
 Open access  Posted Content  DOI:10.1101/2021.01.29.21250703

Using simulated infectious disease outbreaks to guide the design of individually
randomized vaccine trials — Source link 

Zachary J. Madewell, Piontti Apy, Qian Zhang, Nathan Burton ...+6 more authors

Institutions: University of Florida, Northeastern University, University of Washington,
Fred Hutchinson Cancer Research Center

Published on: 01 Feb 2021 - medRxiv (Cold Spring Harbor Laboratory Press)

Related papers:

 Ensemble forecast modeling for the design of COVID-19 vaccine efficacy trials.

 The required size of cluster randomized trials of non-pharmaceutical interventions in epidemic settings

 
Quantifying efficiency gains of innovative designs of two-arm vaccine trials for COVID-19 using an epidemic simulation
model

 Leveraging contact network structure in the design of cluster randomized trials

 
Cancer patient survival can be accurately parameterized, revealing time-dependent therapeutic effects and doubling
the precision of small trials

Share this paper:    

View more about this paper here: https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-
4ynmv7i9eo

https://typeset.io/
https://www.doi.org/10.1101/2021.01.29.21250703
https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo
https://typeset.io/authors/zachary-j-madewell-1wwdz02gfw
https://typeset.io/authors/piontti-apy-4erlxaaspt
https://typeset.io/authors/qian-zhang-2g5qk057rn
https://typeset.io/authors/nathan-burton-3xhak45d2u
https://typeset.io/institutions/university-of-florida-10mwfd5s
https://typeset.io/institutions/northeastern-university-2tfxs25d
https://typeset.io/institutions/university-of-washington-2tqpyv72
https://typeset.io/institutions/fred-hutchinson-cancer-research-center-2immip4m
https://typeset.io/journals/medrxiv-3o5ewbzz
https://typeset.io/papers/ensemble-forecast-modeling-for-the-design-of-covid-19-547ezz7bf8
https://typeset.io/papers/the-required-size-of-cluster-randomized-trials-of-non-47hpn3cxf7
https://typeset.io/papers/quantifying-efficiency-gains-of-innovative-designs-of-two-201fa0r67t
https://typeset.io/papers/leveraging-contact-network-structure-in-the-design-of-2pbuyf1b63
https://typeset.io/papers/cancer-patient-survival-can-be-accurately-parameterized-2mzvcor0yr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo
https://twitter.com/intent/tweet?text=Using%20simulated%20infectious%20disease%20outbreaks%20to%20guide%20the%20design%20of%20individually%20randomized%20vaccine%20trials&url=https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo
https://typeset.io/papers/using-simulated-infectious-disease-outbreaks-to-guide-the-4ynmv7i9eo


1 

 

Using simulated infectious disease outbreaks to guide the design of individually randomized vaccine 1 

trials 2 

Zachary J. Madewell
a
, Ana Pastore Y Piontti

b
, Qian Zhang

b
, Nathan Burton

c
, Yang Yang

a
, Ira M. 3 

Longini
a
, M. Elizabeth Halloran

d,e
, Alessandro Vespignani

b
, Natalie E. Dean

a 
4 

 5 

a
 Department of Biostatistics, University of Florida, Gainesville, FL, United States 6 

b
 Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, 7 

Boston, MA, United States 8 

c
 Institute for Child Health Policy, University of Florida College of Medicine, Gainesville, FL, United 9 

States 10 

d
 Biostatistics, Bioinformatics, and Epidemiology Program, Vaccine and Infectious Diseases Division, 11 

Fred Hutchinson Cancer Research Center, Seattle, WA, United States 12 

e
 Department of Biostatistics, University of Washington, Seattle, WA, United States 13 

 14 

Corresponding author 15 

Zachary J. Madewell, PhD, MPH 16 

Department of Biostatistics 17 

University of Florida 18 

PO Box 117450 19 

2004 Mowry Road 20 

Gainesville, FL 32611-7450 21 

Email: zmadewell@ufl.edu 22 

 23 

Short title: Simulation data to design vaccine trials 24 

Word count: 2808 25 

Funding: This work was supported by the National Institutes of Health R01-AI139761. 26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.21250703doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.01.29.21250703
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract 27 

