® rst 17 heuristics, refer to McMullen (1995), McMullen and Frazier
(1997) and Baybars (1986).



5. Experimental results

After running the simulations a correlation matrix of all the performance meas-
ures was obtained. The measures of average WIP level, average ¯ ow time, and
average system throughput were each highly correlated with the cycle time ratio
(CTRÐ correlation coe� cients of - 0.966, - 0.965 and 1.000, respectively). As a
result, average WIP level, average ¯ ow time and average system throughput were
deleted from further direct analysis and left to be explained by CTR. Because of this
relationship, high levels of WIP and ¯ ow time will obviously result in the layout’s
inability to move units through the system in a timely fashion, and vice versa. In
addition to design cost, then, four output performance measures from the simula-
tions remained for further analysis: average unit labour cost (ULC), percentage of
units completed within the desired cycle time (POT), average system utilization
(UTIL) and cycle time ratio (CTR).

To address the ® rst research question a multivariate analysis of variance was
performed. The results suggested that the di� erent heuristics did have an overall
multivariate e� ect on the production performance measures and the design cost.
Wilks’ ¸ = 0.0501, with an associated F = 149.987 and p < 0.0001. As a follow-
up, table 5 provides univariate and discriminant analysis statistics for the production
performance measures and the implementation cost. For the discriminant analysis,
® ve functions were identi® ed, but only four were determined to be statistically sig-
ni® cant.

The discriminant function coe� cients provide information as to which response
variables are sensitive to the 23 di� erent heuristics. Discriminant function coe� -
cients unique from zero suggest sensitivity. The number of functions interpreted is
dependent on the number of response variables interpreted. For more information
on the discriminant analysis, refer to Tabachnick and Fidell (1989). From inspection
of table 5, the results suggest that the production performance measures and the
implementation cost are all sensitive to the selected heuristic, with the production
performance measures of POT and Utilization being most sensitive to the selected
heuristic.

Given that the choice of heuristic has a signi® cant e� ect on the solution, an
investigation ensued to determine which heuristics provided better solutions. Table
6 shows the mean values by heuristic for each of the ® ve performance measures.
Table 6 also shows mean values for total design cost per unit completed, or unit total
cost (UTC). For each of the seven problem sizes, standard deviations were computed
for each heuristic for each performance measure. Since these were all reasonably
consistent across heuristics, they are not presented here.
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Output measure Func. 1 Func. 2 Func. 3 Func. 4 Univariate F p <

ULC - 0.7995 - 1.2025 - 1.6186 0.6869 5.95 0.0001
POT 0.3151 0.6936 - 1.2685 - 0.9385 154.42 0.0001
Utilization - 2.8665 0.5000 - 1.4939 - 0.0411 161.47 0.0001
CTR 2.2406 - 0.2282 0.7671 1.6446 50.08 0.0001
Design Cost 1.4425 1.9025 1.4053 - 0.2472 54.86 0.0001

Table 5. Standardized discriminant coe� cients and univariate Fs for performance measures.



5.1. Interpretation of results
Upon examination of table 6, it is clear that a trade-o� generally exists between

achieving superior cycle time performance and superior design cost performance.
For example, heuristics 1 and 2 provided the lowest unit total design cost (UTC) but
provided relatively poor cycle time performance (CTR). Interestingly, heuristic 2
randomly selects a task from the eligible list of tasks. As another example, heuristic
18 provided the very best absolute design cost of 1 085 000 but provided the very
worst cycle time performance.

To investigate further any di� erences between mean values of cycle time perform-
ance and mean values of unit total cost performance, analyses of variance were
performed. The resulting F-statistic was predictably signi® cant at the 0.0001 level,
but this result is not very meaningful due to the very large sample size (4025). A
Tukey’s multiple comparison test was then performed for PCTA and UTC, which
did yield meaningful results. For CTR, rules 20, 21, 22 and 23 (all Simulated
Annealing based rules) were all found to be signi® cantly better than the remaining
rules at the 0.05 level. For UTC, none of the better rules were found to be statisti-
cally di� erent than the majority of other rules at the 0.05 level.

To investigate which rules perform better at both design cost and cycle time
performance simultaneously, rankings of rules within problem sizes were examined.
Although admittedly some information is lost in using non-parametric analyses, the
use of average rankings can provide useful insights into the performance patterns of
the heuristics. The di� erence in magnitudes across performance measures and the
presence of outlying mean values makes it di� cult to compare the multiobjective
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Heuristic ULC POT UTIL CTR Cost (1000s) UTC

1 153.6 0.711 0.758 0.853 1104 4576
2 139.9 0.706 0.802 0.878 1153 4542
3 158.7 0.762 0.763 0.835 1145 5018
4 137.1 0.713 0.827 0.882 1196 4666
5 147.4 0.763 0.780 0.857 1336 5540
6 136.0 0.765 0.819 0.900 1323 5072
7 135.2 0.778 0.822 0.908 1326 4997
8 139.5 0.771 0.814 0.892 1182 4617
9 113.2 0.812 0.971 0.934 3555 15110