Background/Aims: Novel strategies are needed to make vaccine efficacy trials more robust given the 28 

uncertain epidemiology of outbreaks. Spatially resolved mathematical and statistical models can help 29 

investigators identify sites at highest risk of future transmission and prioritize these for inclusion in trials. 30 

Models can also characterize the uncertainty in whether transmission will occur at a site, and how nearby 31 

or connected sites may have correlated outcomes. A structure is needed for how trials can use models to 32 

address key design questions, including how to prioritize sites, the optimal number of sites, and how to 33 

allocate participants across sites.  34 

Methods: We illustrate the added value of models using the motivating example of Zika vaccine trial 35 

planning during the 2015-2017 Zika epidemic. We used a stochastic, spatially resolved, agent-based 36 

transmission model (GLEAM) to generate 1,142 epidemics and site-level incidence at 100 high-risk sites 37 

in the Americas. We considered several strategies for prioritizing sites (average site-level incidence of 38 

infection across epidemics, median incidence, probability of exceeding 1% incidence), selecting the 39 

number of sites, and allocating sample size across sites (equal enrollment, proportional to average 40 

incidence, proportional to rank). To evaluate each design, we stochastically simulated trials in each 41 

hypothetical epidemic by drawing observed cases from site-level incidence data.  42 

Results: When constraining the overall trial sample size, the optimal number of sites represents a balance 43 

between prioritizing highest-risk sites and having enough sites to reduce the chance of observing too few 44 

endpoints. The optimal number of sites remained roughly constant despite varying the targeted number of 45 

events, although it is necessary to increase the total sample size to achieve the desired power. Though 46 

different ranking strategies returned different site orders, they performed similarly with respect to trial 47 

power. Instead of enrolling participants equally from each site, investigators can allocate participants 48 

proportional to projected incidence, though this did not provide an advantage in our example because the 49 

top sites had a roughly similar risk profile. Sites from the same geographic region may have similar 50 

outcomes, so optimal combinations of sites may be those that are more geographically dispersed, even 51 

when these are not the highest ranked sites. 52 
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Conclusions: Mathematical and statistical models may assist in the design of successful vaccination trials 53 

by capturing uncertainty and correlation in future transmission. Although many factors affect site 54 

selection, such as logistical feasibility, models can help investigators optimize site selection and the 55 

number and size of participating sites. 56 

 57 

Keywords: clinical trial design; simulations; mathematical modeling; infectious diseases; vaccine; 58 

forecast model; trial planning  59 
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Background 60 

To observe enough events to reliably measure the efficacy of a vaccine, phase III trials often 61 

enroll thousands or tens of thousands of participants across multiple sites. For endemic diseases like 62 

rotavirus or malaria, incidence may be low but is relatively predictable. Investigators can use historical 63 

data to guide the selection of trial populations assuming that future trends will be similar. Where 64 

incidence is lower than expected during the trial, investigators can expand the sample size at existing sites 65 

or increase participant follow-up to compensate. This strategy is unlikely to work for outbreak pathogens. 66 

Historical data may be only weakly predictive of future incidence at a location. In fact, for pathogens with 67 

high attack rates, an area with a large prior outbreak may be less susceptible to a subsequent outbreak if 68 

there is a build-up of population immunity. Alternatively, that area may be more prone to another 69 

outbreak if immunity wanes or the number of susceptible individuals is replenished. The outbreaks 70 

themselves are highly unpredictable – when and where they will occur, how many will become infected, 71 

and how long they will last. The 2014-2016 West African Ebola epidemic was emblematic of this 72 

challenge, with a Phase III trial in Liberia enrolling over 8,000 individuals but observing no events 73 

because the local outbreak subsided.
1
 In this situation, expanding enrollment at existing sites or extending 74 

follow-up of participants would not be able to compensate. 75 

Novel strategies are needed to make vaccine trials more robust to the uncertain epidemiology of 76 

outbreaks.
2
 One recommended approach is to enable the addition of new sites over time using a master or 77 

core protocol framework.
3
 If transmission in early hotspots is brought under control before the study has 78 

reached a conclusion, the trial can continue at new hotspots. If the outbreak is declared over, the trial can 79 

be paused until a subsequent outbreak. Spatially resolved mathematical and statistical forecast models can 80 

assist investigators in selecting participating sites. Models can incorporate site-specific features such as 81 

population size and density, socioeconomic vulnerability, sociocultural acceptance, logistic feasibility, 82 

prior immunity estimated from traditional surveillance or serosurveys, ongoing local transmission, or risk 83 

of importation. For vector-borne diseases, models can capture vector presence or abundance, sensitivity to 84 

temperature and humidity, the spread of other diseases by the same vector, and whether other diseases 85 
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interfere with the disease of interest. By integrating diverse data sources, models can help investigators 86 

identify sites at highest risk of future transmission and prioritize these for inclusion in the trial.
4
 87 