10 204.1 0.920 0.555 0.930 1447 5338
11 148.4 0.780 0.776 0.878 1172 4684
12 144.4 0.763 0.782 0.881 1188 4663
13 149.3 0.791 0.762 0.874 1191 4732
14 151.1 0.800 0.755 0.857 1176 4782
15 154.2 0.800 0.748 0.865 1215 4950
16 150.8 0.812 0.770 0.870 1160 4703
17 150.0 0.786 0.768 0.878 1179 4731
18 162.2 0.732 0.732 0.810 1085 4841
19 129.6 0.755 0.860 0.917 1655 6267
20 139.2 0.943 0.790 0.991 1492 5056
21 138.0 0.917 0.796 0.978 1383 4795
22 137.6 0.919 0.797 0.979 1394 4818
23 137.4 0.908 0.796 0.972 1355 4739

Table 6. Mean performance measure values by rule.



performance using absolute values. The use of rankings provides a degree of con-
sistency across performance measures.

To compute average rankings, the mean performance values for each rule for
each of the seven problem sizes was calculated from the output of the 25 simulation
repetitions. Then for each problem size the 23 rules were ranked separately for each
performance measure, with the best rule receiving the lowest rank value. Finally, the
ranked value for each rule was averaged across the seven problem sizes to obtain the
average rankings shown in table 7.

Of primary interest in table 7 is the last column, which shows the average of the
values in the CTR column and UTC column. The rank values in the right column
represent an equal weighting of cycle time performance and unit design cost per-
formance. The fact that none of the values in the last column is less than 7 suggests
that none of the rules demonstrated truly superior performance on both measures.
Four of the rules showed an average ranking of less than 10. Three of these rules (21,
22 and 23) are Simulated Annealing based heuristics. The fourth (rule 2) used a
random selection strategy. The authors are at a loss in trying to explain why rule
2 performed so well on design cost.

Results for the performance measures of unit labour cost (ULC), percent of on-
time completion (POT), and system utilization (UTIL) have not been discussed
much. These results have been included in the above tables for the interested
reader since they are traditional line balancing performance measures. However,
because cycle time performance (CTR) and design cost performance (UTC) are
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Rule ULC POT UTIL CTR COST UTC CTR&UTC

1 17.5 16.8 17.0 19.1 4.5 7.1 13.1
2 9.4 18.6 11.3 14.5 6.1 4.7 9.6
3 13.3 13.9 14.7 20.1 5.3 9.3 14.7
4 7.9 19.4 7.3 15.7 7.6 8.4 12.1
5 10.7 15.7 10.3 13.7 15.8 16.4 15.1
6 7.9 15.8 8.4 11.6 15.0 15.9 13.8
7 7.6 13.4 7.8 11.2 15.0 13.6 12.4
8 10.6 14.7 10.0 13.9 8.2 7.9 10.9
9 1.0 11.6 1.0 5.9 23.0 23.0 14.4

10 22.7 3.7 22.7 8.1 20.4 19.9 14.0
11 15.0 12.5 14.2 14.1 8.6 9.1 11.6
12 13.6 14.7 13.1 13.4 8.4 9.0 11.2
13 16.0 12.4 16.6 15.4 7.7 9.6 12.5
14 14.4 11.5 14.9 13.2 8.6 9.4 11.3
15 15.4 13.1 15.3 14.1 10.6 13.4 13.8
16 13.8 10.4 13.2 13.4 8.1 9.6 11.5
17 14.8 12.4 14.2 14.5 9.4 10.6 12.6
18 14.1 16.8 14.0 18.8 1.9 8.4 13.6
19 3.9 16.3 2.9 10.1 17.4 17.3 13.7
20 13.1 2.0 13.0 3.6 20.4 17.4 10.5
21 11.5 3.4 11.7 4.3 18.4 12.4 8.3
22 11.2 3.2 11.4 3.7 18.8 13.2 8.5
23 10.7 3.8 11.0 3.5 16.7 10.4 7.0

Table 7. Average performance rankings by rule.



considered by the authors to be of much greater importance in modern manu-
facturing environments, the emphasis of the above analyses was focused on these
measures.

5.2. E� ects of sequencing
Another experiment was conducted to investigate the e� ect(s) that the sequencing

of the mixed-model problems had on the relevant performance measures. Table 8
shows two di� erent sequences used for each of the problems involving mixed-
models. As stated earlier, the JIT sequence was used for the mixed-model problems
in this research (Ding and Cheng 1993) whose results are discussed in the previous
section. These results were then compared to more of a non-JIT sequenceÐ a pro-
duction sequence where the di� erent products were introduced to the production
system in a l̀umpier’ fashion when compared to the steady release of products of the
JIT sequence. Each integer value in the presented sequences is simply a label of the
product to be processed by the system. The labels are consistent with the product-
mixes as presented in table 3, and regardless of the sequence used, the product mixes
are the same across each problem.