Another advantage of simulation models for infectious disease trials is that they enable 88 

investigators to explore a range of trial design features.
5
 Projected incidence is important, but so is the 89 

uncertainty around that projection, including the probability of no or little future spread. When there is a 90 

chance that sites will have little or no transmission, it becomes more important to include multiple, 91 

geographically dispersed sites, to distribute this risk.  92 

We illustrate the potential role of forecast modeling by using simulation data from a stochastic, 93 

highly spatially resolved, agent-based Zika virus (ZIKV) model
6
 that was used to inform Zika vaccine 94 

trial planning in 2016.
7
 Although the Zika epidemic subsided so that vaccine efficacy trials were not 95 

possible,
8
 these are the type of data investigators would have at their disposal when designing future 96 

efficacy trials for other infectious diseases. In addition to generalizable findings, we provide a plan for 97 

how future trials may analyze their modeling results to prioritize test sites, site size, and the total number 98 

of sites. We explore how disease models can be used to address key trial design questions, including how 99 

to rank sites, the optimal number of sites to include, and how to allocate participants across sites. 100 

Simulations can also be used to explore trial feasibility given financial, logistical, or time constraints. We 101 

further consider how correlation between sites due to geographic proximity or human movement impacts 102 

trial power. 103 

 104 

Simulation structure 105 

Model 106 

We used the Global Epidemic and Mobility model (GLEAM) to identify the top 100 sites in the 107 

Americas with the highest projected ZIKV probability of transmission and infection rates in 2017. These 108 

projections were prepared in 2016, reflecting the type of data available to investigators planning trials. 109 

GLEAM, which has been described elsewhere,
6, 9

 is a discrete stochastic epidemic computational model 110 

incorporating high-resolution demographic, socioeconomic, temperature, vector occurrence probability, 111 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.21250703doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.29.21250703
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

and human mobility data. The projections were calculated using discrete time steps of one day to simulate 112 

transmission dynamics, but the results are summarized as number of infections per month. The resulting 113 

dataset included the site name, population size, and number of simulated infections (both symptomatic 114 

and asymptomatic) by month for 1,142 simulated epidemics from January through December 2017 (Table 115 

S1). Population sizes for sites included all ages. Thus, we can examine both the range of projections for 116 

each site, as well as look across sites within an epidemic.  117 

 118 

Trial design 119 

We describe the design of a hypothetical individually randomized Zika vaccine efficacy trial.  120 

The primary outcome is total number of confirmed symptomatic ZIKV cases. Given a set of selected sites 121 

and a fixed enrolled population for each site, for which we consider various different combinations, we 122 

simulate a trial as follows. First, we select one of the 1,142 simulated epidemics, which has an associated 123 

annual infection attack rate for each site. We simulate the number of infected trial participants at each site 124 

as a binomial draw with the probability of infection set at the site-level attack rate, and then we draw the 125 

number of these with symptomatic disease assuming 20% symptomatic proportion.
10

 This yields the total 126 

number of cases at each site, which is then added across sites. We repeat the binomial draws 50 times at 127 

each site, and then across all 1,142 epidemics to generate 57,100 simulated trials.  128 

Approximately 60 symptomatic infection events are needed to have 90% power to reject the null 129 

hypothesis that the vaccine efficacy ≤ 30% when it is actually 70% using a 1:1 allocation to vaccine or 130 

placebo. We therefore defined a successful (i.e., adequately powered) trial as finding ≥60 cases across all 131 

sites in one year; we also explored trial designs targeting 50 to 150 events. 132 

 In a sensitivity analysis, we consider the feasibility of trials when attack rates are uniformly lower 133 

than projected by the model. To explore this scenario, we restrict analyses to the 25% of simulated 134 

epidemics with lowest overall infection attack rates across all sites.  135 

 136 

Findings 137 
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Number of sites 138 

The first key design choice is the number of participating sites. Sites are ranked by mean 139 

incidence of infection across all simulated epidemics (Figure S1), and we consider designs including the 140 

top site, the top two sites, and so on. For this example, we constrain the overall sample size at 15,000 141 

participants and allocate these participants equally across selected sites. We plot the distribution of the 142 

simulated number of cases for each design in Figure 1. Starting on the left side of the figure, the bimodal 143 

nature of outbreaks is apparent when five or less sites are included. While the median number of cases of 144 

the one-site design is highest relative to other designs, with a high upper tail observed for large outbreaks, 145 

there is notable mass near zero cases, when little transmission occurs at the site. As the number of sites 146 

increases, this bimodal phenomenon disappears; the probability of having zero cases decreases, but the 147 

median expected number of cases also decreases because lower incidence sites are included. 148 

While it is theoretically possible to enroll from only a single site, this presents an unacceptable 149 

risk of failing to accrue the needed endpoints. It may also not be practically feasible if the site has a small 150 

population. Furthermore, while a very high attack rate in a trial could shorten the trial duration or increase 151 

study precision, our primary goal is to meet our target number of events, not dramatically exceed it. Thus, 152 

rather than median expected number of cases, it is preferable to examine the probability that the design is 153 

adequately powered. The curves in Figure 2 A plot the probability of success (here defined as exceeding 154 

the target of 60 cases) as a function of the number of sites. We observe a local maximum around 8-11 155 

sites, such that too few or too many sites are suboptimal with respect to trial success. In practice, the exact 156 

location of this maximum will depend on the specific epidemiological setting. 157 

The location of this local maximum for number of sites is reasonably stable to the ranking 158 

criterion, even if we change the target number of events or total sample size. Figure 3 shows the minimum 159 

trial size required to achieve at least 90% probability of success for different target numbers of events and 160 

sites. As the target number of events increases, there is an expected increase in the total number of 161 

participants needed. Yet for any specified target number of events, the desired 90% probability of success 162 

is achieved with the smallest overall sample size when around eight sites are included. 163 
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The optimal design depends on the underlying simulation data through the site-level attack rates. 164 

We consider a sensitivity analysis where the overall epidemic is smaller than projected by restricting to 165 

the 25% of simulations with lowest overall infection attack rates across all sites. Figure 4 compares the 166 

probability of success of different designs for all simulations versus the low incidence subset. While many 167 

of the same relationships persists, the probability of success drops dramatically. Even increasing the total 168 

number of sites and overall sample size, the probability of success does not exceed 25% in the designs 169 

explored. Thus, this approach is also useful for exploring the feasibility of trials. 170 

Figure 4 also demonstrates that the two-site design is best when the targeted trial size is relatively 171 

small. Even for large targeted trial sizes, the difference in success probability between the two-site design 172 

and more sites designs is no more than 10%. Logistically, the two-site design is an appealing option. 173 

 174 

Site prioritization 175 

In the previous section, sites are ranked by average model-projected site-level incidence of 176 

infection. We examined other ranking strategies, including median model projected site-level incidence, 177 

and the proportion of simulated outbreaks where site-level incidence exceeds a threshold, such as 1%. 178 

The latter strategy is intended to capture the bimodal nature of outbreaks, and that a few very large 179 

outbreaks could drive a high average incidence. In general, these measures are well-correlated, but they 180 

can yield different rankings (Figure S2, Table S2). Small sites may have higher attack rates, but may also 181 

have a higher probability of having zero infections across all participants. Nonetheless, we found similar 182 

performance across the different ranking strategies (Figure 2). 183 

 184 

Allocation strategies 185 

Next, we considered different strategies for allocating the total sample size across multiple sites. 186 

The strategies are to distribute enrollment size 1) evenly across all sites, 2) proportional to mean 187 

incidence of infection, and 3) a middle-ground strategy using the average of sample sizes obtained from 188 

the previous two strategies. 189 
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1) Equal enrollment: Let � be the total sample size, let � be the number of sites, let ��  be the 190 

sample size at site �, then:  �� �
�
� 191 

2) Proportional to mean incidence: Let ��  be the rank at site � and let  ��  = mean incidence. Then site 192 