These product sequences are repeated throughout the simulated production runs,
and the same general attributes of the original simulation model apply here.

The experiment showed that the chosen sequence does have an overall multi-
variate e� ect on the performance measures of interest (Wilks ¸ = 0.8256,
F = 237.31, p < 0.0001). Table 9 shows the results of the experiment in terms of

the means of the performance measures that are dependent upon the sequence.
Table 9 shows that at the 0.05 level of signi® cance, only the percentage of on-time

completion is not sensitive to the sequencing decision. The other performance meas-
ures are sensitive to the sequencing decision and they favour the JIT sequencing. The
reason for this is that when compared to the non-JIT sequencing policy, the JIT
sequence utilizes the steady release of di� ering jobs. When this occurs, the weighted
averages used for task durations for the mixed-model problems (obtained from the
line balancing procedure and used for the layout for the simulated production run)
are more compatible with the task durations of the jobs moving through the system.
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Tasks JIT (mixed-model) sequence Non-JIT sequence

29 121, 121, 121 111111222
40 1213121, 1213121, 1213121 111111111222222333
45 121, 121, 121 111111222
74 12131214, 12131214, 12131214 111111111111222222333444

Table 8. JIT and non-JIT sequences used.

Sequence JIT-sequence Non-JIT sequence Univariate F p-value

ULC 145.80 146.90 4.54 0.0332
POT 0.7551 0.7572 0.76 0.3840

UTIL 0.7433 0.6865 459.06 < 0.0001
CTR 0.8379 0.8317 4.52 0.0335

Table 9. E� ect of sequence on relevant performance measures.



When the jobs are moving through the system according to the non-JIT sequence,
their task durations are less compatible with the task durations used to design the
layout (obtained from the weighted averages used for line balancing). This relative
lack of compatibility results in more system c̀lutter’ when compared with the JIT
sequence, and thereby inferior performance measures are observed.

6. Conclusions

In a manufacturing environment of high volume production, small batch sizes,
mixed model sequencing, and schedule reliability, several assumptions of traditional
line balancing approaches need to be relaxed. Since the problem of how best to
allocate tasks across work centres must still be resolved, existing line balancing
approaches should be re-evaluated. Also, since competitive emphasis is shifting
from primarily cost performance to both cost and cycle time performance, new
line balancing approaches should be developed to help achieve these goals. This
study examined the performance of 23 existing and new line balancing strategies
or approaches under a modern manufacturing environment. By using a simulation
experiment, the resulting production performance of the approaches was evaluated.

Because of the inexpensive availability of computing power and the combinator-
ial nature of line balancing problems, Simulated Annealing was examined as a line
balancing approach. Several search objectives were evaluated with Simulated
Annealing. Combinations of di� erent search objectives were also evaluated to inves-
tigate their impact on multiple performance objectives. On cycle time performance,
several Simulated Annealing approaches performed signi® cantly better than the
other approaches, based on average performance measures and rankings. On
design cost per unit produced, most of the Simulated Annealing approaches per-
formed about average for all the heuristics.

Most importantly, this paper has shown how Simulated Annealing can be used to
® nd improved solutions for balancing a production line where task times are stoch-
astic, multiple products are produced in a mixed-model fashion, parallel worksta-
tions are allowed, and cycle time performance as well as total labour and equipment
cost are all important. With appropriate search objectives, Simulated Annealing
demonstrated a strong potential for yielding good solutions if cycle time perform-
ance is of primary concern. When unit total cost (labour and equipment) and cycle
time performance were of equal importance, Simulated Annealing with composite
search objectives still resulted in better performance than other approaches, based on
average rankings. For a particular shop environment, several Simulated Annealing
algorithmic parameters might be ®̀ ne-tuned’ for even better performance.

As is common with many multiple objective problems, there is an inherent trade-
o� between the objectives of cycle time performance and design cost performance.
Conceptually, a company could improve cycle time performance by hiring more
workers and purchasing more equipment. This research was unable to identify line
balancing strategies that consistently excelled at both cycle time performance and
design cost performance. If cycle time performance is of primary concern, then
Simulated Annealing with search objectives 3, 4, 5 or 6 appears to provide the
best solutions. If design cost is of primary concern then some of the traditional
line balancing approaches appear to provide better solutions. If both performance
objectives are of equal concern, then Simulated Annealing with composite search
objectives appears most promising.
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One avenue for further research would be to use Simulated Annealing in addition
to traditional line balancing approaches. If design cost is the most important per-
formance objective, then a few of the better traditional heuristics could be used to
generate solutions. Each of these solutions could then be used as the initial solution
for Simulated Annealing, and using a cost-focused search objective (Peterson 1993,
Leu et al. 1994). Conducting a research study to evaluate the use of di� erent line
balancing heuristics to obtain initial solutions for Simulated Annealing when di� er-
ent performance objectives are important would contribute to a better understanding
of the potential of this heuristic.
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