� has size: �� � �
��∑ ���:����

 193 

3) Average of equal enrollment and proportional to mean incidence: �� �

�

�
 � �� ��

∑ ���:����
	


  194 

 195 

An example with five sites is shown in Table S3. The difference between the strategies will depend upon 196 

how similar projected incidence is across the top-ranked sites. 197 

In this example, enrolling participants proportional to average incidence did not outperform the 198 

other strategies when fewer than 15 sites were included (Figure 2 B). This covers the range where the 199 

probability of success maximizes, around 8-11 sites. With larger numbers of enrollment sites, enrolling 200 

participants proportional to average incidence outperformed the other strategies as fewer individuals are 201 

enrolled from sites that are expected to have lower attack rates. However, designs with more sites are sub-202 

optimal based on their reduced probability of success. As expected, the middle-ground strategy performs 203 

in between the others, but it may be desirable for logistical reasons by balancing enrollment across sites. 204 

The similar performance across the strategies for fewer than 15 sites may reflect that sites had similar 205 

enough risk and large enough uncertainty that proportional allocation provided no worthwhile advantage. 206 

 207 

Correlation between sites 208 

It is conceivable that incidence rates are similar among sites in the same geographic region. Aside 209 

from Brazil, Figure 5 shows that correlation in incidence is highest among sites from the same country. It 210 

may therefore be that the sites with the highest simulated incidence are all from the same geographic 211 

region. To reduce the chance of enrolling sites from only one geographic area that may, by chance, have a 212 

smaller than expected outbreak, it may be prudent to simultaneously enroll participants from other 213 

geographically dispersed sites. 214 
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We explored whether alternative combinations of sites (that may be more geographically 215 

dispersed) could have a higher probability of success than those based only on rankings. Figure 6 displays 216 

combinations of three, four, five, six, and seven site trials that achieved higher probability of success than 217 

a design that selects sites based solely on average site-level incidence. For example, the top three sites 218 

based on incidence are relatively close together, as seen by the low mean pairwise distance between sites 219 

plotted on the X-axis. Many other combinations of three sites return higher probability of success, and 220 

these tend to be more geographically dispersed (higher mean pairwise distance). A similar pattern is 221 

observed for higher numbers of sites, although the gains become more modest. 222 

 223 

Number of countries 224 

While it may be prudent to recruit sites from at least a few different countries (under the intuition 225 

that sites within a country are correlated), an important operational consideration is the number of 226 

countries enrolled. For each country included, the logistical burden for the trial increases substantially 227 

because it involves engaging with multiple ministries of health and the protocol needs to be approved by 228 

country-level institutional review boards. Thus, investigators may prefer to pursue trials in countries that 229 

have many high-risk sites. Figure S3 visualizes the number and incidence of sites by country. For 230 

example, in this scenario, it may be practical to select several sites from Peru, Mexico, Ecuador, and 231 

Colombia since many candidate sites are high risk.  232 

 233 

Conclusions 234 

We describe the use of simulation data for design elements for individually randomized vaccine 235 

trials during an ongoing epidemic. Mathematical models allow us to capture a range of possible 236 

outcomes, from small to large outbreaks, and incorporate correlation between sites connected by human 237 

movement. Models therefore may capture the stochasticity of future transmission, reflecting a distribution 238 

rather than only the mean projection, which may be used to guide trial planning.  239 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.29.21250703doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.29.21250703
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

We used a single model to identify the top 100 sites in the Americas with the highest projected 240 

Zika virus transmission probability and infection rates in 2017 and leveraged those data to analyze 241 

vaccine efficacy trial design strategies. However, in a real-world infectious disease outbreak, ensemble 242 

forecast modeling (combining projections from independent modeling groups) may be used to 243 

expeditiously guide identification of appropriate sites for vaccine efficacy trials.
4
 In practice, 244 

implementation will depend upon practical considerations with regard to site selection, speed of rollout, 245 

number of participants across sites, including a site’s capacity to support a vaccine trial. There may also 246 

be political considerations. 247 

The optimal number of sites to enroll represents a balance between having enough sites to 248 

distribute the risk of having a smaller than expected outbreak at any one site, versus enrolling participants 249 

from lower risk sites. This optimal number of sites stayed relatively constant even when increasing the 250 

targeted number of events, although the sample size must increase to achieve the desired probability of 251 

success. Though different methods of prioritizing sites (average incidence, median incidence, and 252 

probability of exceeding a threshold) returned different rankings, overall the approaches performed 253 

similarly in this example. In general, they return the same set of prioritized sites. Investigators can use 254 

simulations to guide allocation of participants across sites, prioritizing high-risk sites, though this appears 255 

to provide an advantage over a simpler equal allocation approach only when there are large differences in 256 

risk across sites.    257 

We demonstrated that sites from a geographic region may have similar outcomes and that optimal 258 

combinations of sites may be those that are geographically dispersed. Perhaps it is feasible to develop 259 

novel search algorithms in the enormous space of site combinations without simulating trials for all 260 

possible combinations. However, including multiple countries increases trial costs and logistical 261 

complexities. Cost-effectiveness analyses may be used to explore the potential benefits and feasibility of 262 

specific trial design features by assessing the net costs or savings of vaccinating specific populations.
11

 263 

Although many factors affect site selection, models can help investigators optimize site selection and the 264 

number and size of participating sites.     265 
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Figures 299 

Figure 1. Violin plot of the simulated number of Zika virus cases for the top 1-10 sites with the highest 300 

average site-level incidence of infection across all simulated outbreaks in one year (2017). We assume an 301 

enrolled population of 15,000 across all enrollment sites with enrollment size spread evenly across all 302 

sites. Median number of cases (dashed line), 25
th

 and 75
th
 percentiles (solid lines) are shown. The 303 

threshold for a successful trial, defined as ≥60 cases across all sites in one year, is indicated by the dotted 304 

line. 305 

 306 
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Figure 2. Probability of a successful trial (defined as ≥60 cases for an enrolled population of 15,000 307 

across all enrollment sites in one year [2017]) as function of the cumulative number of enrollment sites. In 308 

Panel A, enrollment size was spread evenly across all sites and sites were added sequentially based on 309 

their ranking by the 1) average site-level incidence, 2) median incidence, and 3) probability of exceeding 310 

1% site-level incidence of infection across all simulated outbreaks. In Panel B, sites were added 311 

sequentially based on their ranking of average site-level incidence of infection across all simulated 312 

outbreaks and enrollment size was 1) spread evenly across all sites, 2) proportional to the average site-313 

level incidence of each site, and 3) average of equal enrollment and proportional to mean incidence. 314 

 315 
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Figure 3. The minimum enrollment size required for an individually randomized vaccine efficacy trial to 316 

achieve at least 90% probability of success for different target numbers of events and numbers of sites. 317 

Sites were ranked by average site-level incidence of infection across all simulated outbreaks in one year 318 

(2017) with enrollment proportional to average site-level incidence of infection. 319 

 320 
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Figure 4. Probability of a successful trial (defined as ≥60 cases) as function of trial size, with enrollment 321 

size spread evenly across all sites. Sites were added sequentially based on their ranking by average site-322 

level incidence of infection across all simulated outbreaks in one year (2017). Panel A includes all 323 

simulations, whereas Panel B is restricted to the 25% of simulated epidemics with lowest overall 324 

incidence across all sites. 325 

 326 
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Figure 5. Spearman correlation of average site-level incidence of infection across all simulated outbreaks 327 

in one year (2017) between sites identified by the global epidemic and mobility model (GLEAM) 328 

(countries with at least four sites included). Sites are sorted by country and then by latitude. 329 

 330 
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Figure 6. Probability of a successful trial (defined as ≥60 cases for an enrolled population of 15,000 331 

across all enrollment sites in one year) by the mean distance between sites (in kilometers). The panels 332 

represent numbers of sites and points represent combinations of sites from the top 15 sites with the 333 

highest average site-level incidence of infection across all simulated outbreaks in one year (2017) that had 334 

a higher probability of success than the combination of sites with the highest projected incidence 335 

(represented by the black dot). Enrollment is assumed to be spread evenly across sites. We have included 336 

combinations of 3-7 sites of the top 15 sites for illustration, but this process could be extended to any 337 

number of sites.  338 
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